1
|
Detection of emetic Bacillus cereus and the emetic toxin cereulide in food matrices: Progress and perspectives. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
2
|
Bacillus cereus Toxin Repertoire: Diversity of (Iso)cereulide(s). MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030872. [PMID: 35164132 PMCID: PMC8840689 DOI: 10.3390/molecules27030872] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 11/17/2022]
Abstract
The emetic Bacillus cereus toxin cereulide (1) poses a significant safety risk in the food industry, causing emesis and nausea after consumption of contaminated foods. Analogously to cereulide, the structures of various isocereulides, namely, isocereulides A–G, have been recently reported and could also be identified in B. cereus-contaminated food samples. The HPLC fractionation of B. cereus extracts allows us to isolate additional isocereulides. By applying MSn sequencing, post-hydrolytic dipeptide, amino acid and α-hydroxy acid analyses using UPLC-ESI-TOF-MS to purify the analytes, seven new isocereulides H–N (2–8) could be elucidated in their chemical structures. The structure elucidation was supported by one-dimensional and two-dimensional NMR spectra of the isocereulides H (2), K (5), L and N (6 + 8) and M (7). The toxicity of 2–8 was investigated in a HEp-2 cell assay to determine their respective 50% effective concentration (EC50). Thus, 2–8 exhibited EC50 values ranging from a 0.4- to 1.4-fold value compared to cereulide (1). Missing structure-activity correlations indicate the necessity to determine the toxic potential of all naturally present isocereulides as single compounds to be able to perform a thorough toxicity evaluation of B. cereus-contaminated foods in the future.
Collapse
|
3
|
Predicting B. cereus growth and cereulide production in dairy mix. Int J Food Microbiol 2022; 364:109519. [PMID: 35032935 DOI: 10.1016/j.ijfoodmicro.2021.109519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/13/2021] [Accepted: 12/28/2021] [Indexed: 11/21/2022]
Abstract
This study aims to quantify growth and cereulide production by Bacillus cereus and their potential correlation in an intermediate dairy wet-mix. Systematic experiments were carried out using the emetic reference strain F4810/72 in the suboptimal range of temperature of 12 °C to 20 °C. Growth and cereulide kinetic parameters were estimated and the three parameters (i) time to first cereulide quantification (tcer), (ii) maximum specific growth rates (μmax) and (iii) cereulide production rates (k) were modelled as a function of temperature. As temperature increased, growth lag time and tcer were shorter while microbial increase and cereulide production happened earlier, and at higher rates. Maximum concentration of cells and maximum cereulide concentration proved to be temperature-independent, reaching the average values of 7.9 ± 0.3 log10(CFU/mL) and 2.6 ± 0.2 log10(ng.g-1) respectively. Moreover, the time to reach the widely used threshold of 5 log10CFU/mL (t5log) was tested against tcer, and this suggested that this threshold can be used with increased confidence at lower temperatures to assure toxin is not quantified in this matrix. The average tcer were equal to 314 h, 118 h, 73 h and 45 h for 12 °C, 15 °C, 18 °C and 20 °C respectively. A validation study was performed using independent data sets obtained with the same strain in other dairy matrices. The microbial growth models presented good predictive power even when extrapolated beyond the temperature range of construction. Nevertheless, the models proposed for prediction of toxin production over time presented limitations, especially for food matrices that deviate significantly from the original matrix for which the model was developed, making cereulide predictions less accurate. Our findings suggest that similar modelling approaches can be used to predict growth, time to first cereulide quantification as well as cereulide formation over time for a specific matrix, but that matrix-extrapolations are more suitable for growth than for cereulide.
Collapse
|
4
|
The Food Poisoning Toxins of Bacillus cereus. Toxins (Basel) 2021; 13:toxins13020098. [PMID: 33525722 PMCID: PMC7911051 DOI: 10.3390/toxins13020098] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Bacillus cereus is a ubiquitous soil bacterium responsible for two types of food-associated gastrointestinal diseases. While the emetic type, a food intoxication, manifests in nausea and vomiting, food infections with enteropathogenic strains cause diarrhea and abdominal pain. Causative toxins are the cyclic dodecadepsipeptide cereulide, and the proteinaceous enterotoxins hemolysin BL (Hbl), nonhemolytic enterotoxin (Nhe) and cytotoxin K (CytK), respectively. This review covers the current knowledge on distribution and genetic organization of the toxin genes, as well as mechanisms of enterotoxin gene regulation and toxin secretion. In this context, the exceptionally high variability of toxin production between single strains is highlighted. In addition, the mode of action of the pore-forming enterotoxins and their effect on target cells is described in detail. The main focus of this review are the two tripartite enterotoxin complexes Hbl and Nhe, but the latest findings on cereulide and CytK are also presented, as well as methods for toxin detection, and the contribution of further putative virulence factors to the diarrheal disease.
