1
|
Mantilla-Granados JS, Castellanos JE, Velandia-Romero ML. A tangled threesome: understanding arbovirus infection in Aedes spp. and the effect of the mosquito microbiota. Front Microbiol 2024; 14:1287519. [PMID: 38235434 PMCID: PMC10792067 DOI: 10.3389/fmicb.2023.1287519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
Arboviral infections transmitted by Aedes spp. mosquitoes are a major threat to human health, particularly in tropical regions but are expanding to temperate regions. The ability of Aedes aegypti and Aedes albopictus to transmit multiple arboviruses involves a complex relationship between mosquitoes and the virus, with recent discoveries shedding light on it. Furthermore, this relationship is not solely between mosquitoes and arboviruses, but also involves the mosquito microbiome. Here, we aimed to construct a comprehensive review of the latest information about the arbovirus infection process in A. aegypti and A. albopictus, the source of mosquito microbiota, and its interaction with the arbovirus infection process, in terms of its implications for vectorial competence. First, we summarized studies showing a new mechanism for arbovirus infection at the cellular level, recently described innate immunological pathways, and the mechanism of adaptive response in mosquitoes. Second, we addressed the general sources of the Aedes mosquito microbiota (bacteria, fungi, and viruses) during their life cycle, and the geographical reports of the most common microbiota in adults mosquitoes. How the microbiota interacts directly or indirectly with arbovirus transmission, thereby modifying vectorial competence. We highlight the complexity of this tripartite relationship, influenced by intrinsic and extrinsic conditions at different geographical scales, with many gaps to fill and promising directions for developing strategies to control arbovirus transmission and to gain a better understanding of vectorial competence. The interactions between mosquitoes, arboviruses and their associated microbiota are yet to be investigated in depth.
Collapse
Affiliation(s)
- Juan S. Mantilla-Granados
- Saneamiento Ecológico, Salud y Medio Ambiente, Universidad El Bosque, Vicerrectoría de Investigaciones, Bogotá, Colombia
| | - Jaime E. Castellanos
- Grupo de Virología, Universidad El Bosque, Vicerrectoría de Investigaciones, Bogotá, Colombia
| | | |
Collapse
|
2
|
Yang Z, He Y, Chen Y, Meng J, Li N, Li S, Wang J. Full genome characterization and evolutionary analysis of Banna virus isolated from Culicoides, mosquitoes and ticks in Yunnan, China. Front Cell Infect Microbiol 2023; 13:1283580. [PMID: 38035340 PMCID: PMC10687475 DOI: 10.3389/fcimb.2023.1283580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Banna virus (BAV), a potential pathogen that may cause human encephalitis, is the prototype species of genus Seadornaviru within the family Reoviridae, and has been isolated from a variety of blood-sucking insects and mammals in Asia. Methods Culicoides, Mosquitoes, and Ticks were collected overnight in Yunnan, China, during 2016-2023 using light traps. Virus was isolated from these collected blood-sucking insects and grown using Aedes albopictus (C6/36) cells. Preliminary identification of the virus was performed by agarose gel electrophoresis (AGE). The full genome sequences of the BAVs were determined by full-length amplification of cDNAs (FLAC) and sequenced using next-generation sequencing. Results In this study, 13 strains BAV were isolated from Culicoides, Mosquitoes and Ticks. Their viral genome consisted of 12 segments of double-stranded RNA (dsRNA), and with three distinct distribution patterns. Sequence analysis showed that Seg-5 of four strains (SJ_M46, SJ_M49, JC_M19-13 and JC_C24-13) has 435 bases nucleotide sequence insertions in their ORF compared to other BAVs, resulting in the length of Seg-5 up to 2128 nt. There are 34 bases sequence deletion in Seg-9 of 3 strains (WS_T06, MS_M166 and MS_M140). Comparison of the coding sequences of VP1, VP2, VP5, VP9 and VP12 of the 13 BAV strains, the results show that VP1, VP2 and VP12 are characterised by high levels of sequence conservation, while VP9 is highly variable, under great pressure to adapt and may be correlated with serotype. While also variable, VP5 appears to be under less adaptive pressure than VP9. Additionally, phylogenetic analysis indicates that the 13 BAV strains locate in the same evolutionary cluster as BAVs isolated from various blood-sucking insects, and are clustered according to geographical distribution. Conclusion The data obtained herein would be beneficial for the surveillance of evolutionary characteristics of BAV in China and neighboring countries as well as extend the knowledge about its genomic diversity and geographic distribution.
