1
|
Gong X, Cui Q, Zhang W, Shi Y, Zhang P, Zhang C, Hu G, Sahin O, Wang L, Shen Z, Fu M. Genomic insight into the diversity of Glaesserella parasuis isolates from 19 countries. mSphere 2024; 9:e0023124. [PMID: 39194201 PMCID: PMC11423579 DOI: 10.1128/msphere.00231-24] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Glaesserella parasuis is a commensal bacterial organism found in the upper respiratory tract of healthy pigs and the etiological agent of Glässer's disease, which causes severe economic losses in the swine industry. This study aimed to better understand the epidemiological characteristics of this opportunistic pathogen. We investigated the prevalence and distribution of sequence types (STs), serovars, antimicrobial resistance genes (ARGs), and potential virulence factors (VFs) in 764 G. parasuis isolates collected from diseased and healthy pigs from 19 countries, including China. Multilocus sequence typing showed a high degree of variation with 334 STs, of which 93 were not previously recognized. Phylogenetic analysis revealed two major clades distinguished by isolation year, source, country, and serovar. The dominant serovars of G. parasuis were serovars 4 (19.50%), 7 (15.97%), 5/12 (13.87%), and 13 (12.30%). Serovar 7 gradually became one of the dominant serovars in G. parasuis with more VFs and fewer ARGs. Serovars 4 and 5/12 were the most frequent serovars in diseased pigs, whereas serovars 2, 8, and 11 were predominant in healthy pigs. Serovars 7 and 13 possessed more VFs than the other serovars. This study provides novel insights into the global prevalence and epidemiology of G. parasuis and valuable clues for further investigation into the pathogenicity of G. parasuis, which will facilitate the development of effective vaccines.IMPORTANCEGlaesserella parasuis is a clinically important gram-negative opportunistic pathogen, which causes serious financial losses in swine industry on a global scale. No vaccine is known that provides cross-protection against all 15 serovars; furthermore, the correlation between serovar and virulence is largely unknown. This study provides a large number of sequenced strains in 19 countries and compares the genomic diversity of G. parasuis between diseased and healthy pigs. We found a slight change in the dominant serovar of G. parasuis in the world, with serovar 7 gradually emerging as one of the predominant serovars. The observed higher average number of VFs in this particular serovar strain challenges the previously held notion that serovar 7 is non-virulent, indicating a more complex virulence landscape than previously understood. Our analysis indicating that six ARGs [tet(B), sul2, aph(3')-Ia, aph (6)-Id, blaROB-1, and aph(3'')-Ib] are likely to be transmitted horizontally in their entirety. By analyzing VFs, we provided an improved understanding of the virulence of G. parasuis, and these key findings suggest that vaccine development will be challenging.
Collapse
Affiliation(s)
- Xiaowei Gong
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qingpo Cui
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wanjiang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yuqian Shi
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Peng Zhang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chaoyang Zhang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Gongzheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Lu Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhangqi Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mengjiao Fu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Xiao J, Wang Y, Wu D, Song Y, Cai X, Chen H, Zhou H, Xu X. A marker-free genetic manipulation method for Glaesserella parasuis strains developed by alternately culturing transformants at 37°C and 30°C. BMC Biotechnol 2024; 24:60. [PMID: 39227838 PMCID: PMC11373133 DOI: 10.1186/s12896-024-00887-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Glaesserella parasuis (G. parasuis) is the causative agent of Glässer's disease, which causes significant economic losses in the swine industry. However, research on the pathogenesis of G. parasuis has been hampered by the lack of a simple and efficient marker-free knockout system. RESULTS In this study, a marker-free knockout system was developed for G. parasuis using a temperature-sensitive vector. By alternating the incubation of transformants at 30°C and 37°C, we optimized the screening process for this system. The system was successfully applied to knockout the KanR cassette from JS0135ΔnanH::KanR, achieving a knockout efficiency of 90% in the final round of screening. To confirm that temperature variation was a key factor, we proceeded with knocking out the nanH and apd genes in the CF7066 strain. The knockout efficiency reached up to 100%, with the shortest screening time being only four days. The knockout of the nanH gene resulted in a significant reduction in the growth vitality of the strains, while the knockout of the apd gene led to an approximate 56% improvement in the adhesion rate. Additionally, we observed that the expression of recombinant genes in transformants was higher at 30℃ than at 37℃, with the recC gene being upregulated approximately 7-fold. In contrast, there was almost no difference in the expression of recombinant genes between 30℃ and 37℃ in the wild-type strains. This discrepancy was likely due to an elevated copy number of target plasmids at 30℃, which may have resulted in the enhanced expression of recombinant genes. CONCLUSIONS In conclusion, this newly developed gene knockout system for G. parasuis presents a valuable tool for advancing research on this organism.
