1
|
Dehe L, Shaqura M, Nordine M, Habazettl H, von Kwiatkowski P, Schluchter H, Shakibaei M, Mousa SA, Schäfer M, Treskatsch S. Chronic Naltrexone Therapy Is Associated with Improved Cardiac Function in Volume Overloaded Rats. Cardiovasc Drugs Ther 2021; 35:733-743. [PMID: 33484395 PMCID: PMC8266787 DOI: 10.1007/s10557-020-07132-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Myocardial opioid receptors were demonstrated in animals and humans and seem to colocalize with membranous and sarcolemmal calcium channels of the excitation-contraction coupling in the left ventricle (LV). Therefore, this study investigated whether blockade of the cardiac opioid system by naltrexone would affect cardiac function and neurohumoral parameters in Wistar rats with volume overload-induced heart failure. METHODS Volume overload in Wistar rats was induced by an aortocaval fistula (ACF). Left ventricular cardiac opioid receptors were identified by immunohistochemistry and their messenger ribonucleic acid (mRNA) as well as their endogenous ligand mRNA quantified by real-time polymerase chain reaction (RT-PCR). Following continuous delivery of either the opioid receptor antagonist naltrexone or vehicle via minipumps (n = 5 rats each), hemodynamic and humoral parameters were assessed 28 days after ACF induction. Sham-operated animals served as controls. RESULTS In ACF rats mu-, delta-, and kappa-opioid receptors colocalized with voltage-gated L-type Ca2+ channels in left ventricular cardiomyocytes. Chronic naltrexone treatment of ACF rats reduced central venous pressure (CVP) and left ventricular end-diastolic pressure (LVEDP), and improved systolic and diastolic left ventricular functions. Concomitantly, rat brain natriuretic peptide (rBNP-45) and angiotensin-2 plasma concentrations which were elevated during ACF were significantly diminished following naltrexone treatment. In parallel, chronic naltrexone significantly reduced mu-, delta-, and kappa-opioid receptor mRNA, while it increased the endogenous opioid peptide mRNA compared to controls. CONCLUSION Opioid receptor blockade by naltrexone leads to improved LV function and decreases in rBNP-45 and angiotensin-2 plasma levels. In parallel, naltrexone resulted in opioid receptor mRNA downregulation and an elevated intrinsic tone of endogenous opioid peptides possibly reflecting a potentially cardiodepressant effect of the cardiac opioid system during volume overload.
Collapse
Affiliation(s)
- Lukas Dehe
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Mohammed Shaqura
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Michael Nordine
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Helmut Habazettl
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology Campus Charité Mitte, Chariteplatz 1, 10117, Berlin, Germany
| | - Petra von Kwiatkowski
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Helena Schluchter
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Mehdi Shakibaei
- Institute of Anatomy, Ludwig-Maximilians-Universität München, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Shaaban A Mousa
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Michael Schäfer
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Sascha Treskatsch
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.
| |
Collapse
|
2
|
Jurado Acosta A, Rysä J, Szabo Z, Moilanen AM, Serpi R, Ruskoaho H. Phosphorylation of GATA4 at serine 105 is required for left ventricular remodelling process in angiotensin II-induced hypertension in rats. Basic Clin Pharmacol Toxicol 2020; 127:178-195. [PMID: 32060996 PMCID: PMC7496669 DOI: 10.1111/bcpt.13398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/25/2022]
Abstract
In this study, we investigated whether local intramyocardial GATA4 overexpression affects the left ventricular (LV) remodelling process and the importance of phosphorylation at serine 105 (S105) for the actions of GATA4 in an angiotensin II (AngII)‐induced hypertension rat model. Adenoviral constructs overexpressing wild‐type GATA4 or GATA4 mutated at S105 were delivered into the anterior LV free wall. AngII (33.3 µg/kg/h) was administered via subcutaneously implanted minipumps. Cardiac function and structure were examined by echocardiography, followed by histological immunostainings of LV sections and gene expression measurements by RT‐qPCR. The effects of GATA4 on cultured neonatal rat ventricular fibroblasts were evaluated. In AngII‐induced hypertension, GATA4 overexpression repressed fibrotic gene expression, reversed the hypertrophic adult‐to‐foetal isoform switch of myofibrillar genes and prevented apoptosis, whereas histological fibrosis was not affected. Overexpression of GATA4 mutated at S105 resulted in LV chamber dilatation, cardiac dysfunction and had minor effects on expression of myocardial remodelling genes. Fibrotic gene expression in cardiac fibroblasts was differently affected by overexpression of wild‐type or mutated GATA4. Our results indicate that GATA4 reduces AngII‐induced responses by interfering with pro‐fibrotic and hypertrophic gene expressions. GATA4 actions on LV remodelling and fibroblasts are dependent on phosphorylation site S105.
