1
|
Cui J, Morgan D, Cheng DH, Foo SL, Yap GLR, Ampomah PB, Arora S, Sachaphibulkij K, Periaswamy B, Fairhurst AM, De Sessions PF, Lim LHK. RNA-Sequencing-Based Transcriptomic Analysis Reveals a Role for Annexin-A1 in Classical and Influenza A Virus-Induced Autophagy. Cells 2020; 9:cells9061399. [PMID: 32512864 PMCID: PMC7349256 DOI: 10.3390/cells9061399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Influenza viruses have been shown to use autophagy for their survival. However, the proteins and mechanisms involved in the autophagic process triggered by the influenza virus are unclear. Annexin-A1 (ANXA1) is an immunomodulatory protein involved in the regulation of the immune response and Influenza A virus (IAV) replication. In this study, using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 (CRISPR associated protein 9) deletion of ANXA1, combined with the next-generation sequencing, we systematically analyzed the critical role of ANXA1 in IAV infection as well as the detailed processes governing IAV infection, such as macroautophagy. A number of differentially expressed genes were uniquely expressed in influenza A virus-infected A549 parental cells and A549 ∆ANXA1 cells, which were enriched in the immune system and infection-related pathways. Gene ontology and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway revealed the role of ANXA1 in autophagy. To validate this, the effect of mechanistic target of rapamycin (mTOR) inhibitors, starvation and influenza infection on autophagy was determined, and our results demonstrate that ANXA1 enhances autophagy induced by conventional autophagy inducers and influenza virus. These results will help us to understand the underlying mechanisms of IAV infection and provide a potential therapeutic target for restricting influenza viral replication and infection.
Collapse
Affiliation(s)
- Jianzhou Cui
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore; (J.C.); (D.M.); (D.H.C.); (S.L.F.); (G.L.R.Y.); (P.B.A.); (S.A.); (K.S.)
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Dhakshayini Morgan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore; (J.C.); (D.M.); (D.H.C.); (S.L.F.); (G.L.R.Y.); (P.B.A.); (S.A.); (K.S.)
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Dao Han Cheng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore; (J.C.); (D.M.); (D.H.C.); (S.L.F.); (G.L.R.Y.); (P.B.A.); (S.A.); (K.S.)
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Sok Lin Foo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore; (J.C.); (D.M.); (D.H.C.); (S.L.F.); (G.L.R.Y.); (P.B.A.); (S.A.); (K.S.)
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Gracemary L. R. Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore; (J.C.); (D.M.); (D.H.C.); (S.L.F.); (G.L.R.Y.); (P.B.A.); (S.A.); (K.S.)
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Patrick B. Ampomah
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore; (J.C.); (D.M.); (D.H.C.); (S.L.F.); (G.L.R.Y.); (P.B.A.); (S.A.); (K.S.)
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Suruchi Arora
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore; (J.C.); (D.M.); (D.H.C.); (S.L.F.); (G.L.R.Y.); (P.B.A.); (S.A.); (K.S.)
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Karishma Sachaphibulkij
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore; (J.C.); (D.M.); (D.H.C.); (S.L.F.); (G.L.R.Y.); (P.B.A.); (S.A.); (K.S.)
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Balamurugan Periaswamy
- GIS Efficient Rapid Microbial Sequencing (GERMS), Genome Institute of Singapore, Agency for Science, Technology and Research (ASTAR), Singapore 138672, Singapore; (B.P.); (P.F.D.S.)
| | - Anna-Marie Fairhurst
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (ASTAR), Singapore 138673, Singapore;
| | - Paola Florez De Sessions
- GIS Efficient Rapid Microbial Sequencing (GERMS), Genome Institute of Singapore, Agency for Science, Technology and Research (ASTAR), Singapore 138672, Singapore; (B.P.); (P.F.D.S.)
| | - Lina H. K. Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore; (J.C.); (D.M.); (D.H.C.); (S.L.F.); (G.L.R.Y.); (P.B.A.); (S.A.); (K.S.)
