1
|
Li A, Zhao J, Liu P, Wang X, Wang L, Huang J. M341I substitution of penicillin binding protein 2X contributes to the emergence of high-level penicillin resistant Streptococcus suis in China. Vet Microbiol 2025; 306:110569. [PMID: 40414107 DOI: 10.1016/j.vetmic.2025.110569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 05/03/2025] [Accepted: 05/18/2025] [Indexed: 05/27/2025]
Abstract
Streptococcus suis is a major zoonotic pathogen, with penicillins being the first-line treatment for S. suis infections. However, increasing reports of penicillin-non-susceptible (PNS) S. suis have raised concerns, yet the underlying resistance mechanisms remain poorly understood. In this study, we analyzed 107 PNS S. suis isolates to investigate the genetic and phenotypic basis of penicillin resistance. Antimicrobial susceptibility testing revealed that PNS S. suis isolates exhibited higher resistant rates to a number of antimicrobials, including tetracyclines, macrolides and lincosamides. Indeed, high-level penicillin-resistant (HLPR) isolates exhibited even higher resistant rates to these antimicrobials. Serotyping and multilocus sequence typing (MLST) revealed the presence of diverse genetic backgrounds, indicating a potential for widespread transmission. A detailed amino acid analysis of penicillin-binding proteins (PBPs) identified specific substitutions in PBP2x-M341I, I373V, and M401I-associated with HLPR. Recombinant expression of PBP2x proteins containing these substitutions allowed further investigation of their binding affinity to β-lactam antibiotics. Acylation efficiency assays revealed that the M341I substitution significantly reduced the binding affinity of PBP2x for penicillins but not for cephalosporins. These findings provide new insights into the molecular mechanisms underlying HLPR in S. suis and underscore the importance of PBP2x substitutions in driving penicillin resistance.
Collapse
Affiliation(s)
- Aijuan Li
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572025, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Risk Assessment Center of Veterinary Drug Residue and Antimicrobial Resistance, Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaqi Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Risk Assessment Center of Veterinary Drug Residue and Antimicrobial Resistance, Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Peiyu Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Risk Assessment Center of Veterinary Drug Residue and Antimicrobial Resistance, Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaomin Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Risk Assessment Center of Veterinary Drug Residue and Antimicrobial Resistance, Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Liping Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Risk Assessment Center of Veterinary Drug Residue and Antimicrobial Resistance, Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jinhu Huang
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572025, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Risk Assessment Center of Veterinary Drug Residue and Antimicrobial Resistance, Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Zhao X, Han S, Zhang F, Cui L, Ji G, Wang S, Jiang Y, Wang G, Yu J, Wang K, Wang Z. Identification and characterization of Streptococcus suis strains isolated from eastern China Swine Farms, 2021-2023. Sci Rep 2025; 15:5677. [PMID: 39955355 PMCID: PMC11829963 DOI: 10.1038/s41598-025-90308-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/12/2025] [Indexed: 02/17/2025] Open
Abstract
The Streptococcus suis (S. suis) is an important zoonotic pathogen that causes streptococcal disease in pigs and poses a threat to humans. This study provides an understanding of the prevalence of S.suis in eastern China and provides guidance for clinical prophylaxis. From 2021 to 2023, a total of 143 strains of S. suis were isolated from 1642 lung tissue and nasal swabs from healthy and suspected infected pigs in Shandong Province, China, using the Phenotypic tests and PCR technique. The isolates were then tested for serotype, virulence-related genes, and resistance genes. Among the 143 isolates, type 2 was the predominant serotype with 98 isolates (98/143, 68.5%), followed by type 5 with 22 isolates (22/143, 15.3%), type 4 with 6 isolates (6/143, 4.2%), type 19 with 4 isolates (4/143, 2.8%) and type 21 with 5 isolates (5/143, 3.5%), respectively. A minimum of 78.3% of the strains exhibited the presence of virulence-related genes including pgda, dlta, mann, fbps, orf2, and sspa, whereas the virulence-associated genes Sum, Sly, and Salkr are not widely prevalent. For the detection of resistance genes, it was found that the tetO gene had a high detection rate of 70.1% (101/143), whereas neither the pbp2b gene nor the cat1 and cat2 genes were detected. Antimicrobial susceptibility testing revealed that 96.5% (138/143) of the isolates exhibited multidrug resistance (MDR). And polypeptide B was found to be tolerated by 125 of the 143 strains (87.4%). Although we did not detect the β-lactam resistance gene in any of the 143 strains, an average of 39.2% of the strains were resistant to β-lactam antibiotics. The results of the current study is thought it may be help to understand the prevalence of S. suis and provide important insights into treatment and prevention.
Collapse
Affiliation(s)
- Xinkun Zhao
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, No.6699 Qingdao Road, Jinan, 250117, China
| | - Shanshan Han
- Shandong New Hope Liuhe Group Co., Ltd, Qingdao, 266100, China
| | - Fei Zhang
- Shandong Vocational College of Special Educational, Jinan, 250355, China
| | - Li Cui
- Shandong Animal Husbandry Association, Jinan, 250000, China
| | - Guangying Ji
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, No.6699 Qingdao Road, Jinan, 250117, China
| | - Shuo Wang
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, No.6699 Qingdao Road, Jinan, 250117, China
| | - Youheng Jiang
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, No.6699 Qingdao Road, Jinan, 250117, China
| | - Guisheng Wang
- Shandong Provincial Center for Animal Disease Control, Jinan, 250100, China
| | - Jieshi Yu
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Kezhou Wang
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, No.6699 Qingdao Road, Jinan, 250117, China
| | - Zhao Wang
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, No.6699 Qingdao Road, Jinan, 250117, China.
| |
Collapse
|
3
|
Yang Y, Xie S, He F, Xu Y, Wang Z, Ihsan A, Wang X. Recent development and fighting strategies for lincosamide antibiotic resistance. Clin Microbiol Rev 2024; 37:e0016123. [PMID: 38634634 PMCID: PMC11237733 DOI: 10.1128/cmr.00161-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
SUMMARYLincosamides constitute an important class of antibiotics used against a wide range of pathogens, including methicillin-resistant Staphylococcus aureus. However, due to the misuse of lincosamide and co-selection pressure, the resistance to lincosamide has become a serious concern. It is urgently needed to carefully understand the phenomenon and mechanism of lincosamide resistance to effectively prevent and control lincosamide resistance. To date, six mobile lincosamide resistance classes, including lnu, cfr, erm, vga, lsa, and sal, have been identified. These lincosamide resistance genes are frequently found on mobile genetic elements (MGEs), such as plasmids, transposons, integrative and conjugative elements, genomic islands, and prophages. Additionally, MGEs harbor the genes that confer resistance not only to antimicrobial agents of other classes but also to metals and biocides. The ultimate purpose of discovering and summarizing bacterial resistance is to prevent, control, and combat resistance effectively. This review highlights four promising strategies, including chemical modification of antibiotics, the development of antimicrobial peptides, the initiation of bacterial self-destruct program, and antimicrobial stewardship, to fight against resistance and safeguard global health.
