1
|
Corrie JE, Fordyce RE. A new genus and species of kekenodontid from the late Oligocene of New Zealand with comments on the evolution of tooth displacement in Cetacea. J R Soc N Z 2024; 54:722-737. [PMID: 39440285 PMCID: PMC11459822 DOI: 10.1080/03036758.2023.2297696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/13/2023] [Indexed: 10/25/2024]
Abstract
The Kekenodontidae are late-surviving archaeocetes from the Late Oligocene of Southwest Pacific that includes a single-named species, Kekenodon onamata. Tohoraonepu nihokaiwaiu is a new genus and species of small body-sized kekenodontid from the upper Oligocene (Chattian) Kokoamu Greensand of Otago, South Island, New Zealand. Phylogenetic analyses recover T. nihokaiwaiu within a monophyletic Kekenodontidae, forming a clade with an unnamed provisional kekenodontid, OU 22023. Kekenodontids are recovered crownward to basilosaurids and stemward to a paraphyletic group of toothed 'mysticetes' that are excluded from Neoceti. The analyses confirm the identification of kekenodontids as the latest-diverging archaeocetes that persisted into the Late Oligocene. The holotype OU 22394 is a juvenile individual preserving several isolated heterodont teeth with characteristics of deciduous teeth, including unmineralized pulp cavities and cheek teeth with lower-lying triangular crowns that are different from all known kekenodontids. Diphyodonty is known from Eocene archaeocetes but is unknown from geologically younger toothed cetaceans, with monophyodonty being hypothesised for all Neoceti. Inferences of diphyodonty in T. nihokaiwaiu would be the first instance in Cetacea from rocks geologically younger than the Eocene and would indicate diphyodonty persisted in some Late Oligocene archaeocetes.
Collapse
Affiliation(s)
- Joshua E. Corrie
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - R. Ewan Fordyce
- Department of Geology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Dhouailly D. Evo Devo of the Vertebrates Integument. J Dev Biol 2023; 11:25. [PMID: 37367479 DOI: 10.3390/jdb11020025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/28/2023] Open
Abstract
All living jawed vertebrates possess teeth or did so ancestrally. Integumental surface also includes the cornea. Conversely, no other anatomical feature differentiates the clades so readily as skin appendages do, multicellular glands in amphibians, hair follicle/gland complexes in mammals, feathers in birds, and the different types of scales. Tooth-like scales are characteristic of chondrichthyans, while mineralized dermal scales are characteristic of bony fishes. Corneous epidermal scales might have appeared twice, in squamates, and on feet in avian lineages, but posteriorly to feathers. In contrast to the other skin appendages, the origin of multicellular glands of amphibians has never been addressed. In the seventies, pioneering dermal-epidermal recombination between chick, mouse and lizard embryos showed that: (1) the clade type of the appendage is determined by the epidermis; (2) their morphogenesis requires two groups of dermal messages, first for primordia formation, second for appendage final architecture; (3) the early messages were conserved during amniotes evolution. Molecular biology studies that have identified the involved pathways, extending those data to teeth and dermal scales, suggest that the different vertebrate skin appendages evolved in parallel from a shared placode/dermal cells unit, present in a common toothed ancestor, c.a. 420 mya.
Collapse
Affiliation(s)
- Danielle Dhouailly
- Department of Biology and Chemistry, Institute for Advanced Biosciences, University Grenoble-Alpes, 38700 La Tronche, France
| |
Collapse
|
3
|
Silva FA, Souza ÉMS, Ramos E, Freitas L, Nery MF. The molecular evolution of genes previously associated with large sizes reveals possible pathways to cetacean gigantism. Sci Rep 2023; 13:67. [PMID: 36658131 PMCID: PMC9852289 DOI: 10.1038/s41598-022-24529-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/16/2022] [Indexed: 01/21/2023] Open
Abstract
Cetaceans are a group of aquatic mammals with the largest body sizes among living animals, including giant representatives such as blue and fin whales. To understand the genetic bases of gigantism in cetaceans, we performed molecular evolutionary analyses on five genes (GHSR, IGF2, IGFBP2, IGFBP7, and EGF) from the growth hormone/insulin-like growth factor axis, and four genes (ZFAT, EGF, LCORL, and PLAG1) previously described as related to the size of species evolutionarily close to cetaceans, such as pigs, cows, and sheep. Our dataset comprised 19 species of cetaceans, seven of which are classified as giants because they exceed 10 m in length. Our results revealed signs of positive selection in genes from the growth hormone/insulin-like growth factor axis and also in those related to body increase in cetacean-related species. In addition, pseudogenization of the EGF gene was detected in the lineage of toothless cetaceans, Mysticeti. Our results suggest the action of positive selection on gigantism in genes that act both in body augmentation and in mitigating its consequences, such as cancer suppression when involved in processes such as division, migration, and cell development control.