Collapse
|
5
|
Liu XY, Hu Q, Xu F, Ding SY, Zhu K. Characterization of Bacillus cereus in Dairy Products in China. Toxins (Basel) 2020; 12:E454. [PMID: 32674390 PMCID: PMC7405013 DOI: 10.3390/toxins12070454] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
Bacillus cereus is a common and ubiquitous foodborne pathogen with an increasing prevalence rate in dairy products in China. High and unmet demands for such products, particularly milk, raise the risk of B. cereus associated contamination. The presence of B. cereus and its virulence factors in dairy products may cause food poisoning and other illnesses. Thus, this review first summarizes the epidemiological characteristics and analytical assays of B. cereus from dairy products in China, providing insights into the implementation of intervention strategies. In addition, the recent achievements on the cytotoxicity and mechanisms of B. cereus are also presented to shed light on the therapeutic options for B. cereus associated infections.
Collapse
Affiliation(s)
- Xiao-Ye Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.-Y.L.); (Q.H.)
- Department of Mechanics and Engineering Science, College of Engineering, Academy for Advanced Interdisciplinary Studies, and Beijing Advanced Innovation Center for Engineering Science and Emerging Technology, College of Engineering, Peking University, Beijing 100871, China
| | - Qiao Hu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.-Y.L.); (Q.H.)
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Fei Xu
- National Feed Drug Reference Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Shuang-Yang Ding
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Kui Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (X.-Y.L.); (Q.H.)
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
6
|
Heberlig GW, Boddy CN. Thioesterase from Cereulide Biosynthesis Is Responsible for Oligomerization and Macrocyclization of a Linear Tetradepsipeptide. JOURNAL OF NATURAL PRODUCTS 2020; 83:1990-1997. [PMID: 32519859 DOI: 10.1021/acs.jnatprod.0c00333] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cereulide is a toxic cyclic depsidodecapeptide produced in Bacillus cereus by two nonribosomal peptide synthetases, CesA and CesB. While highly similar in structure to valinomycin and with a homologous biosynthetic gene cluster, recent work suggests that cereulide is produced via a different mechanism that relies on a noncanonical coupling of two didepsipeptide-peptidyl carrier protein (PCP) bound intermediates. Ultimately this alternative mechanism generates a tetradepsipeptide-PCP bound intermediate that differs from the tetradepsipeptide-PCP intermediate predicted from canonical activity of CesA and CesB. To differentiate between the mechanisms, both tetradepsipeptides were prepared as N-acetyl cysteamine thioesters (SNAC), and the ability of the purified recombinant terminal CesB thioesterase (CesB TE) to oligomerize and macrocyclize each substrate was probed. Only the canonical substrate is converted to cereulide, ruling out the alternative mechanism. It was demonstrated that CesB TE can use related tetradepsipeptide substrates, such as the valinomycin tetradespipetide and a hybrid cereulide-valinomycin tetradepsipetide in conjunction with its native substrate to generate chimeric natural products. This work clarifies the biosynthetic origins of cereulide and provides a powerful biocatalyst to access analogues of these ionophoric natural products.
Collapse
Affiliation(s)
- Graham W Heberlig
- Department of Chemistry and Biomolecular Sciences Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Christopher N Boddy
- Department of Chemistry and Biomolecular Sciences Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
7
|
Naka T, Takaki Y, Hattori Y, Takenaka H, Ohta Y, Kirihata M, Tanimori S. Chemical structure of hydrolysates of cereulide and their time course profile. Bioorg Med Chem Lett 2020; 30:127050. [DOI: 10.1016/j.bmcl.2020.127050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/10/2020] [Accepted: 02/18/2020] [Indexed: 11/17/2022]
|
8
|
Nguyen AT, Tallent SM. Screening food for Bacillus cereus toxins using whole genome sequencing. Food Microbiol 2019; 78:164-170. [DOI: 10.1016/j.fm.2018.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 08/24/2018] [Accepted: 10/21/2018] [Indexed: 11/24/2022]
|
9
|
Decleer M, Jovanovic J, Vakula A, Udovicki B, Agoua RSEK, Madder A, De Saeger S, Rajkovic A. Oxygen Consumption Rate Analysis of Mitochondrial Dysfunction Caused by Bacillus cereus Cereulide in Caco-2 and HepG2 Cells. Toxins (Basel) 2018; 10:E266. [PMID: 30004412 PMCID: PMC6070949 DOI: 10.3390/toxins10070266] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 12/28/2022] Open
Abstract
The emetic syndrome of Bacillus cereus is a food intoxication caused by cereulide (CER) and manifested by emesis, nausea and in most severe cases with liver failure. While acute effects have been studied in the aftermath of food intoxication, an exposure to low doses of cereulide might cause unnoticed damages to the intestines and liver. The toxicity which relies on the mitochondrial dysfunction was assessed on Caco-2 and HepG2 cells after exposure of one, three and ten days to a range of low doses of cereulide. Oxygen consumption rate analyses were used to study the impact of low doses of CER on the bioenergetics functions of undifferentiated Caco-2 and HepG2 cells using Seahorse XF extracellular flux analyzer. Both Caco-2 and HepG2 cells experienced measurable mitochondrial impairment after prolonged exposure of 10 days to 0.25 nM of cereulide. Observed mitochondrial dysfunction was greatly reflected in reduction of maximal cell respiration. At 0.50 nM CER, mitochondrial respiration was almost completely shut down, especially in HepG2 cells. These results corresponded with a severe reduction in the amount of cells and an altered morphology, observed by microscopic examination of the cells. Accurate and robust quantification of basal respiration, ATP production, proton leak, maximal respiration, spare respiratory capacity, and non-mitochondrial respiration allowed better understanding of the effects of cereulide in underlying respiratory malfunctions in low-dose exposure.
