1
|
Yuasa H, Mantani Y, Masuda N, Nishida M, Arai M, Yokoyama T, Tsuruta H, Kawano J, Hoshi N, Kitagawa H. Mechanism of M-cell differentiation accelerated by proliferation of indigenous bacteria in rat Peyer's patches. J Vet Med Sci 2017; 79:1826-1835. [PMID: 28993550 PMCID: PMC5709560 DOI: 10.1292/jvms.17-0470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The mechanism by which indigenous bacteria on the follicle-associated epithelium (FAE) of lymphatic follicles (LFs) accelerate the differentiation of microvillous columnar epithelial cells (MV) into M-cells was
immunohistochemically investigated in rat Peyer’s patches. The results showed that the number of Toll-like receptor (TLR) -4+ M-cells was greater in the FAE with expansion of bacterial colonies (LFs with bacterial
colonies on the FAE: b-LF) than the FAE without expansion of bacterial colonies (nb-LF). TLR-4 was also expressed in the striated borders of MV upstream next to M-cells in the FAE of the b-LF. TLR-4+ vesicles were
frequently detected in the cytoplasms of MV with TLR-4+ striated borders upstream next to TLR-4+ M-cells in the FAE of b-LF. These findings suggest that TLR-4+ MV take up TLR-4 ligands and
differentiate into M-cells in the b-LF. Neither the distribution of RANK nor that of RANKL was coincident with that of M-cells in the b-LF. Moreover, RANK, but not RANKL, was expressed in intestinal villi, whereas cleaved
caspase-3 was immunonegative in the MV and M-cells of the FAE, unlike in villous epithelial cells. Therefore, RANK/RANKL signaling in the LF might contribute to the down-regulation of epithelial apoptosis to facilitate the
differentiation of MV into M-cells in rat Peyer’s patches.
Collapse
Affiliation(s)
- Hideto Yuasa
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Youhei Mantani
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Natsumi Masuda
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Miho Nishida
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Masaya Arai
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Toshifumi Yokoyama
- Laboratory of Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Hiroki Tsuruta
- Center for Collaborative Research and Technology Development, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Junichi Kawano
- Laboratory of Microbiology and Immunology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Nobuhiko Hoshi
- Laboratory of Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Hiroshi Kitagawa
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
2
|
Suppression of calpain expression by NSAIDs is associated with inhibition of cell migration in rat duodenum. Toxicology 2017; 383:1-12. [PMID: 28342779 DOI: 10.1016/j.tox.2017.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/20/2017] [Accepted: 03/20/2017] [Indexed: 12/27/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for the alleviation of pain and inflammation, but these drugs are also associated with a suite of negative side effects. Gastrointestinal (GI) toxicity is particularly concerning since it affects an estimated 70% of individuals taking NSAIDs routinely, and evidence suggests the majority of toxicity is occurring in the small intestine. Traditionally, NSAID-induced GI toxicity has been associated with indiscriminate inhibition of cyclooxygenase isoforms, but other mechanisms, including inhibition of cell migration, intestinal restitution, and wound healing, are likely to contribute to toxicity. Previous efforts demonstrated that treatment of cultured intestinal epithelial cells (IEC) with NSAIDs inhibits expression and activity of calpain proteases, but the effects of specific inhibition of calpain expression in vitro or the effects of NSAIDs on intestinal cell migration in vivo remain to be determined. Accordingly, we examined the effect of suppression of calpain protease expression with siRNA on cell migration in cultured IECs and evaluated the effects of NSAID treatment on epithelial cell migration and calpain protease expression in rat duodenum. Our results show that calpain siRNA inhibits protease expression and slows migration in cultured IECs. Additionally, NSAID treatment of rats slowed migration up the villus axis and suppressed calpain expression in duodenal epithelial cells. Our results are supportive of the hypothesis that suppression of calpain expression leading to slowing of cell migration is a potential mechanism through which NSAIDs cause GI toxicity.
Collapse
|
3
|
Silver K, Littlejohn A, Thomas L, Marsh E, Lillich JD. Inhibition of Kv channel expression by NSAIDs depolarizes membrane potential and inhibits cell migration by disrupting calpain signaling. Biochem Pharmacol 2015; 98:614-28. [PMID: 26549367 DOI: 10.1016/j.bcp.2015.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/22/2015] [Indexed: 02/07/2023]
Abstract
Clinical use of non-steroidal anti-inflammatory drugs (NSAIDs) is well known to cause gastrointestinal ulcer formation via several mechanisms that include inhibiting epithelial cell migration and mucosal restitution. The drug-affected signaling pathways that contribute to inhibition of migration by NSAIDs are poorly understood, though previous studies have shown that NSAIDs depolarize membrane potential and suppress expression of calpain proteases and voltage-gated potassium (Kv) channel subunits. Kv channels play significant roles in cell migration and are targets of NSAID activity in white blood cells, but the specific functional effects of NSAID-induced changes in Kv channel expression, particularly on cell migration, are unknown in intestinal epithelial cells. Accordingly, we investigated the effects of NSAIDs on expression of Kv1.3, 1.4, and 1.6 in vitro and/or in vivo and evaluated the functional significance of loss of Kv subunit expression. Indomethacin or NS-398 reduced total and plasma membrane protein expression of Kv1.3 in cultured intestinal epithelial cells (IEC-6). Additionally, depolarization of membrane potential with margatoxin (MgTx), 40mM K(+), or silencing of Kv channel expression with siRNA significantly reduced IEC-6 cell migration and disrupted calpain activity. Furthermore, in rat small intestinal epithelia, indomethacin and NS-398 had significant, yet distinct, effects on gene and protein expression of Kv1.3, 1.4, or 1.6, suggesting that these may be clinically relevant targets. Our results show that inhibition of epithelial cell migration by NSAIDs is associated with decreased expression of Kv channel subunits, and provide a mechanism through which NSAIDs inhibit cell migration and may contribute to NSAID-induced gastrointestinal (GI) toxicity.