Collapse
Affiliation(s)
- Yingying Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei, China
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shiyu Xie
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fangjing He
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yindi Xu
- Institute of Animal Husbandry Research, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Zhifang Wang
- Institute of Animal Husbandry Research, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal campus, Islamabad, Pakistan
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agricultural University, Wuhan, Hubei, China
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
4
|
Kobayashi K, Kubota H, Tohya M, Ushikubo M, Yamamoto M, Ariyoshi T, Uchitani Y, Mitobe M, Okuno R, Nakagawa I, Sekizaki T, Suzuki J, Sadamasu K. Characterization of pig tonsils as niches for the generation of Streptococcus suis diversity. Vet Res 2024; 55:17. [PMID: 38321502 PMCID: PMC10848530 DOI: 10.1186/s13567-024-01270-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Streptococcus suis is a gram-positive bacterium that causes meningitis, septicemia, endocarditis, and other disorders in pigs and humans. We obtained 42 and 50 S. suis isolates from lesions of porcine endocarditis and palatine tonsils, respectively, of clinically healthy pigs in Japan; we then determined their sequence types (STs) by multilocus sequence typing (MLST), cps genotypes, serotypes, and presence of classical major virulence-associated marker genes (mrp, epf, and sly). The 42 isolates from endocarditis lesions were assigned to a limited number of STs and clonal complexes (CCs). On the other hand, the 50 isolates from tonsils were diverse in these traits and seemingly in the degree of virulence, suggesting that tonsils can accommodate a variety of S. suis isolates. The goeBURST full algorithm using tonsil isolates obtained in this study and those retrieved from the database showed that major CCs as well as many other clusters were composed of isolates originating from different countries, and some of the STs were very similar to each other despite the difference in country of origin. These findings indicate that S. suis with not only different but also similar mutations in the genome have survived in tonsils independently across different geographical locations. Therefore, unlike the lesions of endocarditis, the tonsils of pigs seemingly accommodate various S. suis lineages. The present study suggests that S. suis acquired its diversity by natural mutations during colonization and persistence in the tonsils of pigs.
Collapse
Affiliation(s)
- Kai Kobayashi
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan.
| | - Hiroaki Kubota
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Mari Tohya
- Division of Biomedical Food Research, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
- Department of Microbiology and Department of Microbiome Research, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Megumi Ushikubo
- Shibaura Meat Sanitary Inspection Station, Tokyo Metropolitan Government, Konan 2-7-19, Minato-ku, Tokyo, 108-0075, Japan
| | - Miki Yamamoto
- Shibaura Meat Sanitary Inspection Station, Tokyo Metropolitan Government, Konan 2-7-19, Minato-ku, Tokyo, 108-0075, Japan
| | - Tsukasa Ariyoshi
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Yumi Uchitani
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Morika Mitobe
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Rumi Okuno
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tsutomu Sekizaki
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Jun Suzuki
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Kenji Sadamasu
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Hyakunincho 3-24-1, Shinjuku-ku, Tokyo, 169-0073, Japan
| |
Collapse
|
5
|
Petrocchi Rilo M, Gutiérrez Martín CB, Acebes Fernández V, Aguarón Turrientes Á, González Fernández A, Miguélez Pérez R, Martínez Martínez S. Streptococcus suis Research Update: Serotype Prevalence and Antimicrobial Resistance Distribution in Swine Isolates Recovered in Spain from 2020 to 2022. Vet Sci 2024; 11:40. [PMID: 38250946 PMCID: PMC10819597 DOI: 10.3390/vetsci11010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/29/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
This study aimed to update the Streptococcus suis serotype distribution in Spain by analysing 302 clinical isolates recovered from diseased pigs between 2020 and 2022. The main objectives were to identify prevalent serotypes, differentiate specific serotypes 1, 14, 2, and 1/2, investigate specific genotypic and phenotypic antimicrobial resistance features, and explore associations between resistance genes and phenotypic resistances. Serotypes 9 (21.2%), 1 (16.2%), 2 (15.6%), 3 (6%), and 7 (5.6%) were the most prevalent, whereas serotypes 14 and 1/2 corresponded with 4.3% and 0.7% of all isolates. Antimicrobial resistance genes, including tet(O), erm(B), lnu(B), lsa(E), tet(M), and mef(A/E), were analysed, which were present in 85.8%, 65.2%, 7%, 7%, 6.3%, and 1% of the samples, respectively. Susceptibility testing for 18 antimicrobials revealed high resistance levels, particularly for clindamycin (88.4%), chlortetracycline (89.4%), and sulfadimethoxine (94.4%). Notably, seven significant associations (p < 0.0001) were detected, correlating specific antimicrobial resistance genes to the observed phenotypic resistance. These findings contribute to understanding the S. suis serotype distribution and its antibiotic resistance profiles in Spain, offering valuable insights for veterinary and public health efforts in managing S. suis-associated infections.
Collapse
Affiliation(s)
- Máximo Petrocchi Rilo
- Animal Health Department, Veterinary Medicine Faculty, University of León, Campus de Vegazana s/n, 24071 León, Spain; (M.P.R.); (C.B.G.M.); (V.A.F.); (A.G.F.); (R.M.P.)
| | - César Bernardo Gutiérrez Martín
- Animal Health Department, Veterinary Medicine Faculty, University of León, Campus de Vegazana s/n, 24071 León, Spain; (M.P.R.); (C.B.G.M.); (V.A.F.); (A.G.F.); (R.M.P.)
| | - Vanessa Acebes Fernández
- Animal Health Department, Veterinary Medicine Faculty, University of León, Campus de Vegazana s/n, 24071 León, Spain; (M.P.R.); (C.B.G.M.); (V.A.F.); (A.G.F.); (R.M.P.)