Collapse
Affiliation(s)
- Felipe André Silva
- grid.411087.b0000 0001 0723 2494Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas-UNICAMP, 255, Monteiro Lobato, Cidade Universitária, IB, Bloco H, Campinas, SP 13083-862 Brazil
| | - Érica M. S. Souza
- grid.411087.b0000 0001 0723 2494Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas-UNICAMP, 255, Monteiro Lobato, Cidade Universitária, IB, Bloco H, Campinas, SP 13083-862 Brazil
| | - Elisa Ramos
- grid.411087.b0000 0001 0723 2494Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas-UNICAMP, 255, Monteiro Lobato, Cidade Universitária, IB, Bloco H, Campinas, SP 13083-862 Brazil
| | - Lucas Freitas
- grid.411087.b0000 0001 0723 2494Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas-UNICAMP, 255, Monteiro Lobato, Cidade Universitária, IB, Bloco H, Campinas, SP 13083-862 Brazil
| | - Mariana F. Nery
- grid.411087.b0000 0001 0723 2494Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas-UNICAMP, 255, Monteiro Lobato, Cidade Universitária, IB, Bloco H, Campinas, SP 13083-862 Brazil
| |
Collapse
|
4
|
Peredo CM, Pyenson ND. Morphological variation of the relictual alveolar structures in the mandibles of baleen whales. PeerJ 2021; 9:e11890. [PMID: 34395101 PMCID: PMC8327965 DOI: 10.7717/peerj.11890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/10/2021] [Indexed: 12/17/2022] Open
Abstract
Living baleen whales (mysticetes) are bulk filter feeders that use keratinous baleen plates to filter food from prey laden water. Extant mysticetes are born entirely edentulous, though they possess tooth buds early in ontogeny, a trait inherited from toothed ancestors. The mandibles of extant baleen whales have neither teeth nor baleen; teeth are resorbed in utero and baleen grows only on the palate. The mandibles of extant baleen whales also preserve a series of foramina and associated sulci that collectively form an elongated trough, called the alveolar groove. Despite this name, it remains unclear if the alveolar groove of edentulous mysticetes and the dental structures of toothed mammals are homologous. Here, we describe and quantify the anatomical diversity of these structures across extant mysticetes and compare their variable morphologies across living taxonomic groups (i.e., Balaenidae, Neobalaenidae, Eschrichtiidae, and Balaenopteridae). Although we found broad variability across taxonomic groups for the alveolar groove length, occupying approximately 60–80 percent of the mandible’s total curvilinear length (CLL) across all taxa, the relictual alveolar foramen showed distinct patterns, ranging between 15–25% CLL in balaenids, while ranging between 3–12% CLL in balaenopterids. This variability and the morphological patterning along the body of the mandible is consistent with the hypothesis that the foramina underlying the alveolar groove reflect relictual alveoli. These findings also lay the groundwork for future histological studies to examine the contents of these foramina and clarify their potential role in the feeding process.
