1
|
Asin J, Calvete C, Uzal FA, Crossley BM, Duarte MD, Henderson EE, Abade dos Santos F. Rabbit hemorrhagic disease virus 2, 2010-2023: a review of global detections and affected species. J Vet Diagn Invest 2024; 36:617-637. [PMID: 39344909 PMCID: PMC11457751 DOI: 10.1177/10406387241260281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Rabbit hemorrhagic disease virus 2/genotype GI.2 (RHDV2/GI.2; Caliciviridae, Lagovirus) causes a highly contagious disease with hepatic necrosis and disseminated intravascular coagulation in several Leporidae species. RHDV2 was first detected in European rabbits (Oryctolagus cuniculus) in France in 2010 and has since spread widely. We gather here data on viral detections reported in various countries and affected species, and discuss pathology, genetic differences, and novel diagnostic aspects. RHDV2 has been detected almost globally, with cases reported in Europe, Africa, Oceania, Asia, and North America as of 2023. Since 2020, large scale outbreaks have occurred in the United States and Mexico and, at the same time, cases have been reported for the first time in previously unaffected countries, such as China, Japan, Singapore, and South Africa, among others. Detections have been notified in domestic and wild European rabbits, hares and jackrabbits (Lepus spp.), several species of cottontail and brush rabbits (Sylvilagus spp.), pygmy rabbits (Brachylagus idahoensis), and red rock rabbits (Pronolagus spp.). RHDV2 has also been detected in a few non-lagomorph species. Detection of RHDV2 causing RHD in Sylvilagus spp. and Leporidae species other than those in the genera Oryctolagus and Lepus is very novel. The global spread of this fast-evolving RNA virus into previously unexploited geographic areas increases the likelihood of host range expansion as new species are exposed; animals may also be infected by nonpathogenic caliciviruses that are disseminated by almost all species, and with which genetic recombination may occur.
Collapse
Affiliation(s)
- Javier Asin
- California Animal Health and Food Safety Laboratory, University of California–Davis, San Bernardino, CA, USA
| | - Carlos Calvete
- Animal Science Department, Agri-Food Research and Technology Centre of Aragon (CITA), Agri-Food Institute of Aragón (IA2), Zaragoza, Spain
| | - Francisco A. Uzal
- California Animal Health and Food Safety Laboratory, University of California–Davis, San Bernardino, CA, USA
| | | | | | - Eileen E. Henderson
- California Animal Health and Food Safety Laboratory, University of California–Davis, San Bernardino, CA, USA
| | - Fábio Abade dos Santos
- National Institute for Agrarian and Veterinary Research (INIAV), Oeiras, Portugal
- Faculty of Veterinary Medicine, Lusofona University, Lisboa, Portugal
| |
Collapse
|
2
|
Li Z, Song K, Du Y, Zhang Z, Fan R, Zheng P, Liu J. Diagnosis of a Rabbit Hemorrhagic Disease Virus 2 (RHDV2) and the Humoral Immune Protection Effect of VP60 Vaccine. Curr Issues Mol Biol 2023; 45:6605-6617. [PMID: 37623236 PMCID: PMC10453004 DOI: 10.3390/cimb45080417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
Rabbit hemorrhagic disease (RHD) is known as rabbit plague and hemorrhagic pneumonia. It is an acute, septic, and highly fatal infectious disease caused by the Lagovirus rabbit hemorrhagic disease virus (RHDV) in the family Caliciviridae that infects wild and domestic rabbits and hares (lagomorphs). At present, RHDV2 has caused huge economic losses to the commercial rabbit trade and led to a decline in the number of wild lagomorphs worldwide. We performed a necropsy and pathological observations on five dead rabbits on a rabbit farm in Tai'an, China. The results were highly similar to the clinical and pathological changes of typical RHD. RHDV2 strain was isolated and identified by RT-PCR, and partial gene sequencing and genetic evolution analysis were carried out. There were significant differences in genetic characteristics and antigenicity between RHDV2 and classical RHDV strain, and the vaccine prepared with the RHDV strain cannot effectively prevent rabbit infection with RHDV2. Therefore, we evaluated the protective efficacy of a novel rabbit hemorrhagic virus baculovirus vector inactivated vaccine (VP60) in clinical application by animal regression experiment. The result showed that VP60 could effectively induce humoral immunity in rabbits. The vaccine itself had no significant effect on the health status of rabbits. This study suggested that the clinical application of VP60 may provide new ideas for preventing the spread of RHD2.