| | | | - Alba González Fernández
- Animal Health Department, Veterinary Medicine Faculty, University of León, Campus de Vegazana s/n, 24071 León, Spain; (M.P.R.); (C.B.G.M.); (V.A.F.); (A.G.F.); (R.M.P.)
| | - Rubén Miguélez Pérez
- Animal Health Department, Veterinary Medicine Faculty, University of León, Campus de Vegazana s/n, 24071 León, Spain; (M.P.R.); (C.B.G.M.); (V.A.F.); (A.G.F.); (R.M.P.)
| | - Sonia Martínez Martínez
- Animal Health Department, Veterinary Medicine Faculty, University of León, Campus de Vegazana s/n, 24071 León, Spain; (M.P.R.); (C.B.G.M.); (V.A.F.); (A.G.F.); (R.M.P.)
| |
Collapse
|
6
|
Gutiérrez-Martín CB, Martínez-Martínez S, Petrocchi-Rilo M. Analysis of Susceptibility or Resistance to Antimicrobial Agents. Methods Mol Biol 2024; 2815:51-71. [PMID: 38884910 DOI: 10.1007/978-1-0716-3898-9_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Here were described the main three methods being used for analysis of antibiotic susceptibility or resistance of Streptococcus suis clinical isolates to antimicrobial agents: the Kirby-Bauer disk diffusion, the epsilometer test (E test), and the broth microdilution test. In each case, procedures, results, and interpretation are described, as well as their advantages or limitations when proceeds.
Collapse
|
7
|
Hatrongjit R, Boueroy P, Jenjaroenpun P, Wongsurawat T, Meekhanon N, Chopjitt P, Zheng H, Fittipaldi N, Chareonsudjai S, Segura M, Gottschalk M, Kerdsin A. Genomic characterization and virulence of Streptococcus suis serotype 4 clonal complex 94 recovered from human and swine samples. PLoS One 2023; 18:e0288840. [PMID: 37498866 PMCID: PMC10374156 DOI: 10.1371/journal.pone.0288840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Streptococcus suis is a zoonotic pathogen that causes invasive infections in humans and pigs. Herein, we performed genomic analysis of seven S. suis serotype 4 strains belonging to clonal complex (CC) 94 that were recovered from a human patient or from diseased and clinically healthy pigs. Genomic exploration and comparisons, as well as in vitro cytotoxicity tests, indicated that S. suis CC94 serotype 4 strains are potentially virulent. Genomic analysis revealed that all seven strains clustered within minimum core genome group 3 (MCG-3) and had a high number of virulence-associated genes similar to those of virulent serotype 2 strains. Cytotoxicity assays showed that both the human lung adenocarcinoma cell line and HeLa cells rapidly lost viability following incubation for 4 h with the strains at a concentration of 106 bacterial cells. The human serotype 4 strain (ID36054) decreased cell viability profoundly and similarly to the control serotype 2 strain P1/7. In addition, strain ST1689 (ID34572), isolated from a clinically healthy pig, presented similar behaviour in an adenocarcinoma cell line and HeLa cells. The antimicrobial resistance genes tet(O) and ermB that confer resistance to tetracyclines, macrolides, and lincosamides were commonly found in the strains. However, aminoglycoside and streptothricin resistance genes were found only in certain strains in this study. Our results indicate that S. suis CC94 serotype 4 strains are potentially pathogenic and virulent and should be monitored.
Collapse
Affiliation(s)
- Rujirat Hatrongjit
- Faculty of Science and Engineering, Department of General Sciences, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Piroon Jenjaroenpun
- Faculty of Medicine Siriraj Hospital, Department of Research and Development, Division of Bioinformatics and Data Management for Research, Mahidol University, Bangkok, Thailand
| | - Thidathip Wongsurawat
- Faculty of Medicine Siriraj Hospital, Department of Research and Development, Division of Bioinformatics and Data Management for Research, Mahidol University, Bangkok, Thailand
| | - Nattakan Meekhanon
- Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Han Zheng
- National Institute for Communicable Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Nahuel Fittipaldi
- Faculty of Veterinary Medicine, Research Group on Infectious Diseases in Production Animals (GREMIP), University of Montreal, Quebec, Canada
| | - Sorujsiri Chareonsudjai
- Faculty of Medicine, Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Mariela Segura
- Faculty of Veterinary Medicine, Research Group on Infectious Diseases in Production Animals (GREMIP), University of Montreal, Quebec, Canada
| | - Marcelo Gottschalk
- Faculty of Veterinary Medicine, Research Group on Infectious Diseases in Production Animals (GREMIP), University of Montreal, Quebec, Canada
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| |
Collapse
|
8
|
Wu CF, Chen SH, Chou CC, Wang CM, Huang SW, Kuo HC. Serotype and multilocus sequence typing of Streptococcus suis from diseased pigs in Taiwan. Sci Rep 2023; 13:8263. [PMID: 37217544 DOI: 10.1038/s41598-023-33778-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Streptococcus suis (S. suis) infection can cause clinically severe meningitis, arthritis, pneumonia and septicemia in pigs. To date, studies on the serotypes, genotypes and antimicrobial susceptibility of S. suis in affected pigs in Taiwan are rare. In this study, we comprehensively characterized 388 S. suis isolates from 355 diseased pigs in Taiwan. The most prevalent serotypes of S. suis were serotypes 3, 7 and 8. Multilocus sequence typing (MLST) revealed 22 novel sequence types (STs) including ST1831-1852 and one new clonal complex (CC), CC1832. The identified genotypes mainly belonged to ST27, ST94 and ST1831, and CC27 and CC1832 were the main clusters. These clinical isolates were highly susceptible to ceftiofur, cefazolin, trimethoprim/sulfamethoxazole and gentamicin. The bacteria were prone to be isolated from cerebrospinal fluid and synovial fluid in suckling pigs with the majority belonging to serotype 1 and ST1. In contrast, ST28 strains that corresponded to serotypes 2 and 1/2 were more likely to exist in the lungs of growing-finishing pigs, which posted a higher risk for food safety and public health. This study provided the genetic characterization, serotyping and the most current epidemiological features of S. suis in Taiwan, which should afford a better preventative and treatment strategy of S. suis infection in pigs of different production stages.