Collapse
Affiliation(s)
- Carlos Mauricio Peredo
- Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington D.C., United States of America.,Earth and Environmental Science, University of Michigan - Ann Arbor, Ann Arbor, MI, United States of America.,Marine Biology, Texas A&M University - Galveston, Galveston, TX, United States of America
| | - Nicholas D Pyenson
- Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington D.C., United States of America.,Paleontology and Geology, Burke Museum of Natural History and Culture, Seattle, WA, United States of America
| |
Collapse
|
5
|
Lanzetti A. Prenatal developmental sequence of the skull of minke whales and its implications for the evolution of mysticetes and the teeth-to-baleen transition. J Anat 2019; 235:725-748. [PMID: 31216066 DOI: 10.1111/joa.13029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2019] [Indexed: 12/13/2022] Open
Abstract
Baleen whales (Mysticeti) have an extraordinary fossil record documenting the transition from toothed raptorial taxa to modern species that bear baleen plates, keratinous bristles employed in filter-feeding. Remnants of their toothed ancestry can be found in their ontogeny, as they still develop tooth germs in utero. Understanding the developmental transition from teeth to baleen and the associated skull modifications in prenatal specimens of extant species can enhance our understanding of the evolutionary history of this lineage by using ontogeny as a relative proxy of the evolutionary changes observed in the fossil record. Although at present very little information is available on prenatal development of baleen whales, especially regarding tooth resorption and baleen formation, due to a lack of specimens. Here I present the first detailed description of prenatal specimens of minke whales (Balaenoptera acutorostrata and Balaenoptera bonaerensis), focusing on the skull anatomy and tooth germ development, resorption, and baleen growth. The ontogenetic sequence described consists of 10 specimens of both minke whale species, from the earliest fetal stages to full term. The internal skull anatomy of the specimens was visualized using traditional and iodine-enhanced computed tomography scanning. These high-quality data allow detailed description of skull development both qualitatively and quantitatively using three-dimensional landmark analysis. I report distinctive external anatomical changes and the presence of a denser tissue medial to the tooth germs in specimens from the final portion of gestation, which can be interpreted as the first signs of baleen formation (baleen rudiments). Tooth germs are only completely resorbed just before the eruption of the baleen from the gums, and they are still present for a brief period with baleen rudiments. Skull shape development is characterized by progressive elongation of the rostrum relative to the braincase and by the relative anterior movement of the supraoccipital shield, contributing to a defining feature of cetaceans, telescoping. These data aid the interpretation of fossil morphologies, especially of those extinct taxa where there is no direct evidence of presence of baleen, even if caution is needed when comparing prenatal extant specimens with adult fossils. The ontogeny of other mysticete species needs to be analyzed before drawing definitive conclusions about the influence of development on the evolution of this group. Nonetheless, this work is the first step towards a deeper understanding of the most distinctive patterns in prenatal skull development of baleen whales, and of the anatomical changes that accompany the transition from tooth germs to baleen. It also presents comprehensive hypotheses to explain the influence of developmental processes on the evolution of skull morphology and feeding adaptations of mysticetes.
Collapse
Affiliation(s)
- Agnese Lanzetti
- Department of Biology, San Diego State University, San Diego, CA, USA
| |
Collapse
|
6
|
Lanzetti A, Berta A, Ekdale EG. Prenatal Development of the Humpback Whale: Growth Rate, Tooth Loss and Skull Shape Changes in an Evolutionary Framework. Anat Rec (Hoboken) 2018; 303:180-204. [DOI: 10.1002/ar.23990] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/15/2018] [Accepted: 01/24/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Agnese Lanzetti
- Department of BiologySan Diego State University San Diego California
| | - Annalisa Berta
- Department of BiologySan Diego State University San Diego California
| | - Eric G. Ekdale
- Department of BiologySan Diego State University San Diego California
- San Diego Natural History Museum San Diego California
| |
Collapse
|
7
|
Alveoli, teeth, and tooth loss: Understanding the homology of internal mandibular structures in mysticete cetaceans. PLoS One 2017; 12:e0178243. [PMID: 28542468 PMCID: PMC5438151 DOI: 10.1371/journal.pone.0178243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 05/10/2017] [Indexed: 11/19/2022] Open
Abstract
The evolution of filter feeding in baleen whales (Mysticeti) facilitated a wide range of ecological diversity and extreme gigantism. The innovation of filter feeding evolved in a shift from a mineralized upper and lower dentition in stem mysticetes to keratinous baleen plates that hang only from the roof of the mouth in extant species, which are all edentulous as adults. While all extant mysticetes are born with a mandible lacking a specialized feeding structure (i.e., baleen), the bony surface retains small foramina with elongated sulci that often merge together in what has been termed the alveolar gutter. Because mysticete embryos develop tooth buds that resorb in utero, these foramina have been interpreted as homologous to tooth alveoli in other mammals. Here, we test this homology by creating 3D models of the internal mandibular morphology from terrestrial artiodactyls and fossil and extant cetaceans, including stem cetaceans, odontocetes and mysticetes. We demonstrate that dorsal foramina on the mandible communicate with the mandibular canal via smaller canals, which we explain within the context of known mechanical models of bone resorption. We suggest that these dorsal foramina represent distinct branches of the inferior alveolar nerve (or artery), rather than alveoli homologous with those of other mammals. As a functional explanation, we propose that these branches provide sensation to the dorsal margin of the mandible to facilitate placement and occlusion of the baleen plates during filer feeding.