Collapse
Affiliation(s)
- Zhaoming Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Kaimin Song
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Yongzhen Du
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Zhuanglong Zhang
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Rupeng Fan
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| | - Pimiao Zheng
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
3
|
Tanikawa T, Watanabe S, Mikami O, Miyazaki A. Genetics of the rabbit haemorrhagic disease virus strains responsible for rabbit haemorrhagic disease outbreaks in Japan between 2000 and 2020. J Gen Virol 2023; 104. [PMID: 37159399 DOI: 10.1099/jgv.0.001846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Rabbit haemorrhagic disease (RHD) is a highly contagious and fatal disease in rabbits caused by the rabbit haemorrhagic disease virus (RHDV), which includes two genotypes, RHDV-GI.1 and RHDV2-GI.2. RHDVs tend to recombine among different strains, resulting in significant genetic evolution. This study evaluated the genetics of Japanese RHDV strains associated with six outbreaks between 2000 and 2020 using whole-genome sequencing, genomic recombination and phylogenetic analyses. Genomic recombination analysis using near-complete genomic sequences revealed that two Japanese strains detected in 2000 and 2002 were non-recombinant GI.1 (variant RHDVa-GI.1a) strains of different origins, most closely related to strains identified in PR China in 1997 and the USA in 2001, respectively. In contrast, four recent Japanese GI.2 strains detected between 2019 and 2020 were recombinant viruses harbouring structural protein (SP) genes from GI.2 strains and non-SP (NSP) genes from a benign rabbit calicivirus (RCV) strain of genotype RCV-E1-GI.3 (GI.3P-GI.2) or an RHDV G1-GI.1b variant (GI.1bP-GI.2). Phylogenetic analysis based on SP and NSP regions revealed that the GI.1bP-GI.2 recombinant virus detected in Ehime prefecture and the GI.3P-GI.2 recombinant viruses detected in Ibaraki, Tochigi and Chiba prefectures were most closely related to recombinant viruses identified in Australia in 2017 and Germany in 2017, respectively. These results suggested that past RHD outbreaks in Japan did not result from the evolution of domestic RHDVs but rather represented incursions of foreign RHDV strains, implying that Japan is constantly at risk of RHDV incursion from other countries.
Collapse
Affiliation(s)
- Taichiro Tanikawa
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Satoko Watanabe
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Osamu Mikami
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Ayako Miyazaki
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| |
Collapse
|
4
|
Shah PT, Bahoussi AN, Yang C, Yao G, Dong L, Wu C, Xing L. Genetic Characteristics and Phylogeographic Dynamics of Lagoviruses, 1988-2021. Viruses 2023; 15:815. [PMID: 37112796 PMCID: PMC10143477 DOI: 10.3390/v15040815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Rabbit haemorrhagic disease virus (RHDV), European brown hare syndrome virus (EBHSV), rabbit calicivirus (RCV), and hare calicivirus (HaCV) belong to the genus Lagovirus of the Caliciviridae family that causes severe diseases in rabbits and several hare (Lepus) species. Previously, Lagoviruses were classified into two genogroups, e.g., GI (RHDVs and RCVs) and GII (EBHSV and HaCV) based on partial genomes, e.g., VP60 coding sequences. Herein, we provide a robust phylogenetic classification of all the Lagovirus strains based on full-length genomes, grouping all the available 240 strains identified between 1988 and 2021 into four distinct clades, e.g., GI.1 (classical RHDV), GI.2 (RHDV2), HaCV/EBHSV, and RCV, where the GI.1 clade is further classified into four (GI.1a-d) and GI.2 into six sub-clades (GI.2a-f). Moreover, the phylogeographic analysis revealed that the EBHSV and HaCV strains share their ancestor with the GI.1, while the RCV shares with the GI.2. In addition, all 2020-2021 RHDV2 outbreak strains in the USA are connected to the strains from Canada and Germany, while RHDV strains isolated in Australia are connected with the USA-Germany haplotype RHDV strain. Furthermore, we identified six recombination events in the VP60, VP10, and RNA-dependent RNA polymerase (RdRp) coding regions using the full-length genomes. The amino acid variability analysis showed that the variability index exceeded the threshold of 1.00 in the ORF1-encoded polyprotein and ORF2-encoded VP10 protein, respectively, indicating significant amino acid drift with the emergence of new strains. The current study is an update of the phylogenetic and phylogeographic information of Lagoviruses that may be used to map the evolutionary history and provide hints for the genetic basis of their emergence and re-emergence.