Collapse
Affiliation(s)
- Ching-Fen Wu
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, Taiwan
| | - Siou-Hui Chen
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, Taiwan
| | - Chi-Chung Chou
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City, Taiwan
| | - Chao-Min Wang
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, Taiwan
| | - Szu-Wei Huang
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, Taiwan
| | - Hung-Chih Kuo
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, Taiwan.
| |
Collapse
|
9
|
Hatrongjit R, Fittipaldi N, Jenjaroenpun P, Wongsurawat T, Visetnan S, Zheng H, Gottschalk M, Kerdsin A. Genomic comparison of two Streptococcus suis serotype 1 strains recovered from porcine and human disease cases. Sci Rep 2023; 13:5380. [PMID: 37009816 PMCID: PMC10068604 DOI: 10.1038/s41598-023-32724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023] Open
Abstract
Streptococcus suis is a zoonotic pathogen that causes invasive infections in humans and pigs. Although S. suis serotype 2 strains are most prevalent worldwide, other serotypes are also occasionally detected. Herein, we investigated the genomes of two S. suis serotype 1 strains belonging to the clonal complex 1, which were recovered from a human patient and an asymptomatic pig, respectively. The genomes differed in pathotype, virulence-associated gene (VAG) profile, minimum core genome (MCG) typing, and antimicrobial resistance gene content. The porcine serotype 1 strain was sequence type (ST) 237 and MCG1, whereas the human serotype 1 strain was ST105 and MCG ungroupable. Both strains were susceptible to several antibiotics consisting of β-lactams, fluoroquinolones, and chloramphenicol. Resistance to tetracycline, macrolides, and clindamycin was observed, which was attributed to the genes tet(O) and erm(B). Analysis of 99 VAG revealed Hhly3, NisK, NisR, salK/salR, srtG, virB4, and virD4 were absent in both serotype 1. However, the porcine strain lacked sadP (Streptococcal adhesin P), whereas the human strain harbored sadP1. Phylogenetic analysis revealed that human S. suis ST105 strains from Vietnam were genetically the closest to the human serotype 1 strain, whereas porcine S. suis ST11 strains from China and Thailand were genetically the closest to the porcine strain.
Collapse
Affiliation(s)
- Rujirat Hatrongjit
- Department of General Sciences, Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand.
| | - Nahuel Fittipaldi
- GREMIP, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Piroon Jenjaroenpun
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thidathip Wongsurawat
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Suwattana Visetnan
- Department of General Sciences, Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand
| | - Han Zheng
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Changping, Beijing, China
| | - Marcelo Gottschalk
- GREMIP, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand.
| |
Collapse
|
10
|
Ji L, Chen Z, Li F, Hu Q, Xu L, Duan X, Wu H, Xu S, Chen Q, Wu S, Qiu S, Lu H, Jiang M, Cai R, Qiu Y, Li Y, Shi X. Epidemiological and genomic analyses of human isolates of Streptococcus suis between 2005 and 2021 in Shenzhen, China. Front Microbiol 2023; 14:1118056. [PMID: 37113229 PMCID: PMC10126776 DOI: 10.3389/fmicb.2023.1118056] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Streptococcus suis (S. suis) is an important food-borne zoonotic pathogen that causes swine streptococcosis, which threatens human health and brings economic loss to the swine industry. Three-quarters of human S. suis infections are caused by serotype 2. A retrospective analysis of human S. suis cases in Shenzhen, a megacity in China, with high pork consumption, between 2005 and 2021 was conducted to understand its genomic epidemiology, pathogen virulence, and drug resistance characteristics. The epidemiological investigation showed that human cases of S. suis in Shenzhen were mainly associated with people who had been in close contact with raw pork or other swine products. Whole-genome sequence analysis showed that 33 human isolates in Shenzhen were dominated by serotype 2 (75.76%), followed by serotype 14 (24.24%), and the most prevalent sequence types (STs) were ST7 (48.48%) and ST1 (39.40%). ST242 (9.09%) and ST25 (3.03%), which were rarely reported, were also found. Phylogenetic analysis showed that the Shenzhen human isolates had close genetic relatedness to isolates from Guangxi (China), Sichuan (China), and Vietnam. We found a new 82 KB pathogenicity island (PAI) in the serotype 2 isolate that may play a role in sepsis. Similarly, a serotype 14 isolate, containing 78 KB PAI, was isolated from a patient presenting with streptococcal toxic shock syndrome (STSLS) who subsequently died. Multi-drug resistance (MDR) was high in human isolates of S. suis from Shenzhen. Most human isolates were resistant to tetracycline, streptomycin, erythromycin, and clindamycin, and 13 isolates had intermediate resistance to penicillin. In conclusion, swine importation from Guangxi, Sichuan, and Vietnam should be more closely monitored, and the use of antibiotics limited to reduce the potential for antimicrobial resistance (AMR).
Collapse
Affiliation(s)
- Liyin Ji
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Zhigao Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Fan Li
- Shenzhen Institute of Quality and Safety Inspection and Research, Shenzhen, China
| | - Qinghua Hu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Liangcai Xu
- Futian District Center for Disease Control and Prevention, Shenzhen, China
| | - Xiangke Duan
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Hanguang Wu
- Shenzhen Institute of Quality and Safety Inspection and Research, Shenzhen, China
| | - Shiqin Xu
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Qiongcheng Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shuang Wu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shuxiang Qiu
- School of Public Health, University of South China, Hengyang, China
| | - Huiqun Lu
- School of Public Health, University of South China, Hengyang, China
| | - Min Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Rui Cai
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yaqun Qiu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yinghui Li
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiaolu Shi
- School of Public Health, Shanxi Medical University, Taiyuan, China
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
- *Correspondence: Xiaolu Shi,
| |
Collapse
|
11
|
Negishi K, Nakata K, Hikone M, Kounosu A, Sakamoto N, Sugiyama K. Fulminant Streptococcus suis infection detected on peripheral blood smear: A case report. J Infect Chemother 2023; 29:357-360. [PMID: 36473685 DOI: 10.1016/j.jiac.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/13/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Streptococcus suis, a gram-positive coccus, is recognized as an emerging zoonotic pathogen that causes serious infections in humans, such as bacterial meningitis and sepsis, with poor outcomes. The pathogen is known to be transmitted through the consumption of raw pork or occupational exposure to pigs. A previously healthy 38-year-old woman with occupational exposure to raw pork was presented to our emergency department with a clinical diagnosis of rapidly progressive septic shock. Peripheral blood smears detected chains of cocci inside granulocytes, which led to the early recognition of gram-positive cocci in short chains before the blood culture test results. Blood cultures later tested positive for S. suis serotype 2. The patient's condition deteriorated despite aggressive resuscitative measures including antibiotics, vasopressors, multiple blood transfusions, mechanical ventilation, and renal replacement therapy. Initiation of veno-arterial extracorporeal membrane oxygenation was ineffective, and the patient died 16 h after admission. The identification of bacteria in the peripheral blood smear indicated an overwhelming infection and led to the rapid recognition of bacteremia. Our report aims to raise awareness about fatal zoonotic pathogens and to promote the unique role of peripheral blood smears that could provide preliminary diagnostic information before blood culture results.