Collapse
|
8
|
Thewissen JGM, Hieronymus TL, George JC, Suydam R, Stimmelmayr R, McBurney D. Evolutionary aspects of the development of teeth and baleen in the bowhead whale. J Anat 2017; 230:549-566. [PMID: 28070906 DOI: 10.1111/joa.12579] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 02/05/2023] Open
Abstract
In utero, baleen whales initiate the development of several dozens of teeth in upper and lower jaws. These tooth germs reach the bell stage and are sometimes mineralized, but toward the end of prenatal life they are resorbed and no trace remains after birth. Around the time that the germs disappear, the keratinous baleen plates start to form in the upper jaw, and these form the food-collecting mechanism. Baleen whale ancestors had two generations of teeth and never developed baleen, and the prenatal teeth of modern fetuses are usually interpreted as an evolutionary leftover. We investigated the development of teeth and baleen in bowhead whale fetuses using histological and immunohistochemical evidence. We found that upper and lower dentition initially follow similar developmental pathways. As development proceeds, upper and lower tooth germs diverge developmentally. Lower tooth germs differ along the length of the jaw, reminiscent of a heterodont dentition of cetacean ancestors, and lingual processes of the dental lamina represent initiation of tooth bud formation of replacement teeth. Upper tooth germs remain homodont and there is no evidence of a secondary dentition. After these germs disappear, the oral epithelium thickens to form the baleen plates, and the protein FGF-4 displays a signaling pattern reminiscent of baleen plates. In laboratory mammals, FGF-4 is not involved in the formation of hair or palatal rugae, but it is involved in tooth development. This leads us to propose that the signaling cascade that forms teeth in most mammals has been exapted to be involved in baleen plate ontogeny in mysticetes.
Collapse
Affiliation(s)
- J G M Thewissen
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Tobin L Hieronymus
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - John C George
- Department of Wildlife Management, North Slope Borough, Barrow, AK, USA
| | - Robert Suydam
- Department of Wildlife Management, North Slope Borough, Barrow, AK, USA
| | - Raphaela Stimmelmayr
- Department of Wildlife Management, North Slope Borough, Barrow, AK, USA.,Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Denise McBurney
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| |
Collapse
|
9
|
Berta A, Lanzetti A, Ekdale EG, Deméré TA. From Teeth to Baleen and Raptorial to Bulk Filter Feeding in Mysticete Cetaceans: The Role of Paleontological, Genetic, and Geochemical Data in Feeding Evolution and Ecology. Integr Comp Biol 2016; 56:1271-1284. [DOI: 10.1093/icb/icw128] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
Ekdale EG, Deméré TA, Berta A. Vascularization of the gray whale palate (Cetacea, Mysticeti, Eschrichtius robustus): soft tissue evidence for an alveolar source of blood to baleen. Anat Rec (Hoboken) 2015; 298:691-702. [PMID: 25663479 DOI: 10.1002/ar.23119] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/31/2014] [Accepted: 09/02/2014] [Indexed: 11/08/2022]
Abstract
The origin of baleen in mysticetes heralded a major transition during cetacean evolution. Extant mysticetes are edentulous in adulthood, but rudimentary teeth develop in utero within open maxillary and mandibular alveolar grooves. The teeth are resorbed prenatally and the alveolar grooves close as baleen germ develops. Arteries supplying blood to highly vascularized epithelial tissue from which baleen develops pass through lateral nutrient foramina in the area of the embryonic alveolar grooves and rudimentary teeth. Those vessels are hypothesized to be branches of the superior alveolar artery, but branches of the greater palatine arteries may play a role in the baleen