Collapse
Affiliation(s)
- Pir Tariq Shah
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Amina Nawal Bahoussi
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Caiting Yang
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Guanhan Yao
- Department of Molecular Genetics and Development, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Li Dong
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
5
|
Asin J, Rejmanek D, Clifford DL, Mikolon AB, Henderson EE, Nyaoke AC, Macías-Rioseco M, Streitenberger N, Beingesser J, Woods LW, Lavazza A, Capucci L, Crossley B, Uzal FA. Early circulation of rabbit haemorrhagic disease virus type 2 in domestic and wild lagomorphs in southern California, USA (2020-2021). Transbound Emerg Dis 2021; 69:e394-e405. [PMID: 34487612 DOI: 10.1111/tbed.14315] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/29/2021] [Accepted: 09/05/2021] [Indexed: 11/28/2022]
Abstract
Rabbit haemorrhagic disease virus type 2 (RHDV2) causes a severe systemic disease with hepatic necrosis. Differently from classic RHDV, which affects only European rabbits (Oryctolagus cuniculus), RHDV2 can affect many leporid species, including hares (Lepus spp.) and cottontail rabbits (Sylvilagus spp.). RHDV2 emerged in Europe in 2010 and spread worldwide. During the last 5 years, there have been multiple outbreaks in North America since the first known event in 2016 in Quebec, Canada, including several detections in British Columbia, Canada, between 2018 and 2019, Washington State and Ohio, USA, in 2018 and 2019, and New York, USA, in 2020. However, the most widespread outbreak commenced in March 2020 in the southwestern USA and Mexico. In California, RHDV2 spread widely across several southern counties between 2020 and 2021, and the aim of this study was to report and characterize these early events of viral incursion and circulation within the state. Domestic and wild lagomorphs (n = 81) collected between August 2020 and February 2021 in California with a suspicion of RHDV2 infection were tested by reverse transcription quantitative real-time PCR on the liver, and histology and immunohistochemistry for pan-lagovirus were performed on liver sections. In addition, whole genome sequencing from 12 cases was performed. During this period, 33/81 lagomorphs including 24/59 domestic rabbits (O. cuniculus), 3/16 desert cottontail rabbits (Sylvilagus audubonii), and 6/6 black-tailed jackrabbits (Lepus californicus) tested positive. All RHDV2-positive animals had hepatic necrosis typical of pathogenic lagovirus infection, and the antigen was detected in sections from individuals of the three species. The 12 California sequences were closely related (98.9%-99.95%) to each other, and also very similar (99.0%-99.4%) to sequences obtained in other southwestern states during the 2020-2021 outbreak; however, they were less similar to strains obtained in New York in 2020 (96.7%-96.9%) and Quebec in 2016 (92.4%-92.6%), suggesting that those events could be related to different viral incursions. The California sequences were more similar (98.6%-98.7%) to a strain collected in British Columbia in 2018, which suggests that that event could have been related to the 2020 outbreak in the southwestern USA.
Collapse
Affiliation(s)
- Javier Asin
- California Animal Health and Food Safety Laboratory System, San Bernardino branch, University of California-Davis, San Bernardino, California, USA
| | - Daniel Rejmanek
- California Animal Health and Food Safety Laboratory System, Davis branch, University of California-Davis, Davis, California, USA
| | - Deana L Clifford
- Wildlife Health Laboratory, California Department of Fish and Wildlife, Rancho Cordova, California, USA
| | - Andrea B Mikolon
- California Department of Food and Agriculture, Sacramento, California, USA
| | - Eileen E Henderson
- California Animal Health and Food Safety Laboratory System, San Bernardino branch, University of California-Davis, San Bernardino, California, USA
| | - Akinyi C Nyaoke
- California Animal Health and Food Safety Laboratory System, San Bernardino branch, University of California-Davis, San Bernardino, California, USA
| | - Melissa Macías-Rioseco
- California Animal Health and Food Safety Laboratory System, Tulare branch, University of California-Davis, Tulare, California, USA
| | - Nicolas Streitenberger
- California Animal Health and Food Safety Laboratory System, San Bernardino branch, University of California-Davis, San Bernardino, California, USA
| | - Juliann Beingesser
- California Animal Health and Food Safety Laboratory System, San Bernardino branch, University of California-Davis, San Bernardino, California, USA
| | - Leslie W Woods
- California Animal Health and Food Safety Laboratory System, Davis branch, University of California-Davis, Davis, California, USA
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna and OIE Reference Laboratory for Rabbit Hemorrhagic Disease, Brescia, Italy
| | - Lorenzo Capucci
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna and OIE Reference Laboratory for Rabbit Hemorrhagic Disease, Brescia, Italy
| | - Beate Crossley
- California Animal Health and Food Safety Laboratory System, Davis branch, University of California-Davis, Davis, California, USA
| | - Francisco A Uzal
- California Animal Health and Food Safety Laboratory System, San Bernardino branch, University of California-Davis, San Bernardino, California, USA
| |
Collapse
|