Collapse
Affiliation(s)
- Alicia Jurado Acosta
- Pharmacology and Toxicology, Biomedicine Research Unit, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Jaana Rysä
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Zoltan Szabo
- Pharmacology and Toxicology, Biomedicine Research Unit, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Anne-Mari Moilanen
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Oulu University Hospital and Medical Research Center Oulu, Oulu, Finland
| | - Raisa Serpi
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Heikki Ruskoaho
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Bkaily G, Jacques D. Na +-H + exchanger and proton channel in heart failure associated with Becker and Duchenne muscular dystrophies. Can J Physiol Pharmacol 2017; 95:1213-1223. [PMID: 28727929 DOI: 10.1139/cjpp-2017-0265] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cardiomyopathy is found in patients with Duchenne (DMD) and Becker (BMD) muscular dystrophies, which are linked muscle diseases caused by mutations in the dystrophin gene. Dystrophin defects are not limited to DMD but are also present in mild BMD. The hereditary cardiomyopathic hamster of the UM-X7.1 strain is a particular experimental model of heart failure (HF) leading to early death in muscular dystrophy (dystrophin deficiency and sarcoglycan mutation) and heart disease (δ-sarcoglycan deficiency and dystrophin mutation) in human DMD. Using this model, our previous work showed a defect in intracellular sodium homeostasis before the appearance of any apparent biochemical and histological defects. This was attributed to the continual presence of the fetal slow sodium channel, which was also found to be active in human DMD. Due to muscular intracellular acidosis, the intracellular sodium overload in DMD and BMD was also due to sodium influx through the sodium-hydrogen exchanger NHE-1. Lifetime treatment with an NHE-1 inhibitor prevented intracellular Na+ overload and early death due to HF. Our previous work also showed that another proton transporter, the voltage-gated proton channel (Hv1), exists in many cell types including heart cells and skeletal muscle fibers. The Hv1 could be indirectly implicated in the beneficial effect of blocking NHE-1.
Collapse
Affiliation(s)
- Ghassan Bkaily
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.,Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Danielle Jacques
- Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.,Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
4
|
Liu Q, Tian J, Xu Y, Li C, Meng X, Fu F. Protective Effect of RA on Myocardial Infarction-Induced Cardiac Fibrosis via AT1R/p38 MAPK Pathway Signaling and Modulation of the ACE2/ACE Ratio. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6716-22. [PMID: 27538767 DOI: 10.1021/acs.jafc.6b03001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Rosmarinic acid (α-o-caffeoyl-3,4-dihydroxyphenyllactic acid, RA) is a major active constituent of Rosmarinus officinalis Linn. (rosemary) having significant anti-inflammatory, anti-apoptotic, and antioxidant effects. However, the cardioprotection of RA is still not understood. The present study was designed, for the first time, to investigate the cardioprotection of RA on myocardial infarction (MI)-induced cardiac fibrosis and to clarify the possible mechanisms. MI was induced in adult rats by left anterior descending coronary artery ligation, and animals were then administered RA (50, 100, or 200 mg/kg) by gavage. Compared with the model group, RA treatment ameliorated changes in the left ventricular systolic pressure (LVSP), +dp/dtmax, and -dp/dtmax after 4 weeks. This was associated with attenuation of infarct size, collagen volume fraction (CVF), expression of collagen I, collagen III, alpha smooth muscle actin (α-SMA), and hydroxyproline (Hyp) concentrations. RA treatment was also associated with decreased angiotensin-converting enzyme (ACE) expression and increased ACE2 expression, as well as decreased expression of angiotensin type 1 receptor (AT1R) and phospho-p38 mitogen-activated protein kinase (p38 MAPK). Thus, RA can protect against cardiac dysfunction and fibrosis following MI, likely due to decreasing ACE expression and increasing ACE2 expression via the AT1R/p38 MAPK pathway.