vascularization. Through a combination of latex injection, CT, and traditional dissection of the palate of a neonatal gray whale (Eschrichtius robustus), we confirm that the baleen receives blood from vessels within the superior alveolar canal via the lateral foramina. The greater palatine artery is restricted to its own passage with no connections to the baleen. This study has implications for the presence of baleen in extinct taxa by identifying the vessels and bony canals that supply blood to the epithelium from which baleen develops. The results indicate that the lateral foramina in edentulous mysticete fossils are bony correlates for the presence of baleen, and the results can be used to help identify bony canals and foramina that have been used to reconstruct baleen in extinct mysticetes that retained teeth in adulthood. Further comparisons are made with mammals that also possess oral keratin structures, including ruminants, ornithorhynchid monotremes, and sirenians.
Collapse
Affiliation(s)
- Eric G Ekdale
- Department of Biology, San Diego State University, San Diego, California; Department of Paleontology, San Diego Natural History Museum, San Diego, California
| | | | | |
Collapse
|
11
|
Hampe O, Franke H, Hipsley CA, Kardjilov N, Müller J. Prenatal cranial ossification of the humpback whale (Megaptera novaeangliae). J Morphol 2015; 276:564-82. [DOI: 10.1002/jmor.20367] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/26/2014] [Accepted: 01/02/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Oliver Hampe
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung; 10115 Berlin Germany
| | - Helena Franke
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung; 10115 Berlin Germany
- Hochschule für Technik und Wirtschaft Berlin, Fachbereich Gestaltung; 12459 Berlin Germany
| | - Christy A. Hipsley
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung; 10115 Berlin Germany
| | - Nikolay Kardjilov
- Helmholtz-Zentrum Berlin für Materialien und Energie; 14109 Berlin Germany
| | - Johannes Müller
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung; 10115 Berlin Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research; 14195 Berlin Germany
| |
Collapse
|
12
|
Meredith RW, Gatesy J, Cheng J, Springer MS. Pseudogenization of the tooth gene enamelysin (MMP20) in the common ancestor of extant baleen whales. Proc Biol Sci 2011; 278:993-1002. [PMID: 20861053 PMCID: PMC3049022 DOI: 10.1098/rspb.2010.1280] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 08/31/2010] [Indexed: 01/11/2023] Open
Abstract
Whales in the suborder Mysticeti are filter feeders that use baleen to sift zooplankton and small fish from ocean waters. Adult mysticetes lack teeth, although tooth buds are present in foetal stages. Cladistic analyses suggest that functional teeth were lost in the common ancestor of crown-group Mysticeti. DNA sequences for the tooth-specific genes, ameloblastin (AMBN), enamelin (ENAM) and amelogenin (AMEL), have frameshift mutations and/or stop codons in this taxon, but none of these molecular cavities are shared by all extant mysticetes. Here, we provide the first evidence for pseudogenization of a tooth gene, enamelysin (MMP20), in the common ancestor of living baleen whales. Specifically, pseudogenization resulted from the insertion of a CHR-2 SINE retroposon in exon 2 of MMP20. Genomic and palaeontological data now provide congruent support for the loss of enamel-capped teeth on the common ancestral branch of crown-group mysticetes. The new data for MMP20 also document a polymorphic stop codon in exon 2 of the pygmy sperm whale (Kogia breviceps), which has enamel-less teeth. These results, in conjunction with the evidence for pseudogenization of MMP20 in Hoffmann's two-toed sloth (Choloepus hoffmanni), another enamel-less species, support the hypothesis that the only unique, non-overlapping function of the MMP20 gene is in enamel formation.