Collapse
Affiliation(s)
- Kumiko Negishi
- Department of Clinical Laboratory, Tokyo Metropolitan Bokutoh Hospital, 4-23-15, Kotobashi, Sumida-ku, Tokyo, 130-8575, Japan
| | - Kazuya Nakata
- Department of Emergency Medicine, Kakogawa Central City Hospital, 439 Honmachi, Kakogawa-cho, Kakogawa, Hyogo, 675-8611, Japan
| | - Mayu Hikone
- Department of Emergency Medicine, Tokyo Metropolitan Bokutoh Hospital, 4-23-15, Kotobashi, Sumida-ku, Tokyo, 130-8575, Japan; Tertiary Emergency Medical Center (Trauma and Critical Center), Tokyo Metropolitan Bokutoh Hospital, 4-23-15, Kotobashi, Sumida-ku, Tokyo, 130-8575, Japan.
| | - Akiko Kounosu
- Department of Clinical Laboratory, Tokyo Metropolitan Bokutoh Hospital, 4-23-15, Kotobashi, Sumida-ku, Tokyo, 130-8575, Japan
| | - Naoya Sakamoto
- Department of Infectious Diseases, Tokyo Metropolitan Bokutoh Hospital, 4-23-15, Kotobashi, Sumida-ku, Tokyo, 130-8575, Japan
| | - Kazuhiro Sugiyama
- Tertiary Emergency Medical Center (Trauma and Critical Center), Tokyo Metropolitan Bokutoh Hospital, 4-23-15, Kotobashi, Sumida-ku, Tokyo, 130-8575, Japan
| |
Collapse
|
12
|
Li L, Ren J, Zhang Q, Luo Y, Zhang Y, Qi J, Zhao X, Hu M, Liu Y. Development of Two Loop-Mediated Isothermal Amplification Assays for Rapid Detection of ermB and mefA Genes in Streptococcus suis. Foodborne Pathog Dis 2022; 19:817-822. [PMID: 36399616 DOI: 10.1089/fpd.2022.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis is an important zoonotic pathogen that poses a serious threat to the pig industry and human health. The massive use of macrolides has led to the emergence of resistance in S. suis, and S. suis is suspected to be a reservoir of antimicrobial resistance genes. The mechanism to macrolide resistance in S. suis is mainly due to ermB and mefA. In this study, loop-mediated isothermal amplification (LAMP) methods were developed to detect ermB and mefA genes in S. suis through turbidimetry detection. The sensitivity and specificity of the LAMP reactions were determined. All results of LAMP and polymerase chain reaction (PCR) assay were compared to determine whether LAMP method was accurate and reliable. The results showed that all 100 nonstreptococcus clinical isolates tested negative, indicating the high specificity of LAMP assays. The detection limit of LAMP assay was 1 fg per reaction, and 102-104-fold lower than those of conventional PCR methods. Evaluation of the performance of the LAMP assay in S. suis clinical strains revealed a good consistency between LAMP and PCR assays. In conclusion, LAMP assays are specific, sensitive, and rapid methods to detect ermB and mefA in S. suis.
Collapse
Affiliation(s)
- LuLu Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China
| | - JinRui Ren
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China.,School of Life Sciences, Shandong Normal University, Jinan, China
| | - Qing Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China
| | - YanBo Luo
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China
| | - Yin Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China
| | - Jing Qi
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China
| | - XiaoNan Zhao
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China
| | - Ming Hu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China
| | - YuQing Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan, China
| |
Collapse
|
13
|
Kerdsin A, Hatrongjit R, Wongsurawat T, Jenjaroenpun P, Chopjitt P, Boueroy P, Fittipaldi N, Zheng H, Gottschalk M. Genomic Characterization of Streptococcus suis Serotype 24 Clonal Complex 221/234 From Human Patients. Front Microbiol 2022; 12:812436. [PMID: 35003043 PMCID: PMC8733411 DOI: 10.3389/fmicb.2021.812436] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022] Open
Abstract
Streptococcus suis is a zoonotic pathogen that causes invasive infections in humans and pigs. Although S. suis serotype 2 is prevalent among patient and swine infections, other serotypes are occasionally detected in humans. Of these, serotype 24 clonal complex (CC) 221/234 are recognized as emerging clones of human infection. Genomic exploration of three S. suis serotype 24 CC221/234 strains revealed antimicrobial resistance genes, pathotyping, virulence-associated gene (VAG) profiles, minimum core genome (MCG) typing, and comparison of the genomes. Based on these analyzes, all three serotype 24 strains were MCG7-3 and should be classified in the intermediate/weakly virulent (I/WV) group. All selected serotype 24 strains were susceptible to several antibiotics including β-lactam, fluoroquinolone, and chloramphenicol. Resistance to tetracycline, macrolide, and clindamycin was observed and attributed to the genes tet(O) and erm(B). Genomic comparison revealed the strains S12X, LSS66, LS0L, LS0E, 92–4,172, and IMT40201 that had phylogenetic affinity with serotype 24 CC221/234. Analysis of 80 virulence-associated genes (VAG) showed that all three serotype 24 strains lacked 24 genes consisting of adhesin P, epf, hyl, ihk, irr, mrp, nadR, neuB, NisK/R, ofs, permease (SSU0835), rgg, revS, salK/R, sao, sly, spyM3_0908, srtBCD, srtF, srtG, SSU05_0473, virA, virB4, and virD4. Eleven specific sequences were identified in the 3 serotype 24 genomes that differed from the genomes of the representative strains of epidemic (E; SC84), highly virulent (HV; P1/7), I/WV (89–1,591), and avirulent (T15 and 05HAS68).