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore
- Correspondence: ; Tel.: +65-6516-5515; Fax: +65-6778-2684
| |
Collapse
|
2
|
Influenza A virus enhances its propagation through the modulation of Annexin-A1 dependent endosomal trafficking and apoptosis. Cell Death Differ 2016; 23:1243-56. [PMID: 26943321 PMCID: PMC4946891 DOI: 10.1038/cdd.2016.19] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/29/2015] [Accepted: 02/02/2016] [Indexed: 01/17/2023] Open
Abstract
The influenza virus infects millions of people each year and can result in severe complications. Understanding virus recognition and host responses to influenza infection will enable future development of more effective anti-viral therapies. Previous research has revealed diverse yet important roles for the annexin family of proteins in modulating the course of influenza A virus (IAV) infection. However, the role of Annexin-A1 (ANXA1) in IAV infection has not been addressed. Here, we show that ANXA1 deficient mice exhibit a survival advantage, and lower viral titers after infection. This was accompanied with enhanced inflammatory cell infiltration during IAV infection. ANXA1 expression is increased during influenza infection clinically, in vivo and in vitro. The presence of ANXA1 enhances viral replication, influences virus binding, and enhances endosomal trafficking of the virus to the nucleus. ANXA1 colocalizes with early and late endosomes near the nucleus, and enhances nuclear accumulation of viral nucleoprotein. In addition, ANXA1 enhances IAV-mediated apoptosis. Overall, our study demonstrates that ANXA1 plays an important role in influenza virus replication and propagation through various mechanisms and that we predict that the regulation of ANXA1 expression during IAV infection may be a viral strategy to enhance its infectivity.
Collapse
|
3
|
Senthilkumaran C, Hewson J, Ollivett TL, Bienzle D, Lillie BN, Clark M, Caswell JL. Localization of annexins A1 and A2 in the respiratory tract of healthy calves and those experimentally infected with Mannheimia haemolytica. Vet Res 2015; 46:6. [PMID: 25827591 PMCID: PMC4327810 DOI: 10.1186/s13567-014-0134-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/10/2014] [Indexed: 12/23/2022] Open
Abstract
Annexins A1 and A2 are proteins known to function in the stress response, dampening inflammatory responses and mediating fibrinolysis. We found, in healthy cattle recently arrived to a feedlot, that lower levels of these proteins correlated with later development of pneumonia. Here we determine the localization of annexin A1 and A2 proteins in the respiratory tract and in leukocytes, in healthy calves and those with Mannheimia haemolytica pneumonia. In healthy calves, immunohistochemistry revealed cytoplasmic expression of annexin A1 in the surface epithelium of large airways, tracheobronchial glands and goblet cells, to a lesser degree in small airways, but not in alveolar epithelium. Immunocytochemistry labeled annexin A1 in the cytoplasm of neutrophils from blood and bronchoalveolar lavage fluid, while minimal surface expression was detected by flow cytometry in monocytes, macrophages and lymphocytes. Annexin A2 expression was detected in surface epithelium of small airways, some mucosal lymphocytes, and endothelium, with weak expression in large airways, tracheobronchial glands and alveolar septa. For both proteins, the level of expression was similar in tissues collected five days after intrabronchial challenge with M. haemolytica compared to that from sham-inoculated calves. Annexins A1 and A2 were both detected in leukocytes around foci of coagulative necrosis, and in necrotic cells in the center of these foci, as well as in areas outlined above. Thus, annexins A1 and A2 are proteins produced by airway epithelial cells that may prevent inflammation in the healthy lung and be relevant to development of pneumonia in stressed cattle.