Collapse
Affiliation(s)
- Marlies Decleer
- Department of Food Technology, Food Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Jelena Jovanovic
- Department of Food Technology, Food Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Anita Vakula
- Department of Food Preservation Engineering, Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Bozidar Udovicki
- Department of Food Safety and Food Quality Management, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11081 Zemun-Belgrade, Serbia.
| | - Rock-Seth E K Agoua
- Department of Food Technology, Food Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Annemieke Madder
- Department of Organic and Macromolecular Chemistry, Organic and Biomimetic Chemistry Research Group, Faculty of Sciences, Campus Sterre, Krijgslaan 281, Building S4, 9000 Gent, Belgium.
| | - Sarah De Saeger
- Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Andreja Rajkovic
- Department of Food Technology, Food Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
10
|
Makarasen A, Reukngam N, Khlaychan P, Chuysinuan P, Isobe M, Techasakul S. Mode of action and synergistic effect of valinomycin and cereulide with amphotericin B against Candida albicans and Cryptococcus albidus. J Mycol Med 2017; 28:112-121. [PMID: 29276078 DOI: 10.1016/j.mycmed.2017.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 11/22/2017] [Accepted: 11/29/2017] [Indexed: 11/16/2022]
Abstract
Both valinomycin and cereulide are cyclic depsipeptides and are known K+ ion-selective ionophores. Valinomycin and cereulide feature low minimum inhibitory concentration (MIC) values against Candida albicans and Cryptococcus albidus. This study aims at investigating the mode of action and verifying the efficacy of valinomycin or cereulide alone and in combination with amphotericin B (AmB) in vitro against both microorganisms. Based on the results from membrane permeability and fluidity assays for detection of plasma membrane permeabilization and membrane dynamics, the present study demonstrated that valinomycin and cereulide exhibit antifungal activity against C. albicans and C. albidus by interrupting membrane-associated function. The mode of action of both valinomycin and cereulide are similar with that of AmB. Time-kill kinetics assay showed that valinomycin and cereulide exhibit fungistatic activity, whereas AmB features fungicidal activity. Additionally, the combination of compounds between each cyclic peptide and AmB reached maximal fungicidal activity more rapidly than AmB alone. This result corresponded with findings of scanning electron microscopy, fractional inhibitory concentration index and minimum fungicidal concentration (MFC)/MIC ratio, indicating that combinations of the drugs show synergistic effects for inhibiting the growth of these fungal strains. Sorbitol and ergosterol assays showed that both cyclic peptides affected cell wall and membrane components due to increases in MIC value, as observed in medium with sorbitol and ergosterol. Valinomycin and cereulide may promote permeability of fungal cell wall and cell membrane when used in combination with AmB.
Collapse
Affiliation(s)
- A Makarasen
- Department of Chemistry, Laboratory of Organic Synthesis, Chulabhorn Research Institute, 54, Vipavadee-Rangsit Highway, Bangkok 10210, Thailand
| | - N Reukngam
- Department of Chemistry, Laboratory of Organic Synthesis, Chulabhorn Research Institute, 54, Vipavadee-Rangsit Highway, Bangkok 10210, Thailand
| | - P Khlaychan
- Department of Chemistry, Laboratory of Organic Synthesis, Chulabhorn Research Institute, 54, Vipavadee-Rangsit Highway, Bangkok 10210, Thailand
| | - P Chuysinuan
- Department of Chemistry, Laboratory of Organic Synthesis, Chulabhorn Research Institute, 54, Vipavadee-Rangsit Highway, Bangkok 10210, Thailand
| | - M Isobe
- Department of Chemistry, Laboratory of Organic Synthesis, Chulabhorn Research Institute, 54, Vipavadee-Rangsit Highway, Bangkok 10210, Thailand
| | - S Techasakul
- Department of Chemistry, Laboratory of Organic Synthesis, Chulabhorn Research Institute, 54, Vipavadee-Rangsit Highway, Bangkok 10210, Thailand.