Collapse
Affiliation(s)
- Zhenxing Yang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Yuwen He
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Yiju Chen
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Jinxin Meng
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Nan Li
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Susheng Li
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Jinglin Wang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| |
Collapse
|
3
|
Hollingsworth BD, Grubaugh ND, Lazzaro BP, Murdock CC. Leveraging insect-specific viruses to elucidate mosquito population structure and dynamics. PLoS Pathog 2023; 19:e1011588. [PMID: 37651317 PMCID: PMC10470969 DOI: 10.1371/journal.ppat.1011588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Several aspects of mosquito ecology that are important for vectored disease transmission and control have been difficult to measure at epidemiologically important scales in the field. In particular, the ability to describe mosquito population structure and movement rates has been hindered by difficulty in quantifying fine-scale genetic variation among populations. The mosquito virome represents a possible avenue for quantifying population structure and movement rates across multiple spatial scales. Mosquito viromes contain a diversity of viruses, including several insect-specific viruses (ISVs) and "core" viruses that have high prevalence across populations. To date, virome studies have focused on viral discovery and have only recently begun examining viral ecology. While nonpathogenic ISVs may be of little public health relevance themselves, they provide a possible route for quantifying mosquito population structure and dynamics. For example, vertically transmitted viruses could behave as a rapidly evolving extension of the host's genome. It should be possible to apply established analytical methods to appropriate viral phylogenies and incidence data to generate novel approaches for estimating mosquito population structure and dispersal over epidemiologically relevant timescales. By studying the virome through the lens of spatial and genomic epidemiology, it may be possible to investigate otherwise cryptic aspects of mosquito ecology. A better understanding of mosquito population structure and dynamics are key for understanding mosquito-borne disease ecology and methods based on ISVs could provide a powerful tool for informing mosquito control programs.
Collapse
Affiliation(s)
- Brandon D Hollingsworth
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute for Host Microbe Interaction and Disease, Cornell University, Ithaca, New York, United States of America
| | - Nathan D Grubaugh
- Yale School of Public Health, New Haven, Connecticut, United States of America
- Yale University, New Haven, Connecticut, United States of America
| | - Brian P Lazzaro
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute for Host Microbe Interaction and Disease, Cornell University, Ithaca, New York, United States of America
| | - Courtney C Murdock
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute for Host Microbe Interaction and Disease, Cornell University, Ithaca, New York, United States of America
- Northeast Regional Center for Excellence in Vector-borne Diseases, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
4
|
Bhardwaj A, Sharma R, Grover A. Immuno-informatics guided designing of a multi-epitope vaccine against Dengue and Zika. J Biomol Struct Dyn 2023; 41:1-15. [PMID: 34796791 DOI: 10.1080/07391102.2021.2002720] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dengue and zika are amongst the most prevalent mosquito-borne diseases caused by closely related members Dengue virus (DENV) and Zika virus (ZIKV), respectively, of the Flaviviridae family. DENV and ZIKV have been reported to co-infect several people, resulting in fatalities across the world. A vaccine that can safeguard against both these pathogens concurrently, can