Collapse
Affiliation(s)
- Qiaofeng Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai 264005, P.R. China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai 264005, P.R. China
| | - Yanan Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai 264005, P.R. China
| | - Chunmei Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai 264005, P.R. China
| | - Xiangjing Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai 264005, P.R. China
| | - Fenghua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University , Yantai 264005, P.R. China
| |
Collapse
|
5
|
Carver KA, Smith TL, Gallagher PE, Tallant EA. Angiotensin-(1-7) prevents angiotensin II-induced fibrosis in cremaster microvessels. Microcirculation 2015; 22:19-27. [PMID: 25079175 DOI: 10.1111/micc.12159] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/29/2014] [Indexed: 01/19/2023]
Abstract
OBJECTIVE The effect of the heptapeptide hormone Ang-(1-7) on microvascular fibrosis in rats with Ang II-induced hypertension was investigated, since vascular fibrosis/remodeling plays a prominent role in hypertension-induced end-organ damage and Ang-(1-7) inhibits vascular growth and fibrosis. METHODS Fibrosis of cremaster microvessels was studied in male Lewis rats infused with Ang II and/or Ang-(1-7). RESULTS Ang II elevated systolic blood pressure by approximately 40 mmHg, while blood pressure was not changed by Ang-(1-7). Ang II increased perivascular fibrosis surrounding 20-50 μm arterioles as well as interstitial fibrosis; coadministration of Ang-(1-7) prevented the increases in fibrosis. The fibrotic factor CTGF and phospho-Smad 2/3, which upregulates CTGF, were increased by Ang II; this effect was prevented by coadministration of Ang-(1-7). Although TGF-β phosphorylates Smad 2/3, TGF-β was no different among treatment groups. In contrast, Ang II increased the MAP kinase phospho-ERK1/2, which also phosphorylates Smad; p-ERK was reduced by Ang-(1-7). Ang-(1-7), in the presence or absence of Ang II, upregulated the MAP kinase phosphatase DUSP1. CONCLUSIONS These results suggest that Ang-(1-7) increases DUSP1 to reduce MAP kinase/Smad/CTGF signaling and decrease fibrosis in resistance arterioles, to attenuate end-organ damage associated with chronic hypertension.
Collapse
Affiliation(s)
- Kyle A Carver
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | | | | |
Collapse
|
6
|
Tang S, Leung J, Chan L, Eddy A, Lai K. Angiotensin converting enzyme inhibitor but not angiotensin receptor blockade or statin ameliorates murine adriamycin nephropathy. Kidney Int 2008; 73:288-99. [DOI: 10.1038/sj.ki.5002674] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Grobe JL, Mecca AP, Lingis M, Shenoy V, Bolton TA, Machado JM, Speth RC, Raizada MK, Katovich MJ. Prevention of angiotensin II-induced cardiac remodeling by angiotensin-(1-7). Am J Physiol Heart Circ Physiol 2006; 292:H736-42. [PMID: 17098828 DOI: 10.1152/ajpheart.00937.2006] [Citation(s) in RCA: 273] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cardiac remodeling, which typically results from chronic hypertension or following an acute myocardial infarction, is a major risk factor for the development of heart failure and, ultimately, death. The renin-angiotensin system (RAS) has previously been established to play an important role in the progression of cardiac remodeling, and inhibition of a hyperactive RAS provides protection from cardiac remodeling and subsequent heart failure. Our previous studies have demonstrated that overexpression of angiotensin-converting enzyme 2 (ACE2) prevents cardiac remodeling and hypertrophy during chronic infusion of angiotensin II (ANG II). This, coupled with the knowledge that ACE2 is a key enzyme in the formation of ANG-(1-7), led us to hypothesize that chronic infusion of ANG-(1-7) would prevent cardiac remodeling induced by chronic infusion of ANG II. Infusion of ANG II into adult Sprague-Dawley rats resulted in significantly increased blood pressure, myocyte hypertrophy, and midmyocardial interstitial fibrosis. Coinfusion of ANG-(1-7) resulted in significant attenuations of myocyte hypertrophy and interstitial fibrosis, without significant effects on blood pressure. In a subgroup of animals also administered [d-Ala(7)]-ANG-(1-7) (A779), an antagonist to the reported receptor for ANG-(1-7), there was a tendency to attenuate the antiremodeling effects of ANG-(1-7). Chronic infusion of ANG II, with or without coinfusion of ANG-(1-7), had no effect on ANG II type 1 or type 2 receptor binding in cardiac tissue. Together, these findings indicate an antiremodeling role for ANG-(1-7) in cardiac tissue, which is not mediated through modulation of blood pressure or altered cardiac angiotensin receptor populations and may be at least partially mediated through an ANG-(1-7) receptor.
Collapse
Affiliation(s)
- Justin L Grobe
- Department of Pharmacodynamics, University of Florida, Gainesville, FL 32610-0487, USA
| | | | | | | | | | | | | | | | | |
Collapse
|