| |
Collapse
|
11
|
Decleer M, Rajkovic A, Sas B, Madder A, De Saeger S. Development and validation of ultra-high-performance liquid chromatography-tandem mass spectrometry methods for the simultaneous determination of beauvericin, enniatins (A, A1, B, B1) and cereulide in maize, wheat, pasta and rice. J Chromatogr A 2016; 1472:35-43. [PMID: 27776774 DOI: 10.1016/j.chroma.2016.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/22/2016] [Accepted: 10/04/2016] [Indexed: 01/13/2023]
Abstract
Rapid and accurate UPLC-MS/MS methods for the simultaneous determination of beauvericin and the related enniatins (A, A1, B, B1), together with cereulide were successfully developed and validated in cereal and cereal-based food matrices such as wheat, maize, rice and pasta. Although these emerging foodborne toxins are of different microbial origin, the similar structural, toxicological and food safety features provided rationale for their concurrent detection in relevant food matrices. A Waters Acquity UPLC system coupled to a Waters Quattro Premier XE™ Mass Spectrometer operating in ESI+ mode was employed. Sample pretreatment involved a fast and simple liquid extraction of the target toxins without any further clean-up step. For all toxins the sample preparation resulted in acceptable extraction recoveries with values of 85-105% for wheat, 87-106% for maize, 84-106% for rice and 85-105% for pasta. The efficient extraction protocol, together with a fast chromatographic separation of 7min allowed substantial saving costs and time showing its robustness and performance. The validation of the developed method was performed based on Commission Decision 2002/657/EC. The obtained limits of detection ranged from 0.1 to 1.0μgkg-1 and the limits of quantification from 0.3 to 2.9μgkg-1 for the targeted toxins in the selected matrices. The obtained sensitivities allow detection of relevant toxicological concentrations. All relative standard deviations for repeatability (intra-day) and intermediate precision (inter-day) were lower than 20%. Trueness, expressed as the apparent recovery varied from 80 to 107%. The highly sensitive and repeatable validated method was applied to 57 naturally contaminated samples allowing detection of sub-clinical doses of the toxins.
Collapse
Affiliation(s)
- Marlies Decleer
- Department of Bioanalysis, Laboratory of Food Analysis, Ghent University, Ottergemsesteenweg 460, Ghent, Belgium; Department of Food Safety and Food Quality, Laboratory of Food Microbiology and Food Preservation, Ghent University, Coupure Links 653, Ghent, Belgium.
| | - Andreja Rajkovic
- Department of Food Safety and Food Quality, Laboratory of Food Microbiology and Food Preservation, Ghent University, Coupure Links 653, Ghent, Belgium
| | - Benedikt Sas
- Department of Food Safety and Food Quality, Food2Know, Ghent University, Coupure Links 653, Ghent, Belgium
| | - Annemieke Madder
- Department of Organic Chemistry, Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281, Ghent, Belgium
| | - Sarah De Saeger
- Department of Bioanalysis, Laboratory of Food Analysis, Ghent University, Ottergemsesteenweg 460, Ghent, Belgium
| |
Collapse
|
12
|
Ceuppens S, Rajkovic A, Hamelink S, Van de Wiele T, Boon N, Uyttendaele M. Enterotoxin production by Bacillus cereus under gastrointestinal conditions and their immunological detection by commercially available kits. Foodborne Pathog Dis 2014; 9:1130-6. [PMID: 23237409 DOI: 10.1089/fpd.2012.1230] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Currently, three commercial kits for Bacillus cereus enterotoxins Nhe and/or Hbl detection are available, namely, the Bacillus diarrheal enterotoxin visual immunoassay (BDE VIA™) kit (3M Tecra), B. cereus enterotoxin reversed passive latex agglutination (BCET-RPLA) kit (Oxoid), and the Duopath(®) Cereus Enterotoxins (Merck). The performance of the kits and their applicability to gastrointestinal simulation samples were evaluated. Then, the stability and production of enterotoxins Hbl and Nhe under gastrointestinal conditions were investigated. Enterotoxin production was absent or impaired at acidic pH, i.e., in gastric medium with pH 5.0 and lasagne verde with pH 5.5. B. cereus did produce enterotoxins Nhe and Hbl during anaerobic growth in intestinal medium at pH 7.0, but the toxins were instantly degraded by the enzymes in the host's digestive secretions. Preformed enterotoxins did not withstand gastrointestinal passage under the simulated conditions, which suggests that preformed enterotoxins in food do not contribute to the diarrheal food poisoning syndrome. In conclusion, diarrhea is probably caused by de novo enterotoxin production by B. cereus cells located closely to the host's intestinal epithelium.
Collapse
Affiliation(s)
- Siele Ceuppens
- Faculty of Bioscience Engineering, Laboratory of Food Microbiology and Food Preservation, Ghent University, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
13
|
Mechanisms of staphylococcal enterotoxin-induced emesis. Eur J Pharmacol 2014; 722:95-107. [DOI: 10.1016/j.ejphar.2013.08.050] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/11/2013] [Accepted: 08/03/2013] [Indexed: 01/16/2023]
|
14
|
Ceuppens S, Boon N, Uyttendaele M. Diversity of Bacillus cereus group strains is reflected in their broad range of pathogenicity and diverse ecological lifestyles. FEMS Microbiol Ecol 2013; 84:433-50. [PMID: 23488744 DOI: 10.1111/1574-6941.12110] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 03/06/2013] [Accepted: 03/06/2013] [Indexed: 12/25/2022] Open
Abstract
Bacillus cereus comprises a highly versatile group of bacteria, which are of particular interest because of their capacity to cause disease. Emetic food poisoning is caused by the toxin cereulide produced during the growth of emetic B. cereus in food, while diarrhoeal food poisoning is the result of enterotoxin production by viable vegetative B. cereus cells in the small intestine, probably in the mucus layer and/or attached to the host's intestinal epithelium. The numbers of B. cereus causing disease are highly variable, depending on diverse factors linked to the host (age, diet, physiology and immunology), bacteria (cellular form, toxin genes and expression) and food (nutritional composition and meal characteristics). Bacillus cereus group strains show impressive ecological diversity, ranging from their saprophytic life cycle in soil to symbiotic (commensal and mutualistic) lifestyles near plant roots and in guts of insects and mammals to various pathogenic ones in diverse insect and mammalian hosts. During all these different ecological lifestyles, their toxins play important roles ranging from providing competitive advantages within microbial communities to inhibition of specific pathogenic organisms for their host and accomplishment of infections by damaging their host's tissues.