Collapse
Affiliation(s)
| | | | | | - Mark S. Springer
- Department of Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
13
|
McKnight DA, Fisher LW. Molecular evolution of dentin phosphoprotein among toothed and toothless animals. BMC Evol Biol 2009; 9:299. [PMID: 20030824 PMCID: PMC2803795 DOI: 10.1186/1471-2148-9-299] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 12/23/2009] [Indexed: 12/22/2022] Open
Abstract
Background Dentin sialophosphoprotein (DSPP) is the largest member of the SIBLING family and is the most abundant noncollagenous protein in dentin. DSPP is also expressed in non-mineralized tissues including metabolically active ductal epithelia and some cancers. Its function, however, is poorly defined. The carboxy-terminal fragment, dentin phosphoprotein (DPP) is encoded predominantly by a large repetitive domain that requires separate cloning/sequencing reactions and is, therefore, often incomplete in genomic databases. Comparison of DPP sequences from at least one member of each major branch in the mammalian evolutionary tree (including some "toothless" mammals) as well as one reptile and bird may help delineate its possible functions in both dentin and ductal epithelia. Results The BMP1-cleavage and translation-termination domains were sufficiently conserved to permit amplification/cloning/sequencing of most species' DPP. While the integrin-binding domain, RGD, was present in about half of species, only vestigial remnants of this tripeptide were identified in the others. The number of tandem repeats of the nominal SerSerAsp phosphorylation motif in toothed mammals (including baleen whale and platypus which lack teeth as adults), ranged from ~75 (elephant) to >230 (human). These repeats were not perfect, however, and patterns of intervening sequences highlight the rapidity of changes among even closely related species. Two toothless anteater species have evolved different sets of nonsense mutations shortly after their BMP1 motifs suggesting that while cleavage may be important for DSPP processing in other tissues, the DPP domain itself may be required only in dentin. The lizard DSPP had an intact BMP1 site, a remnant RGD motif, as well as a distinctly different Ser/Asp-rich domain compared to mammals. Conclusions The DPP domain of DSPP was found to change dramatically within mammals and was lost in two truly toothless animals. The defining aspect of DPP, the long repeating phosphorylation domain, apparently undergoes frequent slip replication and recombination events that rapidly change specific patterns but not its overall biochemical character in toothed animals. Species may have to co-evolve protein processing mechanisms, however, to handle increased lengths of DSP repeats. While the RGD domain is lost in many species, some evolutionary pressure to maintain integrin binding can be observed.
Collapse
Affiliation(s)
- Dianalee A McKnight
- Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, DHHS, Bethesda MD 20892, USA. -
| | | |
Collapse
|
14
|
Collagenolytic subtilisin-like protease from the deep-sea bacterium Alkalimonas collagenimarina AC40T. Appl Microbiol Biotechnol 2009; 86:589-98. [DOI: 10.1007/s00253-009-2324-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 10/18/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022]
|
15
|
DEMÉRÉ THOMASA, BERTA ANNALISA. Skull anatomy of the Oligocene toothed mysticeteAetioceus weltoni(Mammalia; Cetacea): implications for mysticete evolution and functional anatomy. Zool J Linn Soc 2008. [DOI: 10.1111/j.1096-3642.2008.00414.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Deméré TA, McGowen MR, Berta A, Gatesy J. Morphological and molecular evidence for a stepwise evolutionary transition from teeth to baleen in mysticete whales. Syst Biol 2008; 57:15-37. [PMID: 18266181 DOI: 10.1080/10635150701884632] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The origin of baleen in mysticete whales represents a major transition in the phylogenetic history of Cetacea. This key specialization, a keratinous sieve that enables filter-feeding, permitted exploitation of a new ecological niche and heralded the evolution of modern baleen-bearing whales, the largest animals on Earth. To date, all formally described mysticete fossils conform to two types: toothed species from Oligocene-age rocks ( approximately 24 to 34 million years old) and toothless species that presumably utilized baleen to feed (Recent to approximately 30 million years old). Here, we show that several Oligocene toothed mysticetes have nutrient foramina and associated sulci on the lateral portions of their palates, homologous structures in extant mysticetes house vessels that nourish baleen. The simultaneous occurrence of teeth and nutrient foramina implies that both teeth and baleen were present in these early mysticetes. Phylogenetic analyses of a supermatrix that includes extinct taxa and new data for 11 nuclear genes consistently resolve relationships at the base of Mysticeti. The combined data set of 27,340 characters supports a stepwise transition from a toothed ancestor, to a mosaic intermediate with both teeth and baleen, to modern baleen whales that lack an adult dentition but retain developmental and genetic evidence of their ancestral toothed heritage. Comparative sequence data for ENAM (enamelin) and AMBN (ameloblastin) indicate that enamel-specific loci are present in Mysticeti but have degraded to pseudogenes in this group. The dramatic transformation in mysticete feeding anatomy documents an apparently rare, stepwise mode of evolution in which a composite phenotype bridged the gap between primitive and derived morphologies; a combination of fossil and molecular evidence provides a multifaceted record of this macroevolutionary pattern.