Collapse
Affiliation(s)
- Jing Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yuxin Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dongfang Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- YuceBio Technology Co., Ltd, Shenzhen, 518000, China
| | - Yuping Song
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Xuwang Cai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaojuan Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
3
|
Sialidase of Glaesserella parasuis Augments Inflammatory Response via Desialylation and Abrogation of Negative Regulation of Siglec-5. Infect Immun 2021; 89:IAI.00696-20. [PMID: 33526563 DOI: 10.1128/iai.00696-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/25/2021] [Indexed: 11/20/2022] Open
Abstract
Siglecs are sialic acid-binding immunoglobulin-like lectins that play an important role in tissue homeostasis, immune response, and pathogen infection. Bacterial sialidases act on natural ligands of Siglecs, interfering with the Siglec-mediated immune response. Glaesserella parasuis is a porcine bacterial pathogen that secretes sialidase. However, little is known about the sialidase of G. parasuis and its impact on immune regulation. Here, we used wild-type G. parasuis, a sialidase-deficient mutant, and complementary strains to investigate the role of sialidase in porcine alveolar macrophage infection. Sialidase induced the release of proinflammatory cytokines, such as interleukin-1α (IL-1α), IL-6, and tumor necrosis factor alpha, from porcine alveolar macrophages. Moreover, sialidase desialylated the surface of porcine alveolar macrophages and altered the expression of Siglecs (the expression of Siglec-5 was reduced). Furthermore, sialidase led to a reduction in endogenous SH2 domain-containing protein tyrosine phosphatase (SHP-2) recruitment to Siglec-5 and simultaneously activated the inflammatory response via the mitogen-activated protein kinase and nuclear factor kappa light chain enhancer of activated B cell signaling pathways. This desialylation occurred before the release of proinflammatory cytokines, suggesting that the sialidase-induced inflammatory response was followed by reduced recruitment of SHP-2 to Siglec-5. Thus, this study is the first to demonstrate the role of sialidase in the inflammatory response of G. parasuis. This role resulted from the abrogation of negative regulation of Siglec-5 on proinflammatory cytokine release. This study helps to understand the molecular mechanism underlying the inflammatory response induced by sialidase secreted by G. parasuis and the acute inflammation caused by G. parasuis.
Collapse
|
4
|
Álvarez-Estrada Á, Rodríguez-Ferri EF, Martínez-Martínez S, Álvarez B, Fernández-Caballero T, Domínguez J, Gutiérrez-Martín CB. TLR2, Siglec-3 and CD163 expressions on porcine peripheral blood monocytes are increased during sepsis caused by Haemophilus parasuis. Comp Immunol Microbiol Infect Dis 2019; 64:31-39. [PMID: 31174697 DOI: 10.1016/j.cimid.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 10/31/2018] [Accepted: 02/02/2019] [Indexed: 01/03/2023]
Abstract
TLRs, Siglecs and CD163 are cell surface receptors that play an important role in immune response and sepsis. The objective of this study was to assess changes in the expression levels of several of these receptors (TLR2, TLR4, CD163, Siglec-1, Siglec-3, Siglec-5 and Siglec-10) on the surface of peripheral blood mononuclear cells from pigs with sepsis caused by Haemophilus parasuis. Flow cytometry was employed to analyze samples from an experimental infection and from cell cultures. A significant increase in CD163, TLR2 and Siglec-3 expression during infection was seen. However, in vitro exposure of peripheral blood monocytes to bacteria or sera from infected pigs did not increase the expression of these receptors. These changes may be due to recruitment of monocytes into the blood compartment in response to H. parasuis-induced sepsis.
Collapse
Affiliation(s)
- Álvaro Álvarez-Estrada
- Microbiology & Immunology Section, Animal Health Department, Faculty of Veterinary Medicine, University of León, Spain.
| | | | - Sonia Martínez-Martínez
- Microbiology & Immunology Section, Animal Health Department, Faculty of Veterinary Medicine, University of León, Spain.
| | - Belén Álvarez
- Porcine Immunology Laboratory, Biotechnology Department, INIA, Madrid, Spain.
| | | | - Javier Domínguez
- Porcine Immunology Laboratory, Biotechnology Department, INIA, Madrid, Spain.
| | | |
Collapse
|
5
|
Immunogenic characterization of vaccines based on Haemophilus parasuis Nagasaki strain, OmpP2, OmpP5 and OmpD15, in colostrum-deprived pigs experimentally challenged with the same strain. Res Vet Sci 2018; 119:292-301. [DOI: 10.1016/j.rvsc.2018.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 07/10/2018] [Accepted: 07/21/2018] [Indexed: 11/17/2022]
|
6
|
Baicalin modulates NF-κB and NLRP3 inflammasome signaling in porcine aortic vascular endothelial cells Infected by Haemophilus parasuis Causing Glässer's disease. Sci Rep 2018; 8:807. [PMID: 29339754 PMCID: PMC5770393 DOI: 10.1038/s41598-018-19293-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 12/29/2017] [Indexed: 12/12/2022] Open
Abstract
Haemophilus parasuis (H. parasuis) can cause vascular inflammatory injury, but the molecular basis of this effect remains unclear. In this study,we investigated the effect of the anti-inflammatory, anti-microbial and anti-oxidant agent, baicalin, on the nuclear factor (NF)-κB and NLRP3 inflammasome signaling pathway in pig primary aortic vascular endothelial cells. Activation of the NF-κB and NLRP3 inflammasome signaling pathway was induced in H. parasuis-infected cells. However, baicalin reduced the production of reactive oxygen species, apoptosis, and activation of the NF-κB and NLRP3 inflammasome signaling pathway in infected cells. These results revealed that baicalin can inhibit H. parasuis-induced inflammatory responses in porcine aortic vascular endothelial cells, and may thus offer a novel strategy for controlling and treating H. parasuis infection. Furthermore, the results suggest that piglet primary aortic vascular endothelial cells may provide an experimental model for future studies of H. parasuis infection.