Collapse
|
4
|
Mitchell HD, Eisfeld AJ, Sims AC, McDermott JE, Matzke MM, Webb-Robertson BJM, Tilton SC, Tchitchek N, Josset L, Li C, Ellis AL, Chang JH, Heegel RA, Luna ML, Schepmoes AA, Shukla AK, Metz TO, Neumann G, Benecke AG, Smith RD, Baric RS, Kawaoka Y, Katze MG, Waters KM. A network integration approach to predict conserved regulators related to pathogenicity of influenza and SARS-CoV respiratory viruses. PLoS One 2013; 8:e69374. [PMID: 23935999 PMCID: PMC3723910 DOI: 10.1371/journal.pone.0069374] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 06/07/2013] [Indexed: 12/02/2022] Open
Abstract
Respiratory infections stemming from influenza viruses and the Severe Acute Respiratory Syndrome corona virus (SARS-CoV) represent a serious public health threat as emerging pandemics. Despite efforts to identify the critical interactions of these viruses with host machinery, the key regulatory events that lead to disease pathology remain poorly targeted with therapeutics. Here we implement an integrated network interrogation approach, in which proteome and transcriptome datasets from infection of both viruses in human lung epithelial cells are utilized to predict regulatory genes involved in the host response. We take advantage of a novel “crowd-based” approach to identify and combine ranking metrics that isolate genes/proteins likely related to the pathogenicity of SARS-CoV and influenza virus. Subsequently, a multivariate regression model is used to compare predicted lung epithelial regulatory influences with data derived from other respiratory virus infection models. We predicted a small set of regulatory factors with conserved behavior for consideration as important components of viral pathogenesis that might also serve as therapeutic targets for intervention. Our results demonstrate the utility of integrating diverse ‘omic datasets to predict and prioritize regulatory features conserved across multiple pathogen infection models.
Collapse
Affiliation(s)
- Hugh D. Mitchell
- Computational Sciences and Mathematics Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
- * E-mail:
| | - Amie J. Eisfeld
- Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Amy C. Sims
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jason E. McDermott
- Computational Sciences and Mathematics Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Melissa M. Matzke
- Computational Sciences and Mathematics Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Bobbi-Jo M. Webb-Robertson
- Computational Sciences and Mathematics Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Susan C. Tilton
- Computational Sciences and Mathematics Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Nicolas Tchitchek
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Laurence Josset
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Chengjun Li
- Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Amy L. Ellis
- Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jean H. Chang
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Robert A. Heegel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Maria L. Luna
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Athena A. Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Anil K. Shukla
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Gabriele Neumann
- Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Arndt G. Benecke
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Université Pierre et Marie Curie, Centre National de la Recherche Scientifique UMR7224, Paris, France
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- ERATO Infection-Induced Host Responses Project, Saitama, Japan
| | - Michael G. Katze
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Katrina M. Waters
- Computational Sciences and Mathematics Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| |
Collapse
|
5
|
Muñoz M, Corrales FJ, Caamaño JN, Díez C, Trigal B, Mora MI, Martín D, Carrocera S, Gómez E. Proteome of the early embryo-maternal dialogue in the cattle uterus. J Proteome Res 2012; 11:751-766. [PMID: 22148898 DOI: 10.1021/pr200969a] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We analyzed embryo-maternal interactions in the bovine uterus on day 8 of development. Proteomic profiles were obtained by two-dimensional difference gel electrophoresis from 8 paired samples of uterine fluid (UF) from the same animal with and without embryos in the uterus. Results were contrasted with UF obtained after artificial insemination. We detected 50 differential protein spots (t test, p < 0.05). Subsequent protein characterization by nano-LC-ESI-MS/MS enabled us to identify 38 proteins, obtaining for first time the earliest evidence of involvement of the down-regulated NFkB system in cattle as a pregnancy signature pathway. Embryos enhanced the embryotrophic ability of UF and decreased uterine protein, while blood progesterone was unaltered. Twinfilin, hepatoma-derived growth factor, and synaptotagmin-binding cytoplasmic RNA interacting protein have not previously been identified in the mammalian uterus. TNFα and IL-1B were localized to embryos by immunocytochemistry, and other proteins were validated by Western blot in UF. Glycosylated-TNFα, IL-1B, insulin, lactotransferrin, nonphosphorylated-peroxiredoxin, albumin, purine nucleoside phosphorylase, HSPA5, and NFkB were down-regulated, while phosphorylated-peroxiredoxin, annexin A4, and nonglycosylated-TNFα were up-regulated. The embryonic signaling agents involved could be TNFα and IL-1B, either alone or in a collective dialogue with other proteins. Such molecules might explain the immune privilege during early bovine development.