offer several advantages. This study has employed immuno-informatics for devising a multi-epitope, multi-pathogenic vaccine against both these viruses. Since, the two viruses share a common vector source, whose salivary components are reported to aid viral pathogenesis; antigenic salivary proteins from Aedes aegypti were also incorporated into the design of the vaccine along with conserved structural and non-structural viral proteins. Conserved B- and T-cell epitopes were identified for all the selected antigenic proteins. These epitopes were merged and further supplemented with β-defensin as an adjuvant, to yield an immunogenic vaccine construct. In-silico 3D modeling and structural validation of the vaccine construct was conducted, followed by its molecular docking and molecular dynamics simulation studies with human TLR2. Immune simulation study was also performed, and it further provided support that the designed vaccine can mount an effective immune response and hence provide protection against both DENV and ZIKV. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aditi Bhardwaj
- School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ritika Sharma
- School of Biotechnology, Jawaharlal Nehru University (JNU), Delhi, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University (JNU), Delhi, India
| |
Collapse
|
5
|
Novianto D, Hadi UK, Soviana S, Supriyono S, Rosmanah L, Darusman HS. Diversity of mosquito species and potential arbovirus transmission in long-tailed macaque (Macaca fascicularis) breeding facilities. Vet World 2022; 15:1961-1968. [DOI: 10.14202/vetworld.2022.1961-1968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Mosquito-borne viral infections are diseases that reduce human and animal health levels. Their transmission involves wildlife animals as reservoirs and amplifying hosts, including long-tailed macaques (Macaca fascicularis), and potentially transmits to humans and vice versa. This study aimed to determine the species diversity, richness, and biting activity of mosquitoes in a long-tailed macaque breeding area facility and discover the presence of Flavivirus and Alphavirus as the two main arboviruses reported to infect macaques.
Materials and Methods: Human landing catch, light trap, and sweep net methods were used for mosquito collection around long-tailed macaques cages at parallel times for 12 h (18:00–06:00) for 12 nights. Mosquito species were identified to the species level based on the morphological identification key for Indonesian mosquitoes. Mosquito diversity was analyzed by several diversity indices. Mosquitoes caught using the human landing catch method were pooled based on mosquito species for viral ribonucleic acid extraction. Reverse transcription-polymerase chain reaction (RT-PCR) detected the non-structural protein 5 of the Flavivirus region and the non-structural protein 4 of the Alphavirus region. This study used the man-hour density and man-biting rate formulas for mosquito density.
Results: Ten mosquito species were collected, namely, Aedes albopictus, Anopheles aconitus, Anopheles minimus, Anopheles vagus, Armigeres foliatus, Armigeres subalbatus, Culex gelidus, Culex hutchinsoni, Culex tritaeniorhynchus, and Culex quinquefasciatus. The number of mosquitoes caught using the light trap method had the highest abundance. In contrast, the number of mosquito species caught using the sweep net method had lower diversity than the other two methods. Seven mosquito species were obtained using the human landing catch method. The mosquito species with the highest density was Cx. quinquefasciatus within the observed densest period from 20:00 to 21:00. Negative results were obtained from RT-PCR testing on five species detected using universal Flavivirus and Alphavirus primers.
Conclusion: The occurrence of mosquitoes in long-tailed macaque breeding facilities can be a source of transmission of zoonotic vector-borne diseases between animals and humans and vice versa.