Collapse
Affiliation(s)
- Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Rujirat Hatrongjit
- Department of General Sciences, Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Thidathip Wongsurawat
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Nahuel Fittipaldi
- Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Quebec, QC, Canada
| | - Han Zheng
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Marcelo Gottschalk
- Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Quebec, QC, Canada
| |
Collapse
|
14
|
Li H, Li T, Zhang L, Hu Q, Liao X, Jiang Q, Qiu X, Li L, Draheim RR, Huang Q, Zhou R. Antimicrobial compounds from an FDA-approved drug library with activity against Streptococcus suis. J Appl Microbiol 2021; 132:1877-1886. [PMID: 34800069 DOI: 10.1111/jam.15377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/12/2021] [Accepted: 11/17/2021] [Indexed: 02/03/2023]
Abstract
AIM Antimicrobial resistance (AMR) has become a global concern. Developing novel antimicrobials is one of the most effective approaches in tackling AMR. Considering its relatively low cost and risk, drug repurposing has been proposed as a valuable approach for novel antimicrobial discovery. The aim of this study was to screen for antimicrobial compounds against Streptococcus suis, an important zoonotic bacterial pathogen, from an Food and Drug Administration (FDA)-approved drug library. METHODS AND RESULTS In this study, we tested the antimicrobial activity of 1815 FDA-approved drugs against S. suis. Sixty-seven hits were obtained that showed a growth inhibition of more than 98%. After excluding already known antibiotics and antiseptics, 12 compounds were subjected to minimal inhibition concentration (MIC) assessment against S. suis. This showed that pralatrexate, daunorubicin (hydrochloride), teniposide, aclacinomycin A hydrochloride and floxuridine gave a relatively low MIC, ranging from 0.85 to 5.25 μg/ml. Apart from pralatrexate, the remaining four drugs could also inhibit the growth of antimicrobial-resistant S. suis. It was also demonstrated that these four drugs had better efficacy against Gram-positive bacteria than Gram-negative bacteria. Cytotoxicity assays showed that floxuridine and teniposide had a relatively high 50% cytotoxic concentration (CC50 ). The in vivo efficacy of floxuridine was analysed using a Galleria mellonella larvae infection model, and the results showed that floxuridine was effective in treating S. suis infection in vivo. CONCLUSIONS Five compounds from the FDA-approved drug library showed high antimicrobial activity against S. suis, among which floxuridine displayed potent in vivo efficacy that is worth further development. SIGNIFICANCE AND IMPACT OF STUDY Our study identified several antimicrobial compounds that are effective against S. suis, which provides a valuable starting point for further antimicrobial development.
Collapse
Affiliation(s)
- Haotian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tingting Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liangsheng Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qiao Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xia Liao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qinggen Jiang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiuxiu Qiu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China.,International Research Center for Animal Disease (Ministry of Science & Technology of China), Wuhan, China
| | - Roger R Draheim
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China.,International Research Center for Animal Disease (Ministry of Science & Technology of China), Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China.,International Research Center for Animal Disease (Ministry of Science & Technology of China), Wuhan, China
| |
Collapse
|
15
|
Bamphensin N, Chopjitt P, Hatrongjit R, Boueroy P, Fittipaldi N, Gottschalk M, Kerdsin A. Non-Penicillin-Susceptible Streptococcus suis Isolated from Humans. Pathogens 2021; 10:pathogens10091178. [PMID: 34578210 PMCID: PMC8471365 DOI: 10.3390/pathogens10091178] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Streptococcus suis is a pathogen that causes invasive infections in humans and pigs. In this study, 448 S. suis isolates recovered from human infections in Thailand were characterized with regard to their antimicrobial susceptibility and antimicrobial resistance genes, including, for non-penicillin-susceptible isolates, sequence analyses of five genes encoding penicillin-binding proteins (pbp1a, pbp1b, pbp2a, pbp2b, and pbp2x). All 448 isolates were susceptible to cefepime and ceftriaxone, whereas 99.6%, 91.7%, and 72.9% of the isolates were susceptible to levofloxacin, penicillin, and chloramphenicol, respectively. Almost all isolates were resistant to tetracycline (98.2%), clindamycin (94%), erythromycin (92.4%), and azithromycin (82.6%). Genes tet(O) and ermB were the predominant resistance genes detected among macrolide- and tetracycline-resistant isolates. A total of 37 out of 448 isolates (8.2%) showed intermediately resistance to penicillin. Most of these isolates (59.5%) belonged to serotype 2-ST233. Comparison of the predicted translated sequences of five PBP proteins of a penicillin-susceptible isolate (strain P1/7) to the respective PBP sequences of ten non-penicillin-susceptible isolates revealed multiple amino acid substitutions. Isolates of CC221/234 showed highly variable amino acid substitutions in all PBP proteins. An ST104 isolate had a higher number of amino acid substitutions in PBP2X. Isolates belonging to CC233/379 had numerous substitutions in PBP2B and PBP2X. ST25 isolates exhibited fewer amino acid substitutions than isolates of other STs in all five PBPs. The antimicrobial resistance of S. suis is increasing worldwide; therefore, restrictions on antimicrobial use, continuous control, and the surveillance of this bacterium throughout the pork supply chain are crucial for ensuring public health and must be a priority concern.
Collapse
Affiliation(s)
- Nichari Bamphensin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand; (N.B.); (P.C.); (P.B.)
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand; (N.B.); (P.C.); (P.B.)
| | - Rujirat Hatrongjit
- Department of General Sciences, Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand;
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand; (N.B.); (P.C.); (P.B.)
| | - Nahuel Fittipaldi
- GREMIP, Faculty of Veterinary Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; (N.F.); (M.G.)
| | - Marcelo Gottschalk
- GREMIP, Faculty of Veterinary Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; (N.F.); (M.G.)
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand; (N.B.); (P.C.); (P.B.)
- Correspondence: ; Tel.: +66-42-725-025
| |
Collapse
|
16
|
Dechêne-Tempier M, Marois-Créhan C, Libante V, Jouy E, Leblond-Bourget N, Payot S. Update on the Mechanisms of Antibiotic Resistance and the Mobile Resistome in the Emerging Zoonotic Pathogen Streptococcus suis. Microorganisms 2021; 9:microorganisms9081765. [PMID: 34442843 PMCID: PMC8401462 DOI: 10.3390/microorganisms9081765] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022] Open
Abstract
Streptococcus suis is a zoonotic pathogen causing important economic losses in swine production. The most commonly used antibiotics in swine industry are tetracyclines, beta-lactams, and macrolides. Resistance to these antibiotics has already been observed worldwide (reaching high rates for macrolides and tetracyclines) as well as resistance to aminoglycosides, fluoroquinolones, amphenicols, and glycopeptides. Most of the resistance mechanisms are encoded by antibiotic resistance genes, and a large part are carried by mobile genetic elements (MGEs) that can be transferred through horizontal gene transfer. This review provides an update of the resistance genes, their combination in multidrug isolates, and their localization on MGEs in S. suis. It also includes an overview of the contribution of biofilm to antimicrobial resistance in this bacterial species. The identification of resistance genes and study of their localization in S. suis as well as the environmental factors that can modulate their dissemination appear essential in order to decipher the role of this bacterium as a reservoir of antibiotic genes for other species.