Collapse
Affiliation(s)
- Marta Muñoz
- Centro de Biotecnología Animal - SERIDA Camino de Rioseco , 1225 La Olla - Deva 33394 Gijón, Asturias, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Stress alters the cellular and proteomic compartments of bovine bronchoalveolar lavage fluid. Vet Immunol Immunopathol 2008; 125:111-25. [DOI: 10.1016/j.vetimm.2008.05.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2008] [Revised: 03/23/2008] [Accepted: 05/08/2008] [Indexed: 01/29/2023]
|
7
|
Hwang HJ, Moon CH, Kim HG, Kim JY, Lee JM, Park JW, Chung DK. Identification and functional analysis of salmon annexin 1 induced by a virus infection in a fish cell line. J Virol 2007; 81:13816-24. [PMID: 17881442 PMCID: PMC2168874 DOI: 10.1128/jvi.02822-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we investigated changes in protein expression of fish cells induced by infection of infectious pancreatic necrosis virus (IPNV) using two-dimensional electrophoresis and matrix-assisted laser desorption-time of flight proton motive force analysis and identified a novel type of salmon annexin 1 that is induced in fish cells by infection with IPNV. Northern blotting showed that this annexin is overexpressed in IPNV-infected cells compared to control cells, and further analysis revealed that it has a 1,509-bp full-length cDNA sequence with an open reading frame encoding 339 amino acids (GenBank accession no. AY944135). Amino acid sequence analysis revealed that this protein belongs to the annexin 1 subfamily. By applying RNA interference, the mRNA levels of salmon annexin 1 were suppressed and, under these conditions, apoptosis of IPNV-infected cells was significantly increased. While small interfering RNA (siRNA) treatment did not affect the levels of the viral proteins significantly until 10 h postinfection, it reduced the titer of extracellular virus to 25% of that of a scrambled siRNA-treated control. These data provide evidence of an antiapoptotic function for salmon annexin 1 that is important for IPNV growth in cultured cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Annexins/chemistry
- Annexins/genetics
- Annexins/metabolism
- Annexins/pharmacology
- Apoptosis/drug effects
- Cells, Cultured
- Electrophoresis, Gel, Two-Dimensional
- Gene Expression Regulation
- Infectious pancreatic necrosis virus/pathogenicity
- Molecular Sequence Data
- Phylogeny
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Salmon/virology
- Sequence Analysis, DNA
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Hyun Jin Hwang
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 449-701, Korea
| | | | | | | | | | | | | |
Collapse
|
8
|
Ponnampalam AP, Rogers PAW. Cyclic changes and hormonal regulation of annexin IV mRNA and protein in human endometrium. Mol Hum Reprod 2006; 12:661-9. [PMID: 16954445 DOI: 10.1093/molehr/gal075] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Annexin IV (ANXA4) belongs to a ubiquitous family of Ca(2+)-dependent phospholipid-binding proteins. ANXA4 has been shown to be involved in a range of physiological functions including ion channel regulation, exocytosis and Ca(2+)-dependent signal transduction. The aims of this study were to fully characterize ANXA4 mRNA and protein in human endometrium during the menstrual cycle and to investigate the hormonal regulation of ANXA4. ANXA4 mRNA expression was quantified by real-time PCR in fresh endometrial tissue from cycling women, and protein expression was analysed by immunohistochemistry and western blotting. Hormonal regulation of ANXA4 transcription and translation was investigated using an endometrial explant system. ANXA4 mRNA was significantly up-regulated during mid-secretory (MS) and late-secretory (LS) phases compared with proliferative phases during the menstrual cycle. ANXA4 protein was localized to glandular and luminal epithelium and was present in high levels throughout the menstrual cycle except during early-secretory (ES) phase, when it was significantly reduced. Our data also show that, in proliferative explants, progesterone significantly increased the ANXA4 mRNA and protein after 48h in culture. Estrogen did not have any significant effects. This is the first study to show that ANXA4 transcription and translation are regulated by progesterone and suggests that ANXA4 may be important in regulating ion and water transport across the endometrial epithelium.