Collapse
|
7
|
Li L, Tian Y, Yu J, Song X, Jia R, Cui Q, Tong W, Zou Y, Li L, Yin L, Liang X, He C, Yue G, Ye G, Zhao L, Shi F, Lv C, Cao S, Yin Z. iTRAQ-based quantitative proteomic analysis reveals multiple effects of Emodin to Haemophilus parasuis. J Proteomics 2017; 166:39-47. [PMID: 28679110 DOI: 10.1016/j.jprot.2017.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/09/2017] [Accepted: 06/21/2017] [Indexed: 12/20/2022]
Abstract
UNLABELLED Haemophilus parasuis, a symbiotic bacteria of upper respiratory tract of swine, is the etiological agent of Glässer's disease, which is characterized by fibrinous polyserositis. Emodin, exhibits antibacterial activity against H. parasuis, yet the action mode has not been fully understood. In present study, isobaric tag for relative and absolute quantification (iTRAQ) method was applied to analyze the global protein alteration of H. parasuis in response to 16μg/mL Emodin. In total, 338 proteins exhibiting significant differential expressions were identified. It was speculated that, through application of bioinformatics analysis to theses differentially expressed proteins, Emodin mainly inhibited some key proteins expression of ABC transport system, carbohydrate metabolism pathway and bacterial cell division by inhibiting the ribosome synthesis, resulting in the growth inhibition of H. parasuis. Remarkably, nine virulence-associated proteins were detected differently expressed, further experiments revealed that after treatment with Emodin, H. parasuis could be inhibited to adhere to and invade into porcine kidney epithelial cells (PK-15 line) and exhibited increased sensitivity to serum complement in a concentration-dependent manner. Phagocytosis assay showed Emodin also could enhance phagocytic activity of porcine alveolar macrophages PAM to H. parasuis. These results indicated that Emodin also can attenuate virulence of H. parasuis and reduce infection. BIOLOGICAL SIGNIFICANCE The Glässer's disease caused by H. parasuis has become a typical bacterial disease and cause serious economic loss to the swine industry around the world. Antibiotics are extensively used to control the infection, but increasing antibiotic resistance has been a severe problem. Hence, novel treatment agents are needed. So far, few antibacterial agents were reported that could control H. parasuis infection. In the present study, the state-of-the-art quantitative proteomic technology was applied to uncover underlying action mechanism of Emodin. This study extends understanding of antibacterial effect of Emodin to H. parasuis at molecular level and provides useful information for further investigations. Moreover, our results provide theoretical foundation for the practical application of Emodin.
Collapse
Affiliation(s)
- Li Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Tian
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiankang Yu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Renyong Jia
- Key laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qiankun Cui
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenzhi Tong
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Guizhou Yue
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ling Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Fei Shi
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Sanjie Cao
- Key laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Key laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
8
|
Li G, Xie F, Li J, Liu J, Li D, Zhang Y, Langford PR, Li Y, Liu S, Wang C. Identification of novel Haemophilus parasuis serovar 5 vaccine candidates using an immunoproteomic approach. J Proteomics 2017; 163:111-117. [PMID: 28528009 DOI: 10.1016/j.jprot.2017.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/25/2017] [Accepted: 05/15/2017] [Indexed: 10/19/2022]
Abstract
Haemophilus parasuis is the aetiological agent of Glässer's disease, which is responsible for cases of fibrinous polyserositis, polyarthritis and meningitis. No vaccine is known that provides cross-protection against all serovars. The identification of novel immunoprotective antigens would undoubtedly contribute to the development of efficient subunit vaccines. In the present study, an immunoproteomic approach was used to analyze secreted proteins of H. parasuis and six proteins with high immunogenicity were identified. Five of them were successfully expressed, and their immunogenicity and protective efficacy were assessed in a mouse challenge model. All five proteins elicited strong humoral antibody and cellular immune responses in mice. They all effectively reduced the growth of H. parasuis in mouse organs and conferred different levels of protection (40-80%) against challenge. IgG subtype analysis revealed that the five proteins induce a bias toward a Th1-type immune response, and a significant increase was observed in the cytokine levels of IL-2, IFN-γ and Th2-specific IL-4 in the culture supernatants of splenocytes isolated from immunized mice. The results suggest that both Th1 and Th2 responses are involved in mediating protection. These data suggest that the five proteins could be potential subunit vaccine candidates for use to prevent H. parasuis infection. BIOLOGICAL SIGNIFICANCE Haemophilus parasuis can cause huge financial loss in the swine industry worldwide. There are still no vaccines which can provide cross-protection against all serovars. To address this need, we applied an immunoproteomic approach involving 2-DE, MALDI-TOF/TOF MS and Western-blot to identify the secreted proteins which may be able to provide immunoprotection to this disease. We identified six immunogenic proteins, and the immunogenicity and protective efficacy were validated. This result provides a foundation for developing novel subunit vaccines against Haemophilus parasuis.