Collapse
Affiliation(s)
- Manon Dechêne-Tempier
- Anses Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, F-22440 Ploufragan, France; (M.D.-T.); (C.M.-C.); (E.J.)
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France; (V.L.); (N.L.-B.)
| | - Corinne Marois-Créhan
- Anses Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, F-22440 Ploufragan, France; (M.D.-T.); (C.M.-C.); (E.J.)
| | - Virginie Libante
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France; (V.L.); (N.L.-B.)
| | - Eric Jouy
- Anses Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie, Bactériologie et Antibiorésistance, F-22440 Ploufragan, France; (M.D.-T.); (C.M.-C.); (E.J.)
| | | | - Sophie Payot
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France; (V.L.); (N.L.-B.)
- Correspondence:
| |
Collapse
|
17
|
Petrocchi-Rilo M, Martínez-Martínez S, Aguarón-Turrientes Á, Roca-Martínez E, García-Iglesias MJ, Pérez-Fernández E, González-Fernández A, Herencia-Lagunar E, Gutiérrez-Martín CB. Anatomical Site, Typing, Virulence Gene Profiling, Antimicrobial Susceptibility and Resistance Genes of Streptococcus suis Isolates Recovered from Pigs in Spain. Antibiotics (Basel) 2021; 10:antibiotics10060707. [PMID: 34208248 PMCID: PMC8230935 DOI: 10.3390/antibiotics10060707] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/27/2021] [Accepted: 06/09/2021] [Indexed: 11/23/2022] Open
Abstract
A set of 207 Streptococcus suis isolates were collected from ten autonomous communities from Spain in 2019 to 2020 from pigs with meningitis, pneumonic lungs, arthritic joints or other swollen viscera, to a lesser extent. Thirteen capsular types were detected being the most prevalent serotype 2 (21.7%), followed by serotypes 1 (21.3%), 9 (19.3%) and 3 (6.3%). Serotypes 2 and 9 were recovered mainly from the central nervous system (CNS), while serotype 1 was isolated mostly from swollen joints and serotype 3 from the lungs. Twenty-five isolates (12.1%) could not be typed. The most prevalent pathotype was epf + mrp + sly + luxS (49 isolates, 23.8%), and it was related mainly to serotypes 1 and 2. Serotypes 1–3 and 9 were significantly associated with anatomical sites of isolation and virulence factors, serotype 9 (CNS) and serotypes 3 and 9 (lungs) being associated with virulence profiles without the epf gene. S. suis isolates showed globally high antimicrobial resistances, but ampicillin followed by spectinomycin and tiamulin resulted in the highest activities, while the greatest resistances were detected for sulphadimethoxine, tetracyclines, neomycin, clindamycin and macrolides. A total of 87.4% isolates were positive to the tetO gene, 62.4% to the ermB gene and 25.2% to the fexA gene, while 14.6% were positive to all three genes simultaneously. A significative association between isolate resistances to tetracyclines and macrolides and the resistance genes tested was established, except for phenicol resistance and the fexA gene. A set of 14 multiresistance patterns were obtained according to the number of antimicrobials to which the isolates were resistant, the resistances to 12 or more agents being the most prevalent ones. A remarkable amount of multiresistance profiles could be seen among the S. suis serotype 9 isolates.
Collapse
Affiliation(s)
- Máximo Petrocchi-Rilo
- Departmento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.P.-R.); (S.M.-M.); (M.-J.G.-I.); (E.P.-F.); (A.G.-F.); (E.H.-L.)
| | - Sonia Martínez-Martínez
- Departmento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.P.-R.); (S.M.-M.); (M.-J.G.-I.); (E.P.-F.); (A.G.-F.); (E.H.-L.)
| | | | | | - María-José García-Iglesias
- Departmento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.P.-R.); (S.M.-M.); (M.-J.G.-I.); (E.P.-F.); (A.G.-F.); (E.H.-L.)
| | - Esther Pérez-Fernández
- Departmento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.P.-R.); (S.M.-M.); (M.-J.G.-I.); (E.P.-F.); (A.G.-F.); (E.H.-L.)
| | - Alba González-Fernández
- Departmento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.P.-R.); (S.M.-M.); (M.-J.G.-I.); (E.P.-F.); (A.G.-F.); (E.H.-L.)
| | - Elena Herencia-Lagunar
- Departmento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.P.-R.); (S.M.-M.); (M.-J.G.-I.); (E.P.-F.); (A.G.-F.); (E.H.-L.)
| | - César-Bernardo Gutiérrez-Martín
- Departmento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.P.-R.); (S.M.-M.); (M.-J.G.-I.); (E.P.-F.); (A.G.-F.); (E.H.-L.)
- Correspondence: ; Tel.: +34-98729-1203
| |
Collapse
|
18
|
Sitovs A, Sartini I, Giorgi M. Levofloxacin in veterinary medicine: a literature review. Res Vet Sci 2021; 137:111-126. [PMID: 33964616 DOI: 10.1016/j.rvsc.2021.04.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/26/2021] [Accepted: 04/27/2021] [Indexed: 01/10/2023]
Abstract
A potent third-generation antimicrobial fluoroquinolone drug, levofloxacin was introduced into human clinical practice in 1993. Levofloxacin is also used in veterinary medicine, however its use is limited: it is completely banned for veterinary use in the EU, and used extralabel in only companion animals in the USA. Since its introduction to clinical practice, many studies have been published on levofloxacin in animal species, including pharmacokinetic studies, tissue drug depletion, efficacy, and animal microbial isolate susceptibility to levofloxacin. This literature overview highlights the most clinically relevant and scientifically important levofloxacin studies linked to the field of veterinary medicine.