Collapse
Affiliation(s)
- A P Ponnampalam
- Centre for Women's Health Research, Monash Institute of Medical Research, Monash University Department of Obstetrics and Gynaecology, VIC, Australia
| | | |
Collapse
|
9
|
Murata H, Shimada N, Yoshioka M. Current research on acute phase proteins in veterinary diagnosis: an overview. Vet J 2004; 168:28-40. [PMID: 15158206 DOI: 10.1016/s1090-0233(03)00119-9] [Citation(s) in RCA: 653] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2003] [Indexed: 10/27/2022]
Abstract
The acute phase proteins (APP) are a group of blood proteins that contribute to restoring homeostasis and limiting microbial growth in an antibody-independent manner in animals subjected to infection, inflammation, surgical trauma or stress. In the last two decades, many advances have been made in monitoring APP in both farm and companion animals for clinical and experimental purposes. Also, the mechanism of the APP response is receiving attention in veterinary science in connection with the innate immune systems of animals. This review describes the results of recent research on animal APP, with special reference to their induction and regulatory mechanisms, their biological functions, and their current and future applications to veterinary diagnosis and animal production.
Collapse
Affiliation(s)
- H Murata
- Department of Safety Research, National Institute of Animal Health, 3-1-5 Kannon-dai, Tsukuba, Ibaraki 305-0856, Japan.
| | | | | |
Collapse
|
10
|
Katoh N. Modulation by Sphingosine of Phosphorylation of Substrate Proteins by Protein Kinase C in Nuclei from Cow Mammary Gland. J Vet Med Sci 2004; 66:1237-42. [PMID: 15528855 DOI: 10.1292/jvms.66.1237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protein kinase C (PKC) is an enzyme activated by diacylglycerols such as 1-oleoyl-2-acetyl-sn-glycerol (OAG), phospholipids (in particular phosphatidylserine; PS) and Ca2+, which regulate a wide variety of intracellular functions by phosphorylating multiple substrate proteins and enzymes. The effect of sphingosine, the backbone moiety of sphingolipids, on PKC activity and phosphorylation of endogenous proteins catalyzed by PKC was investigated in nuclei of cow mammary gland. Sphingosine inhibited nuclear PKC activity when lysine-rich histone was used as the substrate. The sphingosine inhibition of the PKC activity was reversed by the excess addition of PS, but not by OAG or Ca2+. Several nuclear proteins, including 56-kDa, 43-kDa, 38-kDa and 36-kDa proteins, were shown to be substrates for PKC. Of the substrate proteins, the 38-kDa and 36-kDa proteins were identified as annexin I, the Ca2+/phospholipid-binding protein; the 56-kDa and 43-kDa proteins have not yet been identified. Sphingosine inhibited phosphorylation of the 56-kDa protein and the 36-kDa annexin I, whereas it enhanced that of the 43-kDa protein. The 38-kDa annexin I species was unaffected by sphingosine. As with the PKC activity, inhibition by sphingosine of phosphorylation of the 56-kDa protein and 36-kDa annexin I was reversed by the excess addition of PS, but not by OAG or Ca2+. In addition, by the excess addition of PS and not by OAG or Ca2+, the sphingosine-enhanced phosphorylation of the 43-kDa protein was reversed and returned to near the level in the absence of sphingosine. It is suggested that sphingosine is involved in the regulation of PKC-dependent phosphorylation in the nucleus by modulating the association of PKC or its substrates, particularly annexin I, with membrane phospholipids in cow mammary gland.
Collapse
Affiliation(s)
- Norio Katoh
- National Institute of Animal Health, Ibaraki, Japan
| |
Collapse
|