1
|
Zhang H, Zhang H, Cao S, Sui C, Song Y, Zhao Y, Liu S. Knockout of p53 leads to a significant increase in ALV-J replication. Poult Sci 2021; 100:101374. [PMID: 34411963 PMCID: PMC8377548 DOI: 10.1016/j.psj.2021.101374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 01/27/2023] Open
Abstract
Avian leukemia is a common malignant disease, and and its regulatory mechanism is complex. As the most extensive tumor suppressor gene in cancer research, p53 can control multiple functions such as that of DNA repair, induction of apoptosis, cell cycle arrest and so on. In view of the diversity associated with varied function of p53, this study analyzed the possible effect of gene on ALV-J replication and its regulatory mechanism. We successfully constructed a p53 knockout DF-1 cell line (p53-KO-DF-1 cells) by using CRISPR-Cas9 system. When ALV-J was co-infected with DF-1 and p53-KO-DF-1 cells, it was found that compared with wild-type DF-1 cells, the viral copy number of p53-KO-DF-1 cells infected with ALV-J increased significantly 48 h after infection, whereas the expression of innate immune factors such as Il-2,TNF- α, IFN- γ and MX1 decreased significantly. Detection of p53-related tumor genes indicated that after p53 deletion, the expression of c-myc, bcl-2, and bak increased significantly, while the expression of p21 and p27 was noted to be decreased. The cell cycle distribution and apoptosis of the 2 cell lines was detected by flow cytometry analysis. The results showed that p53 knockout prevented G0/G1 and G2 M phase arrest induced by ALV-J, and substantially decreased the rate of apoptosis. Overall, the results indicated that p53 gene can effectively inhibits ALV-J replication by regulating important cellular processes, and p53 gene related proteins involved in cell cycle activity may function as the key targets for the prevention and treatment of ALV-J.
Collapse
Affiliation(s)
- Hui Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian, Shandong 271018, China
| | - Huixia Zhang
- School of Chemical Engineering and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, China
| | - Shengliang Cao
- College of Agriculture, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Chao Sui
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yinuo Song
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian, Shandong 271018, China
| | - Yiran Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian, Shandong 271018, China
| | - Sidang Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian, Shandong 271018, China.
| |
Collapse
|
2
|
Protective Effect of Ginsenoside Rg1 on Oxidative Damage Induced by Hydrogen Peroxide in Chicken Splenic Lymphocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8465030. [PMID: 31178974 PMCID: PMC6501224 DOI: 10.1155/2019/8465030] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/04/2019] [Indexed: 12/28/2022]
Abstract
Previous investigation showed that ginsenoside Rg1 (Rg1) extracted from Panax ginseng C.A. Mey has antioxidative effect on oxidative stress in chickens. The present study was designed to investigate the protective effects of Rg1 on chicken lymphocytes against hydrogen peroxide-induced oxidative stress and the potential mechanisms. Cell viability, apoptotic cells, malondialdehyde, activity of superoxide dismutase, mitochondrial membrane potential, and [Ca2+]i concentration were measured, and transcriptome analysis and quantitative real-time polymerase chain reaction were used to investigate the effect of Rg1 on gene expression of the cells. The results showed that treatment of lymphocytes with H2O2 induced oxidative stress and apoptosis. However, pretreatment of the cells with Rg1 dramatically enhanced cell viability, reduced apoptotic cells, and decreased oxidative stress induced by H2O2. In addition, Rg1 reduced these H2O2-dependent decreases in mitochondrial membrane potential and reversed [Ca2+]i overload. Transcriptome analysis showed that 323 genes were downregulated and 105 genes were upregulated in Rg1-treated cells. The differentially expressed genes were involved in Toll-like receptors, peroxisome proliferator-activated receptor signaling pathway, and cytokine-cytokine receptor interaction. The present study indicated that Rg1 may act as an antioxidative agent to protect cell damage caused by oxidative stress via regulating expression of genes such as RELT, EDA2R, and TLR4.
Collapse
|
3
|
Integrated analyses of genome-wide DNA occupancy and expression profiling identify key genes and pathways involved in cellular transformation by a Marek's disease virus oncoprotein, Meq. J Virol 2013; 87:9016-29. [PMID: 23740999 DOI: 10.1128/jvi.01163-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marek's disease (MD) is an economically significant disease in chickens that is caused by the highly oncogenic Marek's disease virus (MDV). A major unanswered question is the mechanism of MDV-induced tumor formation. Meq, a bZIP transcription factor discovered in the 1990s, is critically involved in viral oncogenicity, but only a few of its host target genes have been described, impeding our understanding of MDV-induced tumorigenesis. Using chromatin immunoprecipitation-sequencing (ChIP-seq) and microarray analysis, a high-confidence list of Meq binding sites in the chicken genome and a global transcriptome of Meq-responsive genes were generated. Meq binding sites were found to be enriched in the promoter regions of upregulated genes but not in those of downregulated genes. ChIP-seq was also performed for c-Jun, a known heterodimeric partner of Meq. The close location of binding sites of Meq and c-Jun was noted, suggesting cooperativity between these two factors in modulating transcription. Pathway analysis indicated that Meq transcriptionally regulates many genes that are part of several signaling pathways including the extracellular signal-regulated kinase /mitogen-activated protein kinase (ERK/MAPK), Jak-STAT, and ErbB pathways, which are critical for oncogenesis and/or include signaling mediators involved in apoptosis. Meq activates oncogenic signaling cascades by transcriptionally activating major kinases in the ERK/MAPK pathway and simultaneously repressing phosphatases, as verified using inhibitors of MEK and ERK1/2 in a cell proliferation assay. This study provides significant insights into the mechanistic basis of Meq-dependent cell transformation.