Collapse
Affiliation(s)
- Dimas Novianto
- Parasitology and Medical Entomology Laboratory, Animal Biomedicine Study Program, Graduate School, IPB University, Bogor, Indonesia
| | - Upik Kesumawati Hadi
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Susi Soviana
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Supriyono Supriyono
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Lis Rosmanah
- Primate Research Centre, Institute of Research and Community Service IPB University, Bogor, Indonesia
| | - Huda Shalahudin Darusman
- Primate Research Centre, Institute of Research and Community Service IPB University, Bogor, Indonesia; Department of Anatomy, Physiology and Pharmacology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| |
Collapse
|
6
|
Truong Nguyen PT, Culverwell CL, Suvanto MT, Korhonen EM, Uusitalo R, Vapalahti O, Smura T, Huhtamo E. Characterisation of the RNA Virome of Nine Ochlerotatus Species in Finland. Viruses 2022; 14:1489. [PMID: 35891469 PMCID: PMC9324324 DOI: 10.3390/v14071489] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/19/2022] [Accepted: 06/19/2022] [Indexed: 02/01/2023] Open
Abstract
RNA viromes of nine commonly encountered Ochlerotatus mosquito species collected around Finland in 2015 and 2017 were studied using next-generation sequencing. Mosquito homogenates were sequenced from 91 pools comprising 16-60 morphologically identified adult females of Oc. cantans, Oc. caspius, Oc. communis, Oc. diantaeus, Oc. excrucians, Oc. hexodontus, Oc. intrudens, Oc. pullatus and Oc. punctor/punctodes. In total 514 viral Reverse dependent RNA polymerase (RdRp) sequences of 159 virus species were recovered, belonging to 25 families or equivalent rank, as follows: Aliusviridae, Aspiviridae, Botybirnavirus, Chrysoviridae, Chuviridae, Endornaviridae, Flaviviridae, Iflaviridae, Negevirus, Partitiviridae, Permutotetraviridae, Phasmaviridae, Phenuiviridae, Picornaviridae, Qinviridae, Quenyavirus, Rhabdoviridae, Sedoreoviridae, Solemoviridae, Spinareoviridae, Togaviridae, Totiviridae, Virgaviridae, Xinmoviridae and Yueviridae. Of these, 147 are tentatively novel viruses. One sequence of Sindbis virus, which causes Pogosta disease in humans, was detected from Oc. communis from Pohjois-Karjala. This study greatly increases the number of mosquito-associated viruses known from Finland and presents the northern-most mosquito-associated viruses in Europe to date.
Collapse
Affiliation(s)
- Phuoc T. Truong Nguyen
- Department of Virology, Medicum, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (C.L.C.); (M.T.S.); (E.M.K.); (R.U.); (O.V.); (T.S.); (E.H.)
| | - C. Lorna Culverwell
- Department of Virology, Medicum, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (C.L.C.); (M.T.S.); (E.M.K.); (R.U.); (O.V.); (T.S.); (E.H.)
- The Natural History Museum, Cromwell Road, South Kensington, London SW5 7BD, UK
| | - Maija T. Suvanto
- Department of Virology, Medicum, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (C.L.C.); (M.T.S.); (E.M.K.); (R.U.); (O.V.); (T.S.); (E.H.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin Katu 2, P.O. Box 66, FI-00014 Helsinki, Finland
| | - Essi M. Korhonen
- Department of Virology, Medicum, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (C.L.C.); (M.T.S.); (E.M.K.); (R.U.); (O.V.); (T.S.); (E.H.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin Katu 2, P.O. Box 66, FI-00014 Helsinki, Finland
| | - Ruut Uusitalo
- Department of Virology, Medicum, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (C.L.C.); (M.T.S.); (E.M.K.); (R.U.); (O.V.); (T.S.); (E.H.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin Katu 2, P.O. Box 66, FI-00014 Helsinki, Finland
- Department of Geosciences and Geography, Faculty of Science, University of Helsinki, Gustaf Hällströmin Katu 2, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, Medicum, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (C.L.C.); (M.T.S.); (E.M.K.); (R.U.); (O.V.); (T.S.); (E.H.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin Katu 2, P.O. Box 66, FI-00014 Helsinki, Finland
- Virology and Immunology, Diagnostic Center, HUSLAB, Helsinki University Hospital, FI-00029 Helsinki, Finland
| | - Teemu Smura
- Department of Virology, Medicum, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (C.L.C.); (M.T.S.); (E.M.K.); (R.U.); (O.V.); (T.S.); (E.H.)
| | - Eili Huhtamo
- Department of Virology, Medicum, University of Helsinki, Haartmaninkatu 3, FI-00290 Helsinki, Finland; (C.L.C.); (M.T.S.); (E.M.K.); (R.U.); (O.V.); (T.S.); (E.H.)
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin Katu 2, P.O. Box 66, FI-00014 Helsinki, Finland
| |
Collapse
|