Collapse
Affiliation(s)
- Gang Li
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fang Xie
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jianjun Li
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jiao Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Dapeng Li
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanhe Zhang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Paul R Langford
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London, United Kingdom
| | - Yanwen Li
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary's Campus, London, United Kingdom
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chunlai Wang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
9
|
Zhou Q, Feng S, Zhang J, Jia A, Yang K, Xing K, Liao M, Fan H. Two Glycosyltransferase Genes of Haemophilus parasuis SC096 Implicated in Lipooligosaccharide Biosynthesis, Serum Resistance, Adherence, and Invasion. Front Cell Infect Microbiol 2016; 6:100. [PMID: 27672622 PMCID: PMC5018477 DOI: 10.3389/fcimb.2016.00100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/29/2016] [Indexed: 12/03/2022] Open
Abstract
Haemophilus parasuis is a common opportunistic pathogen known for its ability to colonize healthy piglets and causes Glässer's disease. The lipooligosaccharide (LOS) of H. parasuis is a potential virulence-associated factor. In this study, two putative glycosyltransferases that might be involved in LOS synthesis in H. parasuis SC096 were identified (lgtB and lex-1). Mutants were constructed to investigate the roles of the lgtB and lex-1 genes. The LOS from the ΔlgtB or Δlex-1 mutant showed truncated structure on silver-stained SDS-PAGE gel compared to the wild-type strain. The ΔlgtB and Δlex-1 mutants were significantly more sensitive to 50% porcine serum, displaying 15.0 and 54.46% survival rates, respectively. Complementation of the lex-1 mutant restored the serum-resistant phenotype. Additionally, the ΔlgtB and Δlex-1 strains showed impaired ability to adhere to and invade porcine kidney epithelial cells (PK-15). The above results suggested that the lgtB and lex-1 genes of the H. parasuis SC096 strain participated in LOS synthesis and were involved in serum resistance, adhesion and invasion.
Collapse
Affiliation(s)
- Qi Zhou
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Saixiang Feng
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Jianmin Zhang
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Aiqing Jia
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Guangdong Haid Institute of Animal Husbandry and VeterinaryGuangzhou, China
| | - Kaijie Yang
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Kaixiang Xing
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Ming Liao
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Huiying Fan
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| |
Collapse
|
10
|
Zhang B, Tang C, Liao M, Yue H. Update on the pathogenesis of Haemophilus parasuis infection and virulence factors. Vet Microbiol 2014; 168:1-7. [DOI: 10.1016/j.vetmic.2013.07.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 01/09/2023]
|
11
|
Fu S, Zhang M, Xu J, Ou J, Wang Y, Liu H, Liu J, Chen H, Bei W. Immunogenicity and protective efficacy of recombinant Haemophilus parasuis SH0165 putative outer membrane proteins. Vaccine 2013; 31:347-353. [PMID: 23149270 DOI: 10.1016/j.vaccine.2012.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 10/30/2012] [Accepted: 11/01/2012] [Indexed: 11/24/2022]
Abstract
Haemophilus parasuis (H. parasuis), the causative agent of swine polyserositis, polyarthritis, and meningitis, is one of the most important bacterial diseases of pigs worldwide. Little vaccines currently exist that have a significant effect on infections with all pathogenic serovars of H. parasuis. H. parasuis putative outer membrane proteins (OMPs) are potentially essential components of more effective vaccines. Recently, the genomic sequence of H. parasuis serovar 5 strain SH0165 was completed in our laboratory, which allow us to target OMPs for the development of recombinant vaccines. In this study, we focused on 10 putative OMPs and all the putative OMPs were cloned, expressed and purified as HIS fusion proteins. Primary screening for immunoprotective potential was performed in mice challenged with an LD50 challenge. Out of these 10 OMPs three fusion proteins rGAPDH, rOapA, and rHPS-0675 were found to be protective in a mouse model of H. parasuis infection. We further evaluated the immune responses and protective efficacy of rGAPDH, rOapA, and rHPS-0675 in pig models. All three proteins elicited humoral antibody responses and conferred different levels of protection against challenge with a lethal dose of H. parasuis SH0165 in pig models. In addition, the antisera against the three individual proteins and the synergistic protein efficiently inhibited bacterial growth in a whole blood assay. The data demonstrated that the three proteins showed high value individually and the combination of rGAPDH, rOapA, and rHPS-0675 offered the best protection. Our results indicate that rGAPDH, rOapA, and rHPS-0675 induced protection against H. parasuis SH0165 infection, which may facilitate the development of a multi-component vaccine.
Collapse
Affiliation(s)
- Shulin Fu
- Division of Animal Infectious Disease, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Frandoloso R, Martínez-Martínez S, Yubero S, Rodríguez-Ferri EF, Gutiérrez-Martín CB. New insights in cellular immune response in colostrum-deprived pigs after immunization with subunit and commercial vaccines against Glässer's disease. Cell Immunol 2012; 277:74-82. [PMID: 22721860 DOI: 10.1016/j.cellimm.2012.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 05/15/2012] [Indexed: 12/28/2022]
Abstract
Four groups of colostrum-deprived pigs were immunized with Porcilis Glässer® (PG) or with subunit vaccines developed by us (rTbpA, NPAPT(M) or NPAPT(Cp)) against Glässer's disease, and they were challenged with 3×10(8)CFU of Haemophilus parasuis. A strong reduction in CD3(+)γδTCR(+) cells was seen in non-immunized control and scarcely protected (rTbpA) groups, suggesting that these cells could represent a target of H. parasuis infection. A significant increase in CD172α(+)CD163(+) cells was detected in all groups but PG, while a reduction in SLAIIDR(+) molecules expression was observed after challenge in control animals. Significant increases in CD3ε(+)CD8α(+)CD8β(+) and B cells were detected respectively in control and NPAPT groups, and in scarcely (rTbpA) and well-protected (NPAPT(M) and NPAPT(Cp)) groups. Finally, a greater response in CD4(+)CD8α(-) cells was observed in NPAPT(Cp) compared to NPAPT(M) and PG groups. These results state the potential of NPAPT antigen for developing effective vaccines against Glässer's disease.