Collapse
|
4
|
Geatrell JC, Mui (Iryn) Gan P, Mansergh FC, Kisiswa L, Jarrin M, Williams LA, Evans MJ, Boulton ME, Wride MA. Apoptosis gene profiling reveals spatio-temporal regulated expression of the p53/Mdm2 pathway during lens development. Exp Eye Res 2009; 88:1137-51. [PMID: 19450442 PMCID: PMC2706329 DOI: 10.1016/j.exer.2009.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 01/15/2009] [Accepted: 01/30/2009] [Indexed: 01/19/2023]
Abstract
Evidence is emerging for apoptosis gene expression in the lens during development. Therefore, here we used a filter array to assess expression of 243 apoptosis-related genes in the developing postnatal mouse lens using (33)P labelled cDNA synthesized from p7 and p14 mouse lenses. We demonstrated that 161 apoptosis-related genes were expressed at levels significantly above background and 20 genes were potentially significantly differentially expressed (P<0.05) by at least 2-fold between p7 and p14. We used RT-PCR to confirm expression of these genes in newborn, p7, p14 and 4 wk mouse lens cDNA samples. Expression of 19/20 of the genes examined was confirmed, while 5 genes (Huntingtin, Mdm2, Dffa, galectin-3 and Mcl-1) were confirmed as differentially regulated between p7 and p14. RT-PCR was also used to examine the expression of the chick homologues of the most-highly expressed and/or potentially differentially regulated genes in chick embryo lenses at E6-E16. The majority of genes expressed in the postnatal mouse lens were also expressed in the chick embryo lens. Western blotting confirmed developmentally regulated expression of Axl and Mcl-1 during mouse lens development and of Mdm2, Mdm4/X and p53 during mouse and chick lens development. Western blotting also revealed the presence of p53 and Mdm4/X splice variants and/or proteolytic cleavage products in the developing lens. Since Mdm2 is a regulator of the tumour suppressor gene p53, we chose to thoroughly investigate the spatio-temporal expression patterns of p53, Mdm2 and the functionally related Mdm4/X in mouse lens development at E12.5-E16.5 using immunocytochemistry. We also examined Mdm2 expression patterns during chick lens development at E6-E16 and Mdm4/X and p53 at E14. Expression of Mdm2, Mdm4/X and p53 was spatio-temporally regulated in various compartments of the developing lens in both mouse and chick, including lens epithelial and lens fibre cells, indicating potential roles for these factors in regulation of lens epithelial cell proliferation and/or lens fibre cell differentiation This study provides a thorough initial analysis of apoptosis gene expression in the postnatal mouse lens and provides a resource for further investigation of the roles in lens development of the apoptosis genes identified. Furthermore, building on the array studies, we present the first spatio-temporal analysis of expression of p53 pathway molecules (p53, Mdm2 and Mdm4/X) in both developing mouse and chick lenses, suggesting a potential role for the p53/Mdm2 pathway in lens development, which merits further functional analysis.
Collapse
Affiliation(s)
- Jenny C. Geatrell
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, Wales CF24 3LU, UK
| | - Peng Mui (Iryn) Gan
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, Wales CF24 3LU, UK
| | - Fiona C. Mansergh
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales CF10 3US, UK
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Lilian Kisiswa
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, Wales CF24 3LU, UK
| | - Miguel Jarrin
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, Wales CF24 3LU, UK
- Mason Eye Institute, One Hospital Drive, Columbia, Columbia University, MO 65212, USA
| | - Llinos A. Williams
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, Wales CF24 3LU, UK
| | - Martin J. Evans
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales CF10 3US, UK
| | - Mike E. Boulton
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, Wales CF24 3LU, UK
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida, USA
| | - Michael A. Wride
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, Wales CF24 3LU, UK
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
5
|
Lambeth LS, Yao Y, Smith LP, Zhao Y, Nair V. MicroRNAs 221 and 222 target p27Kip1 in Marek's disease virus-transformed tumour cell line MSB-1. J Gen Virol 2009; 90:1164-1171. [PMID: 19264608 DOI: 10.1099/vir.0.007831-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of short RNAs that function as post-transcriptional suppressors of protein expression and are involved in a variety of biological processes, including oncogenesis. Several recent studies have implicated the involvement of miR-221 and miR-222 in tumorigenesis as these miRNAs are upregulated in a number of cancers and affect the expression of cell cycle regulatory proteins such as the cyclin-dependent kinase (cdk) inhibitor p27(Kip1). Marek's disease virus (MDV) is a highly oncogenic herpesvirus that affects poultry, causing acute neoplastic disease with lymphomatous lesions in several organs. MDV-encoded oncogenes such as Meq are directly implicated in the neoplastic transformation of T cells and have been well studied. More recently, however, the involvement of both host and virus-encoded miRNAs in the induction of MD lymphomas is being increasingly recognized. We analysed the miRNA expression profiles in the MDV-transformed lymphoblastoid cell line MSB-1 and found that endogenous miRNAs miR-221 and miR-222 were significantly upregulated. Demonstration of the conserved binding sites for these miRNAs in the chicken p27(Kip1) 3'-untranslated region sequence and the repression of luciferase activity of reporter constructs indicated that miR-221 and miR-222 target p27(Kip1) in these cells. We also found that overexpression of miR-221 and miR-222 decreased p27(Kip1) levels and that treatment with retrovirally expressed antagomiRs partially alleviated this suppression. These data show that an oncogenic herpesvirus, as in the case of many cancers, can exploit the miRNA machinery for suppressing cell cycle regulatory molecules such as p27(Kip1) in the induction and progression of T-cell lymphomas.