Collapse
Affiliation(s)
- Siele Ceuppens
- Laboratory of Food Microbiology and Food Preservation, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | | | | |
Collapse
|
15
|
Scientific Opinion on Public health risks represented by certain composite products containing food of animal origin. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2662] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
16
|
Ceuppens S, Uyttendaele M, Drieskens K, Rajkovic A, Boon N, Wiele TVD. Survival of Bacillus cereus vegetative cells and spores during in vitro simulation of gastric passage. J Food Prot 2012; 75:690-4. [PMID: 22488056 DOI: 10.4315/0362-028x.jfp-11-481] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The enteric pathogen Bacillus cereus must survive gastric passage in order to cause diarrhea by enterotoxin production in the small intestine. The acid resistance and the survival after gastric passage were assessed by in vitro experiments with acidified growth medium and gastric simulation medium with B. cereus NVH 1230-88 vegetative cells and spores. First, batch incubations at constant pH values for 4 h, which represented different physiological states of the stomach, showed that spores were resistant to any gastric condition in the pH range of 2.0 to 5.0, while vegetative cells were rapidly inactivated at pH values of ≤4.0. Second, a dynamic in vitro gastric experiment was conducted that simulated the continuously changing in vivo conditions due to digestion dynamics by gradually decreasing the pH from 5.0 to 2.0 and fractional emptying of the stomach 30 to 180 min from the start of the experiment. All of the B. cereus spores and 14% (± 9%) of the vegetative cells survived the dynamic simulation of gastric passage.
Collapse
Affiliation(s)
- Siele Ceuppens
- Faculty of Bioscience Engineering, Department of Food Safety and Quality, Laboratory of Food Microbiology and Food Preservation (LFMFP), Ghent University, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
17
|
Ceuppens S, Rajkovic A, Heyndrickx M, Tsilia V, Van De Wiele T, Boon N, Uyttendaele M. Regulation of toxin production by Bacillus cereus and its food safety implications. Crit Rev Microbiol 2011; 37:188-213. [PMID: 21417966 DOI: 10.3109/1040841x.2011.558832] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Toxin expression is of utmost importance for the food-borne pathogen B. cereus, both in food poisoning and non-gastrointestinal host infections as well as in interbacterial competition. Therefore it is no surprise that the toxin gene expression is tightly regulated by various internal and environmental signals. An overview of the current knowledge regarding emetic and diarrheal toxin transcription and expression is presented in this review. The food safety aspects and management tools such as temperature control, food preservatives and modified atmosphere packaging are discussed specifically for B. cereus emetic and diarrheal toxin production.
Collapse
Affiliation(s)
- Siele Ceuppens
- Ghent University, Faculty of Bioscience Engineering, Laboratory of Food Microbiology and Food Preservation, Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
18
|
Delbrassinne L, Andjelkovic M, Rajkovic A, Bottledoorn N, Mahillon J, Van Loco J. Follow-up of the Bacillus cereus emetic toxin production in penne pasta under household conditions using liquid chromatography coupled with mass spectrometry. Food Microbiol 2011; 28:1105-9. [PMID: 21569959 DOI: 10.1016/j.fm.2011.02.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 02/24/2011] [Accepted: 02/25/2011] [Indexed: 11/26/2022]
Abstract
Two outbreak-related Bacillus cereus emetic strains were investigated for their growth and cereulide production potential in penne pasta at 4, 8 and 25 °C during 7-day storage. Cereulide production was detected and quantified by LC-MS method (LOD of 1 ng/ml, LOQ of 5 ng/ml) and growth was determined by culture-based enumeration. Inoculated B. cereus strains (10(5) CFU/g) were able to reach counts of more than 10(8) CFU/g and cereulide production of about 500 ng/g already after 3 days of storage at 25 °C. Interestingly, a constant increase of the toxin was noticed during incubation at ambient temperature storage: the cereulide was continuously produced during the bacterial stationary growth phase reaching maximal amounts at the end of the experiment (7 days, concentration of about 1000 ng/g). Strictly respected cold chain temperature as 4 °C did not allow any detectable cereulide production for any of the two tested strains. At the limited temperature abuse of 8 °C, a detectable amount of cereulide was observed after two days for one of the strain (TIAC303) (<LOQ). These results confirm that cereulide production is controlled by multiple factors (from type of strain to temperature) and that prolonged storage time plays a crucial role for consumer safety.