Collapse
Affiliation(s)
- Andrejs Sitovs
- Department of Pharmacology, Rīga Stradiņš University, Riga, Latvia.
| | - Irene Sartini
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Mario Giorgi
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Pisa, Italy
| |
Collapse
|
19
|
Chen L, Huang J, Huang X, He Y, Sun J, Dai X, Wang X, Shafiq M, Wang L. Horizontal Transfer of Different erm(B)-Carrying Mobile Elements Among Streptococcus suis Strains With Different Serotypes. Front Microbiol 2021; 12:628740. [PMID: 33841355 PMCID: PMC8032901 DOI: 10.3389/fmicb.2021.628740] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/03/2021] [Indexed: 11/24/2022] Open
Abstract
Macrolide-resistant Streptococcus suis is highly prevalent worldwide. The acquisition of the erm(B) gene mediated by mobile genetic elements (MGEs) in particular integrative and conjugative elements (ICEs) is recognized as the main reason for the rapid spread of macrolide-resistant streptococcal strains. However, knowledge about different erm(B)-carrying elements responsible for the widespread of macrolide resistance and their transferability in S. suis remains poorly understood. In the present study, two erm(B)- and tet(O)-harboring putative ICEs, designated as ICESsuYSB17_rplL and ICESsuYSJ15_rplL, and a novel erm(B)- and aadE-spw-like-carrying genomic island (GI), named GISsuJHJ17_rpsI, were identified to be excised from the chromosome and transferred among S. suis strains with different serotypes. ICESsuYSB17_rplL and ICESsuYSJ15_rplL were integrated downstream the rplL gene, a conserve locus of the ICESa2603 family. GISsuJHJ17_rpsI, with no genes belonging to the conjugation module, was integrated into the site of rpsI. All transconjugants did not exhibit obvious fitness cost by growth curve and competition assays when compared with the recipient. The results demonstrate that different erm(B)-carrying elements were presented and highlight the role of these elements in the dissemination of macrolide resistance in S. suis.
Collapse
Affiliation(s)
- Li Chen
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jinhu Huang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xinxin Huang
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai, China
| | - Yuping He
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai, China
| | - Junjie Sun
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xingyang Dai
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaoming Wang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Shafiq
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Liping Wang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
20
|
Wang G, Gao Y, Xu X, Zhang P, Wang J, Li G, Lv Q, Niu X, Liu H. Mode of action and structural modelling of the interaction of formononetin with suilysin. J Appl Microbiol 2021; 131:2010-2018. [PMID: 33639036 DOI: 10.1111/jam.15051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 11/28/2022]
Abstract
AIMS Suilysin is a critical pore-forming virulence factor of Streptococcus suis that has been demonstrated to substantially contribute to its pathogenicity. We have demonstrated that formononetin alleviates S. suis infection both in vivo and in vitro by targeting suilysin. However, the molecular mechanism of the effect is unclear. Our aim was to determine the molecular mechanism of the effect of formononetin on suilysin. METHODS AND RESULTS The mechanism of interaction between formononetin and suilysin was investigated by molecular modelling. The results indicated that formononetin was bound at the junction of domain two and domain four of suilysin. The binding free energy values indicated that the A415, Y412, E414, N413, T61, T62 and G416 residues are critical for this binding, this observation was confirmed by the changes in the flexibility of these residues and the distances between these residues and formononetin. The inhibitory effect of formononetin on the pore-forming activity of suilysin, binding constant and binding free energy were significantly decreased by site-specific mutagenesis of Y412 and N413. Finally, we analysed the spatial configuration of suilysin before and after formononetin binding, the results indicated that the binding changed the conformation of suilysin, especially the angle between domain two and domain four, resulting in the disruption of cholesterol binding to suilysin and in the loss of pore-forming activity. CONCLUSIONS Formononetin is located at the junction of domain two and domain four of suilysin, and Y412 and N413 play critical roles in the binding. Formononetin binding changes the angle between domain two and domain four of suilysin, resulting in the loss of the pore-inducing activity of suilysin. SIGNIFICANCE AND IMPACT OF THE STUDY This work will promote the application of formononetin to combat S. suis infections and may contribute to the development of new inhibitors or modification of existing inhibitors.
Collapse
Affiliation(s)
- G Wang
- Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, PR China.,College of Food Engineering, Jilin Engineering Normal University, Changchun, China.,College of Veterinary Medicine, Jilin University, Changchun, China
| | - Y Gao
- Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, PR China.,College of Veterinary Medicine, Jilin University, Changchun, China
| | - X Xu
- Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, PR China.,College of Veterinary Medicine, Jilin University, Changchun, China
| | - P Zhang
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - J Wang
- Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, PR China.,College of Veterinary Medicine, Jilin University, Changchun, China
| | - G Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Q Lv
- Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, PR China.,College of Veterinary Medicine, Jilin University, Changchun, China
| | - X Niu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - H Liu
- Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, PR China
| |
Collapse
|
21
|
Tan MF, Tan J, Zeng YB, Li HQ, Yang Q, Zhou R. Antimicrobial resistance phenotypes and genotypes of Streptococcus suis isolated from clinically healthy pigs from 2017 to 2019 in Jiangxi Province, China. J Appl Microbiol 2020; 130:797-806. [PMID: 32881196 DOI: 10.1111/jam.14831] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022]
Abstract
AIMS This study aimed to investigate the antimicrobial resistance (AMR) profiles and genotypes of Streptococcus suis from Jiangxi Province, China. METHODS AND RESULTS A total of 314 nasal swab samples were collected from clinically healthy pigs, with a positive isolation rate of S. suis of 34·08%. Antimicrobial susceptibility testing showed that more than 80% of the isolates were susceptible to vancomycin, penicillin, minocycline and chloramphenicol. A high frequency of resistance to clindamycin, tetracycline, clarithromycin and erythromycin was observed. All of the isolates were resistant to three or more categories of antimicrobials. The erm(B) and tet(O) served as the most frequent genotypes that contributed to lincosamide, macrolide and tetracycline resistances. A part of macrolide-resistant genotypes could not exhibit specific phenotypes. Finally, integrative and conjugative elements (ICEs) were identified in 28·97% of the isolates. CONCLUSIONS The multidrug resistance of S. suis has widely emerged in Jiangxi Province. The most prevalent resistance genes and genotypes were similar to those in other regions or countries. The presence of ICEs is increasing the risk of horizontal transfer of AMR genes. SIGNIFICANCE AND IMPACT OF THE STUDY The findings could provide guidance for the rational use of antimicrobial drugs and be helpful for monitoring the AMR information of S. suis in China.
Collapse
Affiliation(s)
- M-F Tan
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - J Tan
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Y-B Zeng
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - H-Q Li
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Q Yang
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - R Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Cooperative Innovation Center of Sustainable Pig Production, Wuhan, China.,International Research Center for Animal Disease (Ministry of Science & Technology of China), Wuhan, China
| |
Collapse
|