Collapse
Affiliation(s)
- Luke S Lambeth
- Division of Microbiology, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| | - Yongxiu Yao
- Division of Microbiology, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| | - Lorraine P Smith
- Division of Microbiology, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| | - Yuguang Zhao
- Division of Microbiology, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| | - Venugopal Nair
- The Jenner Institute, University of Oxford, Compton, Berkshire RG20 7NN, UK.,Division of Microbiology, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| |
Collapse
|
6
|
MicroRNA profile of Marek's disease virus-transformed T-cell line MSB-1: predominance of virus-encoded microRNAs. J Virol 2008; 82:4007-15. [PMID: 18256158 DOI: 10.1128/jvi.02659-07] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Research over the last few years has demonstrated the increasing role of microRNAs (miRNAs) as major regulators of gene expression in diverse cellular processes and diseases. Several viruses, particularly herpesviruses, also use the miRNA pathway of gene regulation by encoding their own miRNAs. Marek's disease (MD) is a widespread lymphomatous neoplastic disease of poultry caused by the highly contagious Marek's disease virus type 1 (MDV-1). Recent studies using virus-infected chicken embryo fibroblasts have identified at least eight miRNAs that map to the R(L)/R(S) region of the MDV genome. Since MDV is a lymphotropic virus that induces T-cell lymphomas, analysis of the miRNA profile in T-cell lymphoma would be more relevant for examining their role in oncogenesis. We determined the viral and host miRNAs expressed in MSB-1, a lymphoblastoid cell line established from an MDV-induced lymphoma of the spleen. In this paper, we report the identification of 13 MDV-1-encoded miRNAs (12 by direct cloning and 1 by Northern blotting) from MSB-1 cells. These miRNAs, five of which are novel MDV-1 miRNAs, map to the Meq and latency-associated transcript regions of the MDV genome. Furthermore, we show that miRNAs encoded by MDV-1 and the coinfected MDV-2 accounted for >60% of the 5,099 sequences of the MSB-1 "miRNAome." Several chicken miRNAs, some of which are known to be associated with cancer, were also cloned from MSB-1 cells. High levels of expression of MDV-1-encoded miRNAs and potentially oncogenic host miRNAs suggest that miRNAs may have major roles in MDV pathogenesis and neoplastic transformation.
Collapse
|
7
|
Okada T, Takagi M, Murata S, Onuma M, Ohashi K. Identification and characterization of a novel spliced form of the meq transcript in lymphoblastoid cell lines derived from Marek's disease tumours. J Gen Virol 2007; 88:2111-2120. [PMID: 17622612 DOI: 10.1099/vir.0.82744-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In tumour cell lines established from Marek's disease (MD) lymphomas L-meq is consistently expressed. It contains a 180 bp insertion encoding additional copies of the proline-rich repeat in the meq open reading frame and its product may contribute to the maintenance of MD virus (MDV) latency. In this study, we identified a novel spliced form of the meq transcript in MD-derived lymphoblastoid cell lines and in MDV-infected cells. This transcript, termed Deltameq, encodes an N-terminal 98 aa of the Meq protein and lacks part of the basic leucine zipper (bZIP) and transactivation domains. In MD cell lines, transcription of L-meq was significantly downregulated, while that of the Deltameq transcript was upregulated during apoptosis. These observations were also confirmed at the protein expression level. Reporter assays using meq- and interleukin-2 (IL-2)-promoter-driven luciferase vectors revealed that DeltaMeq suppressed transactivation by L-Meq or Meq in a dose-dependent manner. Immunoprecipitation confirmed that DeltaMeq was associated with L-Meq or Meq physically. These results suggest that DeltaMeq could be involved in apoptosis in MD cell lines as it works as a negative regulator of L-Meq and Meq by direct interaction.
Collapse
Affiliation(s)
- Tsukasa Okada
- Department of Microbiology and Immunology, Faculty of Agriculture, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Michihiro Takagi
- Department of Microbiology and Immunology, Faculty of Agriculture, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Shiro Murata
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Misao Onuma
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| |
Collapse
|