Collapse
Affiliation(s)
- R Frandoloso
- Microbiology and Immunology Section, Department of Animal Health, University of León, 24007 León, Spain
| | | | | | | | | |
Collapse
|
13
|
Xu Z, Yue M, Zhou R, Jin Q, Fan Y, Bei W, Chen H. Genomic characterization of Haemophilus parasuis SH0165, a highly virulent strain of serovar 5 prevalent in China. PLoS One 2011; 6:e19631. [PMID: 21611187 PMCID: PMC3096633 DOI: 10.1371/journal.pone.0019631] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 04/11/2011] [Indexed: 11/19/2022] Open
Abstract
Haemophilus parasuis can be either a commensal bacterium of the porcine respiratory tract or an opportunistic pathogen causing Glässer's disease, a severe systemic disease that has led to significant economical losses in the pig industry worldwide. We determined the complete genomic sequence of H. parasuis SH0165, a highly virulent strain of serovar 5, which was isolated from a hog pen in North China. The single circular chromosome was 2,269,156 base pairs in length and contained 2,031 protein-coding genes. Together with the full spectrum of genes detected by the analysis of metabolic pathways, we confirmed that H. parasuis generates ATP via both fermentation and respiration, and possesses an intact TCA cycle for anabolism. In addition to possessing the complete pathway essential for the biosynthesis of heme, this pathogen was also found to be well-equipped with different iron acquisition systems, such as the TonB system and ABC-type transport complexes, to overcome iron limitation during infection and persistence. We identified a number of genes encoding potential virulence factors, such as type IV fimbriae and surface polysaccharides. Analysis of the genome confirmed that H. parasuis is naturally competent, as genes related to DNA uptake are present. A nine-mer DNA uptake signal sequence (ACAAGCGGT), identical to that found in Actinobacillus pleuropneumoniae and Mannheimia haemolytica, followed by similar downstream motifs, was identified in the SH0165 genome. Genomic and phylogenetic comparisons with other Pasteurellaceae species further indicated that H. parasuis was closely related to another swine pathogenic bacteria A. pleuropneumoniae. The comprehensive genetic analysis presented here provides a foundation for future research on the metabolism, natural competence and virulence of H. parasuis.
Collapse
Affiliation(s)
- Zhuofei Xu
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Min Yue
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qi Jin
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Fan
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Division of Animal Infectious Disease, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Immunogenicity and protection against Haemophilus parasuis infection after vaccination with recombinant virulence associated trimeric autotransporters (VtaA). Vaccine 2011; 29:2797-802. [DOI: 10.1016/j.vaccine.2011.01.105] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 01/21/2011] [Accepted: 01/30/2011] [Indexed: 11/22/2022]
|
15
|
Martín de la Fuente A, Carpintero R, Rodríguez Ferri E, Álava M, Lampreave F, Gutiérrez Martín C. Acute-phase protein response in pigs experimentally infected with Haemophilus parasuis. Comp Immunol Microbiol Infect Dis 2010; 33:455-65. [DOI: 10.1016/j.cimid.2008.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Development and characterization of protective Haemophilus parasuis subunit vaccines based on native proteins with affinity to porcine transferrin and comparison with other subunit and commercial vaccines. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 18:50-8. [PMID: 20926701 DOI: 10.1128/cvi.00314-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Haemophilus parasuis is the agent responsible for causing Glässer's disease, which is characterized by fibrinous polyserositis, polyarthritis, and meningitis in pigs. In this study, we have characterized native outer membrane proteins with affinity to porcine transferrin (NPAPT) from H. parasuis serovar 5, Nagasaki strain. This pool of proteins was used as antigen to developed two vaccine formulations: one was adjuvanted with a mineral oil (Montanide IMS 2215 VG PR), while the other was potentiated with a bacterial neuraminidase from Clostridium perfringens. The potential protective effect conferred by these two vaccines was compared to that afforded by two other vaccines, consisting of recombinant transferrin-binding protein (rTbp) A or B fragments from H. parasuis, Nagasaki strain, and by a commercially available inactivated vaccine. Five groups of colostrum-deprived piglets immunized with the vaccines described above, one group per each vaccine, and a group of nonvaccinated control animals were challenged intratracheally with a lethal dose (3 × 10⁸ CFU) of H. parasuis, Nagasaki strain. The two vaccines containing rTbps yielded similar results with minimal protection against death, clinical signs, gross and microscopic lesions, and H. parasuis invasion. In contrast, the two vaccines composed of NPAPT antigen and commercial bacterin resulted in a strong protection against challenge (without deaths and clinical signs), mild histopathological changes, and no recovery of H. parasuis, thus suggesting their effectiveness in preventing Glässer's disease outbreaks caused by serovar 5.
Collapse
|
17
|
Effect of Different Vaccine Formulations on the Development of Glässer's Disease Induced in Pigs by Experimental Haemophilus parasuis Infection. J Comp Pathol 2009; 140:169-76. [DOI: 10.1016/j.jcpa.2008.10.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 10/27/2008] [Indexed: 11/18/2022]
|
18
|
Bouchet B, Vanier G, Jacques M, Auger E, Gottschalk M. Studies on the interactions of Haemophilus parasuis with porcine epithelial tracheal cells: limited role of LOS in apoptosis and pro-inflammatory cytokine release. Microb Pathog 2008; 46:108-13. [PMID: 19013513 DOI: 10.1016/j.micpath.2008.10.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 10/13/2008] [Accepted: 10/17/2008] [Indexed: 10/21/2022]
Abstract
Haemophilus parasuis colonizes the upper respiratory tract of swine and causes Glässer's disease. We recently demonstrated that H. parasuis can adhere to newborn pig tracheal (NPTr) cells. However, the molecular mechanisms involved in upper respiratory tract colonization by H. parasuis are unknown. The aim of this work was to investigate the role of H. parasuis lipooligosaccharide (LOS) in bacterial adhesion to NPTr cells, the ability of the bacteria and its LOS to induce NPTr cells apoptosis, and their stimulating effect on cytokine release. Our results showed that LOS is partially involved in adhesion to NPTr cells. H. parasuis induced NPTr cells apoptosis in a caspase-3 dependent fashion, but LOS did not seem to be involved in such a process. H. parasuis and, to a lesser extent, its LOS stimulated IL-8 and IL-6 release by NPTr cells. In addition, H. parasuis serotype 4 field isolates induced higher levels of these mediators than did serotype 5 isolates. These results suggest that bacterial adhesion, induction of apoptosis and cytokine release are important events for H. parasuis colonization, but LOS appears to have a limited role in these processes.