Collapse
Affiliation(s)
- Laurence Delbrassinne
- Scientific Institute of Public Health, 14 rue Juliette Wytsman, B-1050 Bruxelles, Belgium
| | | | | | | | | | | |
Collapse
|
19
|
Comparative analysis of antimicrobial activities of valinomycin and cereulide, the Bacillus cereus emetic toxin. Appl Environ Microbiol 2011; 77:2755-62. [PMID: 21357430 DOI: 10.1128/aem.02671-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cereulide and valinomycin are highly similar cyclic dodecadepsipeptides with potassium ionophoric properties. Cereulide, produced by members of the Bacillus cereus group, is known mostly as emetic toxin, and no ecological function has been assigned. A comparative analysis of the antimicrobial activity of valinomycin produced by Streptomyces spp. and cereulide was performed at a pH range of pH 5.5 to pH 9.5, under anaerobic and aerobic conditions. Both compounds display pH-dependent activity against selected Gram-positive bacteria, including Staphylococcus aureus, Listeria innocua, Listeria monocytogenes, Bacillus subtilis, and Bacillus cereus ATCC 10987. Notably, B. cereus strain ATCC 14579 and the emetic B. cereus strains F4810/72 and A529 showed reduced sensitivity to both compounds, with the latter two strains displaying full resistance to cereulide. Both compounds showed no activity against the selected Gram-negative bacteria. Antimicrobial activity against Gram-positive bacteria was highest at alkaline pH values, where the membrane potential (ΔΨ) is the main component of the proton motive force (PMF). Furthermore, inhibition of growth was observed in both aerobic and anaerobic conditions. Determination of the ΔΨ, using the membrane potential probe DiOC(2)(3) (in the presence of 50 mM KCl) in combination with flow cytometry, demonstrated for the first time the ability of cereulide to dissipate the ΔΨ in sensitive Gram-positive bacteria. The putative role of cereulide production in the ecology of emetic B. cereus is discussed.
Collapse
|
20
|
Ceuppens S, Boon N, Rajkovic A, Heyndrickx M, Van de Wiele T, Uyttendaele M. Quantification methods for Bacillus cereus vegetative cells and spores in the gastrointestinal environment. J Microbiol Methods 2010; 83:202-10. [PMID: 20849884 DOI: 10.1016/j.mimet.2010.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 08/26/2010] [Accepted: 09/02/2010] [Indexed: 11/15/2022]
Abstract
There is an interest to understand the fate and behaviour of the food-borne pathogen Bacillus cereus in the gut, a challenging environment with a high bacterial background. We evaluated the current detection methods to select an appropriate strategy for B. cereus monitoring during gastrointestinal experiments. Application of quantitative real-time PCR (qPCR) in a gastrointestinal matrix required careful selection of the qPCR reaction and elaborate optimization of the DNA extraction protocol. Primer competition and depletion problems associated with qPCR reactions targeting general 16S rRNA gene can be avoided by the selection of a target sequence that is unique for and widespread among the target bacteria, such as the toxin gene nheB in the case of pathogenic B. cereus. Enumeration of B. cereus during the ileum phase was impossible by plating due to overgrowth by intestinal bacteria, while a carefully optimized qPCR enabled specific detection and quantification of B. cereus. On the other hand, plating allowed the distinction of viable, injured and dead bacteria and the germination of spores, which was not possible with qPCR. In conclusion, both plating and qPCR were necessary to yield the maximal information regarding the viability and physiology of the B. cereus population in various gastrointestinal compartments.
Collapse
Affiliation(s)
- Siele Ceuppens
- Ghent University, Faculty of Bioscience Engineering, Laboratory of Food Microbiology and Food Preservation (LFMFP), Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
21
|
Makarasen A, Yoza K, Isobe M. Higher structure of cereulide, an emetic toxin from Bacillus cereus, and special comparison with valinomycin, an antibiotic from Streptomyces fulvissimus. Chem Asian J 2009; 4:688-98. [PMID: 19347893 DOI: 10.1002/asia.200900011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cereulide and valinomycin are both 36-membered cyclic depsipeptides with 12 stereogenic centers that have a very similar sequence of cyclo [-D-O-Leu-D-Ala-L-O-Val-L-Val-]3 and cyclo [-D-O-Val-D-Val-L-O-Ala-L-Val-]3, respectively. Cereulide is an emetic toxin produced by Bacillus cereus through an unusual non-ribosomal peptide synthesis (NRPS), whereas valinomycin, produced by Streptomyces fulvissimus, is a known antibiotic drug. Both compounds are known as K+-ion-selective ionophores and cause a potassium-dependent drop in the transmembrane potential of mitochondria, arising from the uptake of a K+-ion-charged ionophore complex. Such compounds may affect mitochondrial function. In the three-dimensional structure of cereulide and valinomycin, cereulide has a vertical and horizontal mirror-image-like structure as is the case in valinomycin. The only difference is the side chains which are linked to a similar framework. Through the current 1H NMR spectroscopy and metal-complexation studies, we found that cereulide had a higher complexation ability to metal ions compared to valinomycin. Cereulide exhibited the K+-ion-selective ionophore property at a lower concentration than valinomycin. X-ray crystallographic analyses of the cereulide and valinomycin H+ form were compared, and revealed that the higher structures of both compounds also showed similarity in the crystal structures. The structure of cereulide-H+ form was found to be in agreement with the structure obtained by a combination of NMR spectroscopy and molecular-mechanics calculations, which afforded reasonable dihedral angles at the local-minimum-energy conformation of the cereulide-K+-ion complex.