Collapse
Affiliation(s)
- Thomas A Deméré
- Department of Paleontology, San Diego Natural History Museum, San Diego, California 92112, USA
| | | | | | | |
Collapse
|
17
|
Stock DW. Zebrafish dentition in comparative context. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 308:523-49. [PMID: 17607704 DOI: 10.1002/jez.b.21187] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Studies of the zebrafish (Danio rerio) promise to contribute much to an understanding of the developmental genetic mechanisms underlying diversification of the vertebrate dentition. Tooth development, structure, and replacement in the zebrafish largely reflect the primitive condition of jawed vertebrates, providing a basis for comparison with features of the more extensively studied mammalian dentition. A distinctive derived feature of the zebrafish dentition is restriction of teeth to a single pair of pharyngeal bones. Such reduction of the dentition, characteristic of the order Cypriniformes, has never been reversed, despite subsequent and extensive diversification of the group in numbers of species and variety of feeding modes. Studies of the developmental genetic mechanism of dentition reduction in the zebrafish suggest a potential explanation for irreversibility in that tooth loss seems to be associated with loss of developmental activators rather than gain of repressors. The zebrafish and other members of the family Cyprinidae exhibit species-specific numbers and arrangements of pharyngeal teeth, and extensive variation in tooth shape also occurs within the family. Mutant screens and experimental alteration of gene expression in the zebrafish are likely to yield variant tooth number and shape phenotypes that can be compared with those occurring naturally within the Cyprinidae. Such studies may reveal the relative contribution to trends in dental evolution of biases in the generation of variation and sorting of this variation by selection or drift.
Collapse
Affiliation(s)
- David W Stock
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309-0334, USA.
| |
Collapse
|
18
|
de Oliveira MDC, de Miranda JL, de Amorim RFB, de Souza LB, de Almeida Freitas R. Tenascin and fibronectin expression in odontogenic cysts. J Oral Pathol Med 2004; 33:354-9. [PMID: 15200484 DOI: 10.1111/j.1600-0714.2004.00212.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Odontogenic cysts (OCs) present distinct evolution and clinical behavior. This study was performed in order to investigate if some components of the extracellular matrix (ECM) may drive these differences. METHODS Thirty OCs were selected: 10 radicular cysts (RCs), 10 dentigerous cysts (DCs), 10 non-syndrome odontogenic keratocysts (OKCs) and they were immunohistochemically analyzed to verify the expression pattern of tenascin and fibronectin. RESULTS Tenascin immunostaining was mainly intense as a thick band deep to the epithelial-mesenchymal interface in both RCs and OKCs. The intense tenascin immunoexpression observed in the RCs was usually associated with inflammation. An intense fibronectin reactivity was observed in the basement membrane region and at the cystic wall of OKCs. CONCLUSIONS Our results demonstrate differences between the expression of ECM proteins in the OCs studied. The higher tenascin and fibronectin expression in the capsule of OKCs suggests marked instability in the cystic structure and may contribute to its aggressive behavior.
Collapse
|