Collapse
Affiliation(s)
- Bénédicte Bouchet
- Groupe de Recherche sur les Maladies Infectieuses du Porc (GREMIP) and Centre de Recherche en Infectiologie Porcine (CRIP), Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Qc J2S 2M2, Canada
| | | | | | | | | |
Collapse
|
19
|
de la Fuente AJM, Gutiérrez-Martín CB, Rodríguez-Barbosa JI, Martínez-Martínez S, Frandoloso R, Tejerina F, Rodríguez-Ferri EF. Blood cellular immune response in pigs immunized and challenged with Haemophilus parasuis. Res Vet Sci 2008; 86:230-4. [PMID: 18783806 DOI: 10.1016/j.rvsc.2008.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 07/21/2008] [Accepted: 07/22/2008] [Indexed: 10/21/2022]
Abstract
The cellular immune response to an experimental infection by Haemophilus parasuis, the etiological agent of Glässer's disease in pigs, was characterized studying changes in peripheral blood mononuclear cells (PBMC) in colostrum-deprived pigs. Five groups were studied, four of those were previously immunized with different formulations and the fifth was maintained as non-immunized control. All groups were challenged with 5 x 10(9) CFU of H. parasuis serotype 5. The non-commercial bacterin conferred a complete protection, while the OMP-vaccine and the exposure to a subletal dose of 10(5) CFU of H. parasuis protected only partially, and the recombinant Tbp B-vaccine induced no protection. PBMC were analyzed using monoclonal antibodies against porcine CD45(+), CD3(+), CD4(+), CD8alpha(+), CD25(+), CD4(+) naïve, alphaIgM(+) and SWC3(+) cells in single-colour fluorescence, and CD4(+)/CD8alpha(+) and CD8alpha(+)/CD8beta(+) combinations in two-colour fluorescence. The different groups showed no significant changes in PBMC subsets following vaccination, and only minor changes were encountered after challenge, consisting mainly of significant increases (P<0.05) in the relative proportions of monocytes and granulocytes (SWC3(+)) and B cells (alphaIgM(+)), as well as a significant reduction in CD3(+) cells (P<0.05). These changes were similar for the five groups compared, except for the significant increase of CD25(+) cells, which was only observed for the bacterin-vaccinated group. These results suggest an increase of trafficking of inflammatory cells and the onset of the adaptive antibody response against H. parasuis infection; in addition, the blood cellular response developed by the different groups was not relevant to protection.
Collapse
Affiliation(s)
- A J Martín de la Fuente
- Department of Animal Health, Section of Microbiology and Immunology, Faculty of Veterinary Medicine, University of León, 24007-León, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Bouchet B, Vanier G, Jacques M, Gottschalk M. Interactions of Haemophilus parasuis and its LOS with porcine brain microvascular endothelial cells. Vet Res 2008; 39:42. [PMID: 18387279 DOI: 10.1051/vetres:2008019] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 03/27/2008] [Indexed: 11/14/2022] Open
Abstract
Haemophilus parasuis is a swine pathogen that causes Glässer's disease, which is characterized by polyserositis and meningitis. The pathogenesis of the H. parasuis infection is poorly understood. To cause meningitis, H. parasuis has to cross the blood-brain barrier (BBB) to gain access to the central nervous system (CNS). We recently showed that H. parasuis adheres to and invades porcine brain microvascular endothelial cells (PBMEC). The aim of this study was to evaluate the role of H. parasuis lipooligosaccharide (LOS) in the adhesion to PBMEC and to determine if H. parasuis (and/or its LOS) is able to induce apoptosis and activation of PBMEC. Results showed that adhesion of H. parasuis to PBMEC was partially mediated by LOS. Moreover, H. parasuis induces caspase-3-mediated apoptosis of PBMEC in a time--and dose--dependent manner, but its LOS did not seem to be involved in such a process. Furthermore, H. parasuis and, to a lesser extent, its LOS, was able to induce the release of IL-8 and IL-6 by PBMEC. Field strains of H. parasuis serotypes 4 and 5 induced similar levels of these inflammatory mediators. Our data suggest that H. parasuis uses cellular adhesion, induction of apoptosis and up-regulation of inflammatory mediators as mechanisms to invade the CNS via the BBB, and that LOS would play a certain but limited role in such pathological process.