Collapse
Affiliation(s)
- Arthit Makarasen
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 466-8601, Japan
| | | | | |
Collapse
|
22
|
Parkouda C, Nielsen DS, Azokpota P, Ivette Irène Ouoba L, Amoa-Awua WK, Thorsen L, Hounhouigan JD, Jensen JS, Tano-Debrah K, Diawara B, Jakobsen M. The microbiology of alkaline-fermentation of indigenous seeds used as food condiments in Africa and Asia. Crit Rev Microbiol 2009; 35:139-56. [DOI: 10.1080/10408410902793056] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Stenfors Arnesen LP, Fagerlund A, Granum PE. From soil to gut:Bacillus cereusand its food poisoning toxins. FEMS Microbiol Rev 2008; 32:579-606. [DOI: 10.1111/j.1574-6976.2008.00112.x] [Citation(s) in RCA: 790] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
24
|
Rajkovic A, Uyttendaele M, Vermeulen A, Andjelkovic M, Fitz-James I, in 't Veld P, Denon Q, Vérhe R, Debevere J. Heat resistance of Bacillus cereus emetic toxin, cereulide. Lett Appl Microbiol 2008; 46:536-41. [PMID: 18363653 DOI: 10.1111/j.1472-765x.2008.02350.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AIMS The study describes the effects of heating temperature and exposure time on the thermal stability of cereulide under different conditions (pH, presence/absence of oil phase and cereulide concentration). METHODS AND RESULTS Cereulide heat inactivation was investigated at 100, 121 and 150 degrees C under different alkaline pH values (8.6-10.6) and in the presence of oil phase (0.6-1.4%). Three different cereulide concentrations (0.5, 5 and 6 microg ml(-1)) were used. Cereulide detection was performed with computer-aided semen analyzer and with HPLC-MS. Highly alkaline pH was needed to achieve inactivation. At lower cereulide concentrations less drastic conditions were needed. Removal of alkaline buffer after the heat treatment resulted in the recovery of toxic activity. CONCLUSIONS Heat stability of cereulide has been proved to be remarkable, even at highly alkaline pH values, at all temperatures tested. The loss of activity appeared to be reversible. SIGNIFICANCE AND IMPACT OF THE STUDY The study demonstrates the inability of any heat treatment used in the food industry to inactivate cereulide. Food safety has to rely on prevention and cold chain maintenance. Cleaning practices also need to be adapted as cereulide may remain in its active form upon sterilization of used material.
Collapse
Affiliation(s)
- A Rajkovic
- Laboratory of Food Microbiology and Food Preservation, Department of Food Safety and Food Quality, Faculty of Bio-science Engineering, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Colavita G, Rotili M, Leone A, Vergara A, Sammarco ML, Ripabelli G. Identification of Emesis-causing Bacillus cereus Strains by Polymerase Chain Reaction: Preliminary Results. Vet Res Commun 2007; 31 Suppl 1:351-3. [PMID: 17682912 DOI: 10.1007/s11259-007-0035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- G Colavita
- Department of Agri-food, Environmental and Microbiological Sciences and Technologies, University of Molise, Campobasso, Italy.
| | | | | | | | | | | |
Collapse
|
26
|
Ehling-Schulz M, Fricker M, Scherer S. Bacillus cereus, the causative agent of an emetic type of food-borne illness. Mol Nutr Food Res 2004; 48:479-87. [PMID: 15538709 DOI: 10.1002/mnfr.200400055] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bacillus cereus is the causative agent of two distinct forms of gastroenteritic disease connected to food-poisoning. It produces one emesis-causing toxin and three enterotoxins that elicit diarrhea. Due to changing lifestyles and eating habits, B. cereus is responsible for an increasing number of food-borne diseases in the industrial world. In the past, most studies concentrated on the diarrhoeal type of food-borne disease, while less attention has been given to the emetic type of the disease. The toxins involved in the diarrhoeal syndrome are well-known and detection methods are commercially available, whereas diagnostic methods for the emetic type of disease have been limited. Only recently, progress has been made in developing identification methods for emetic B. cereus and its corresponding toxin. We will summarize the data available for the emetic type of the disease and discuss some new insights in emetic strain characteristics, diagnosis, and toxin synthesis.
Collapse
|
27
|
Nakano S, Maeshima H, Matsumura A, Ohno K, Ueda S, Kuwabara Y, Yamada T. A PCR assay based on a sequence-characterized amplified region marker for detection of emetic Bacillus cereus. J Food Prot 2004; 67:1694-701. [PMID: 15330536 DOI: 10.4315/0362-028x-67.8.1694] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A PCR assay for the detection of Bacillus cereus strains able to produce an emetic toxin (cereulide) was developed in this study based on a sequence-characterized amplified region (SCAR) derived from a random amplified polymorphic DNA (RAPD) fragment. One of the RAPD fragments generated was selected, cloned, and sequenced. A set of PCR primers was newly designed from the SCAR obtained (the sequence of the cloned RAPD fragment) and used in this assay. To determine the specificity of the assay, 30 different B. cereus strains, 8 other Bacillus strains (of six species), and 16 other non-Bacillus strains (from 16 genera) were tested. Results were positive for every emetic B. cereus strain and for only one nonemetic B. cereus strain. For all other bacterial strains, results were negative. Bacterial DNA for PCR was prepared by a simple procedure using Chelex 100 resin from the bacterial colony on the agar plate or from culture after growth in brain heart infusion medium. This PCR assay enabled us to detect the bacteria of emetic B. cereus grown on agar plates but not the bacteria of nonemetic B. cereus. To test this PCR assay for the monitoring of the emetic bacteria, 10 to 70 CFU of B. cereus DSM 4312 (emetic) per g of food was inoculated into several foods as an indicator, followed by a 7-h enrichment culture step. Because this PCR assay based on the SCAR derived from the RAPD fragment was able to detect bacterial cells, this assay should be useful for rapid and specific detection of emetic B. cereus.
Collapse
Affiliation(s)
- Shigeru Nakano
- Food Safety Research Institute, Nissin Food Products Co, Ltd, 2247 Noji-cho, Kusatsu, Shiga 525-0055, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Paananen A, Mikkola R, Sareneva T, Matikainen S, Hess M, Andersson M, Julkunen I, Salkinoja-Salonen MS, Timonen T. Inhibition of human natural killer cell activity by cereulide, an emetic toxin from Bacillus cereus. Clin Exp Immunol 2002; 129:420-8. [PMID: 12197882 PMCID: PMC1906479 DOI: 10.1046/j.1365-2249.2002.01898.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lipophilic toxin, cereulide, emitted by emetic food poisoning causing strains of Bacillus cereus, is a powerful mitochondria toxin. It is highly lipophilic and rapidly absorbed from the gut into the bloodstream. We tested how this toxin influences natural killer (NK) cells, which are important effectors in defence against infections and malignancy. Cereulide inhibited cytotoxicity and cytokine production of natural killer cells, caused swelling of natural killer cell mitochondria, and eventually induced natural killer cell apoptosis. The suppressive effect on cytotoxicity was fast and toxic concentration low, 20-30 microg/l. As the emesis causing concentration of cereulide is around 10 microg/kg of total body mass, our results suggest that emesis causing or even lower doses of cereulide may also have a systemic natural killer cell suppressive effect.
Collapse
MESH Headings
- Apoptosis
- Bacillus cereus
- Bacterial Toxins/isolation & purification
- Bacterial Toxins/pharmacology
- Bacterial Toxins/toxicity
- Cells, Cultured
- Cytokines/pharmacology
- Cytotoxicity Tests, Immunologic
- Depsipeptides
- Dose-Response Relationship, Drug
- Emetics/isolation & purification
- Emetics/pharmacology
- Emetics/toxicity
- Humans
- Interferon-gamma/biosynthesis
- Interleukin-1/biosynthesis
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/ultrastructure
- Kinetics
- Membrane Potentials/drug effects
- Mitochondria/drug effects
- Mitochondria/physiology
- Mitochondria/ultrastructure
- Monocytes/drug effects
- Monocytes/immunology
- Peptides, Cyclic/isolation & purification
- Peptides, Cyclic/pharmacology
- Peptides, Cyclic/toxicity
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- A Paananen
- Department of Pathology, Haartman Institute, University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hu DL, Omoe K, Saleh MH, Ono K, Sugii S, Nakane A, Shinagawa K. Analysis of the epitopes on staphylococcal enterotoxin A responsible for emetic activity. J Vet Med Sci 2001; 63:237-41. [PMID: 11307922 DOI: 10.1292/jvms.63.237] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To identify which region of staphylococcal enterotoxin A (SEA) is responsible for the emetic activity, twelve synthetic peptides corresponding to the entire SEA amino acid sequence and their respective anti-peptide antibodies were prepared and tested. The anti-peptide antibodies were tested for neutralization of SEA-induced emesis in Suncus murinus (Shrew mouse). The results indicate that SEA-induced emesis was neutralized by the mixture of three anti-peptide antibodies to A-7 (corresponding to amino acid residues 121-140), A-8 (141-160) and A-9 (160-180). These findings suggest that the regions corresponding to residues 121-180 may be the epitopes responsible for the emetic activity of SEA.
Collapse
Affiliation(s)
- D L Hu
- Department of Veterinary Microbiology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Bacillus cereus is a causative agent in both gastrointestinal and in nongastrointestinal infections. Enterotoxins, emetic toxin (cereulide), hemolysins, and phoshpolipase C as well as many enzymes such as beta-lactamases, proteases and collagenases are known as potential virulence factors of B. cereus. A special surface structure of B. cereus cells, the S-layer, has a significant role in the adhesion to host cells, in phagocytosis and in increased radiation resistance. Interest in B. cereus has been growing lately because it seems that B. cereus-related diseases, in particular food poisonings, are growing in number.
Collapse
Affiliation(s)
- A Kotiranta
- Institute of Dentistry, P.O. Box 41, FIN-00014, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
31
|
|