Collapse
Affiliation(s)
- Bénédicte Bouchet
- Groupe de Recherche sur les Maladies Infectieuses du Porc and Centre de Recherche en Infectiologie porcine, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Qc, J2S 2M2, Canada
| | | | | | | |
Collapse
|
21
|
Olvera A, Segalés J, Aragón V. Update on the diagnosis of Haemophilus parasuis infection in pigs and novel genotyping methods. Vet J 2006; 174:522-9. [PMID: 17175186 DOI: 10.1016/j.tvjl.2006.10.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 09/15/2006] [Accepted: 10/20/2006] [Indexed: 11/24/2022]
Abstract
Haemophilus parasuis causes Glässer's disease as well as a number of other diseases in pigs. The diagnosis of H. parasuis-associated disease is usually established by clinical signs, pathological findings and bacterial isolation but diagnosis is complicated by the existence of non-virulent strains and the early colonisation of the upper respiratory tract of healthy piglets. Moreover, several strains can be found on a farm and even within a single animal so it is important to determine the specific strain that is causing the clinical outbreak. Recently, genotyping methods have been developed with the goal of correlating genotype with the degree of virulence of H. parasuis strains. The association between genotype and virulence in H. parasuis is challenging due to the lack of knowledge of the complete genomic sequence and virulence factors of this bacterium.
Collapse
Affiliation(s)
- Alex Olvera
- Centre de Recerca en Sanitat Animal (CReSA), Campus de Bellaterra, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
22
|
Vanier G, Szczotka A, Friedl P, Lacouture S, Jacques M, Gottschalk M. Haemophilus parasuis invades porcine brain microvascular endothelial cells. MICROBIOLOGY-SGM 2006; 152:135-142. [PMID: 16385123 DOI: 10.1099/mic.0.28312-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Haemophilus parasuis, an important swine pathogen, is the aetiological agent of Glässer's disease. It is responsible for cases of polyserositis, meningitis and pneumonia in young pigs. To date, 15 serotypes have been described, although several non-typable isolates are frequently recovered from diseased animals. The pathogenesis of H. parasuis infection is poorly understood. To cause meningitis, H. parasuis would have to cross the blood-brain barrier (BBB), composed of brain microvascular endothelial cells (BMEC). The objective of this study was to investigate the ability of H. parasuis to interact with porcine brain microvascular endothelial cells (PBMEC). It was demonstrated that the serotype 5 reference strain of H. parasuis, Nagasaki (originally recovered from a case of meningitis), was able to adhere at very high levels to and, most importantly, invade PBMEC. These capacities were confirmed by electron microscopy. Actinobacillus pleuropnemoniae serotype 7 (strain WF 83), used as negative control, was not able to adhere to or invade PBMEC. Comparisons of the levels of adhesion and invasion by several H. parasuis field strains from different serotypes isolated from cases of either meningitis or pneumonia showed that isolates of serotypes 4 and 5 had a higher invasion capacity than isolates belonging to other serotypes. Inhibition studies demonstrated that PBMEC invasion by H. parasuis required rearrangement of actin microfilaments and microtubular cytoskeletal elements but not active bacterial DNA, RNA or protein synthesis. Characterization studies demonstrated that proteinaceous invasin(s) does not seem to play a major role in entry of H. parasuis into PBMEC. Intracellular viable H. parasuis were found in PBMEC up to 6 h after antibiotic treatment. Even at high bacterial doses, H. parasuis was not toxic to PBMEC. In swine, the invasion of endothelial cells of the BBB may play an important role in the pathogenesis of meningitis caused by H. parasuis.
Collapse
Affiliation(s)
- Ghyslaine Vanier
- Groupe de Recherche sur les Maladies Infectieuses du Porc (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Québec, Canada
| | - Anna Szczotka
- Canadian Research Network on Bacterial Pathogens of Swine, Faculté de Médecine Vétérinaire, Université de Montréal, Québec, Canada
| | - Peter Friedl
- Institute für Biochemie, Technische Hochschule Darmstadt, Petersenstrasse 22, 64287 Darmstadt, Germany
| | - Sonia Lacouture
- Groupe de Recherche sur les Maladies Infectieuses du Porc (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Québec, Canada
| | - Mario Jacques
- Canadian Research Network on Bacterial Pathogens of Swine, Faculté de Médecine Vétérinaire, Université de Montréal, Québec, Canada
- Groupe de Recherche sur les Maladies Infectieuses du Porc (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Québec, Canada
| | - Marcelo Gottschalk
- Canadian Research Network on Bacterial Pathogens of Swine, Faculté de Médecine Vétérinaire, Université de Montréal, Québec, Canada
- Groupe de Recherche sur les Maladies Infectieuses du Porc (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Québec, Canada
| |
Collapse
|
23
|
Del Rio ML, Navas-Mendez J, Gutierrez-Martin CB, Rodriguez-Barbosa JI, Rodriguez-Ferri EF. Identification of sulI allele of dihydropteroate synthase by representational difference analysis in Haemophilus parasuis serovar 2. Lett Appl Microbiol 2005; 40:436-42. [PMID: 15892739 DOI: 10.1111/j.1472-765x.2005.01686.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS Identification of genes differentially present in Haemophilus parasuis serovar 2 by representational difference analysis (RDA). METHODS AND RESULTS Bacterial genomic DNA was extracted, cleaved with Sau3AI and ligated to oligonucleotide adapter pair. The optimal tester (H. parasuis serovar 2)/driver ratio (H. parasuis serovars 1, 3 and 5) for the hybridization was established and the mixture was hybridized, and amplified by PCR. The products were cloned and transformed into Escherichia coli TOP10 cells and checked for specificity by Southern blotting analysis. The RDA subtractive technique yielded six bands ranging from 1500 to 200 bp, which were cloned into pCR II-TOPO vector and 40 clones were analysed. A fragment of 369 bp was specific for H. parasuis serovar 2, and showed 99% homology to sulI gene encoding for dihydropteroate synthase (dhps). The dhps gene conferring sulfonamide resistance was detected in H. parasuis serovar 2 but was absent in serovars 1, 3, 5 and in most of the Actinobacillus pleuropneumoniae serotypes (except serotype 7). CONCLUSION sulI allele of dihydropteroate synthase has been identified in H. parasuis serovar 2 by RDA technique. SIGNIFICANCE AND IMPACT OF THE STUDY The RDA technique seems to be an useful method for the identification of genes that are differentially present in H. parasuis, a respiratory pathogen of veterinary interest.
Collapse
Affiliation(s)
- M L Del Rio
- Department of Animal Health, School of Veterinary Medicine, Microbiology and Immunology Section, Faculty of Veterinary Medicine, University of León, León, Spain
| | | | | | | | | |
Collapse
|
24
|
del Río ML, Gutiérrez-Martín CB, Rodríguez-Barbosa JI, Navas J, Rodríguez-Ferri EF. Identification and characterization of the TonB region and its role in transferrin-mediated iron acquisition in Haemophilus parasuis. ACTA ACUST UNITED AC 2005; 45:75-86. [PMID: 15985226 DOI: 10.1016/j.femsim.2005.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 02/11/2005] [Accepted: 02/16/2005] [Indexed: 11/22/2022]
Abstract
Haemophilus parasuis is the causative agent of Glässer's disease, which is responsible for considerable economic losses in the pig-rearing industry. The aim of the study reported here was the identification, sequencing and molecular characterization of the TonB region that includes tonB, exbBD, and tbpBA genes in H. parasuis. In addition, two fusion proteins were generated. One of them (pGEX-6P-1-GST-TbpB) contained the first 501 amino acids of H. parasuis TbpB protein, while the second (pBAD-Thio-TbpB-V5-His) included the first 102 amino acids of H. parasuis TbpB N-terminus domain. A panel of 14 hybridomas secreting monoclonal antibodies was raised against the two recombinant TbpB fusion proteins. Furthermore, to assess whether the expression of the H. parasuis ExbB, TbpB, and TbpA proteins was upregulated under conditions of restricted availability of iron, a rabbit polyclonal antibody against H. parasuis TbpB-His fusion protein was produced. A rabbit polyclonal antibody against serotype 7 of Actinobacillus pleuropneumoniae ExbB and TbpA proteins was also used for the detection of the homologous proteins in H. parasuis. Overall, the data indicate that H. parasuis, like other members of the Pasteurellaceae family, possesses the genetic elements of the TonB region for iron acquisition and the transferrin-binding proteins encoded under this region are upregulated under restricted iron availability.
Collapse
Affiliation(s)
- María Luisa del Río
- Microbiology and Immunology Section, Department of Animal Health, School of Veterinary Medicine, University of Leon, Campus de Vegazana s/n, 24071 Leon, Spain
| | | | | | | | | |
Collapse
|
25
|
Oliveira S, Pijoan C. Haemophilus parasuis: new trends on diagnosis, epidemiology and control. Vet Microbiol 2004; 99:1-12. [PMID: 15019107 DOI: 10.1016/j.vetmic.2003.12.001] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2003] [Revised: 08/04/2003] [Indexed: 11/26/2022]
Abstract
Haemophilus parasuis is a commensal organism of the upper respiratory tract of conventional pigs, but under appropriate conditions can invade and cause severe systemic disease, characterized by fibrinous polyserositis, arthritis and meningitis. Factors involved in systemic invasion by H. parasuis remain largely unknown. However, major advances in our knowledge of H. parasuis include (1) development of a species-specific PCR test to detect H. parasuis in clinical samples, (2) study of molecular epidemiology within and between herds, by use of a repetitive element-based PCR, (3) the proposal of an alternative serotyping technique, (4) development and testing of a new in vivo model for pathogenesis and virulence studies, and (5) use of controlled exposure of young pigs to low doses of live, virulent H. parasuis strains to reduce nursery mortality in affected swine herds.
Collapse
Affiliation(s)
- Simone Oliveira
- Department of Clinical and Population Sciences, College of Veterinary Medicine, University of Minnesota, 385 Animal Science/Veterinary Medicine, 1988 Fitch Avenue, Saint Paul, MN 55108, USA.
| | | |
Collapse
|
26
|
Müller G, Köhler H, Diller R, Rassbach A, Berndt A, Schimmel D. Influences of naturally occurring and experimentally induced porcine pneumonia on blood parameters. Res Vet Sci 2003; 74:23-30. [PMID: 12507563 DOI: 10.1016/s0034-5288(02)00148-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It had been the objective of the studies described to establish local and systemic changes by naturally occurring pneumonia or pneumonia experimentally induced by Pasteurella multocida and Haemophilus parasuis in swine. Acute and chronic pneumonia was found to alter the cytokine level of lung lavage fluid and affect the composition and function of blood cells, especially with regard to phagocytosis, radical formation and cell surface receptors. Interleukin-6 levels in blood plasma rose 24h after experimental intrabronchial infection. The influences of the changes on growth and meat quality are discussed.
Collapse
Affiliation(s)
- G Müller
- Federal Institute for Health Protection of Consumers and Veterinary Medicine, Jena Branch, Naumburger Strasse 96a, D-07743, Jena, Germany
| | | | | | | | | | | |
Collapse
|