Collapse
Affiliation(s)
- Kristopher Silver
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, United States.
| | - Alaina Littlejohn
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, United States
| | - Laurel Thomas
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, United States
| | - Elizabeth Marsh
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, United States
| | - James D Lillich
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, United States
| |
Collapse
|
4
|
Mantani Y, Yuasa H, Nishida M, Takahara EI, Omotehara T, Udayanga KGS, Kawano J, Yokoyama T, Hoshi N, Kitagawa H. Peculiar composition of epithelial cells in follicle-associated intestinal crypts of Peyer's patches in the rat small intestine. J Vet Med Sci 2014; 76:833-8. [PMID: 24572630 PMCID: PMC4108766 DOI: 10.1292/jvms.14-0026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The epithelial cell
composition was investigated in the follicle-associated intestinal crypt (FAIC) of rat
Peyer’s patches. The epithelium of the FAIC mainly consisted of columnar epithelial cells,
goblet cells and Paneth cells. The characteristics of secretory granules in Paneth cells
and goblet cells of both the FAIC and ordinary intestinal crypts (IC) were almost the same
in periodic acid-Schiff (PAS) reaction, Alcian blue (AB) staining and the
immunohistochemical detection of lysozymes and soluble phospholipase A2. Both goblet cells
and Paneth cells were markedly less frequent on the follicular sides than on the
anti-follicular sides of the FAIC. Goblet cells were also markedly less frequent in the
follicle-associated epithelium (FAE) than in the ordinary intestinal villi (IV).
Indigenous bacteria were more frequently adhered to FAE than to follicle-associated
intestinal villi or IV. These findings suggest that the host defense against indigenous
bacteria is inhibited on the follicular sides of FAIC, which might contribute to the
preferential settlement of indigenous bacteria on the FAE; they also suggest that
differentiation into secretory cells is inhibited in the epithelium of the follicular
sides of FAIC, so that differentiation into M cells might be admitted in the FAE of rat
Peyer’s patches. Furthermore, intermediate cells possessing characteristics of both Paneth
cells and goblet cells were rarely found in the FAIC, but not in the IC. This finding
suggests that the manner of differentiation into Paneth cells in the FAIC differs from
that in the IC.
Collapse
Affiliation(s)
- Youhei Mantani
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol 2013; 6:666-77. [PMID: 23695511 PMCID: PMC3686595 DOI: 10.1038/mi.2013.30] [Citation(s) in RCA: 470] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The transcytosis of antigens across the gut epithelium by microfold cells (M cells) is important for the induction of efficient immune responses to some mucosal antigens in Peyer's patches. Recently, substantial progress has been made in our understanding of the factors that influence the development and function of M cells. This review highlights these important advances, with particular emphasis on: the host genes which control the functional maturation of M cells; how this knowledge has led to the rapid advance in our understanding of M-cell biology in the steady state and during aging; molecules expressed on M cells which appear to be used as "immunosurveillance" receptors to sample pathogenic microorganisms in the gut; how certain pathogens appear to exploit M cells to infect the host; and finally how this knowledge has been used to specifically target antigens to M cells to attempt to improve the efficacy of mucosal vaccines.
Collapse
|
6
|
Constantinovits M, Sipos F, Molnár B, Tulassay Z, Műzes G. Organizer and regulatory role of colonic isolated lymphoid follicles in inflammation. ACTA PHYSIOLOGICA HUNGARICA 2012; 99:344-352. [PMID: 22982722 DOI: 10.1556/aphysiol.99.2012.3.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Gut-associated lymphoid tissue (GALT) is supposed to play an integral role in the organization of colonic repair mechanisms. Majority of the GALT is composed of isolated and aggregated lymphoid follicles distributed throughout the intestines. These lymphoid follicles, including Peyer's patches of the small, and isolated lymphoid follicles (ILFs) of both the small and large intestines, are composed of a specialised follicle associated epithelium overlying a subepithelial dome containing numerous dendritic cells, macrophages, T and B cells. Within inflammatory conditions the number, the diameter and the density of ILFs are increasing. Follicles are involved not just in immune surveillance, but their presence is also indispensable for normal colonic mucosal regeneration. Regarding mucosal repair the relation of ILFs to bone marrow derived stem cells, follicular dendritic cells, subepithelial myofibroblasts and crypt formations, and the putative organizer role of ILFs have not been clarified yet.
Collapse
|
7
|
Yokoo Y, Miyata H, Udayanga KGS, Qi WM, Takahara EI, Mantani Y, Yokoyama T, Kawano J, Hoshi N, Kitagawa H. Immunohistochemical and histoplanimetrical study on the spatial relationship between the settlement of indigenous bacteria and the secretion of bactericidal peptides in rat alimentary tract. J Vet Med Sci 2011; 73:1043-50. [PMID: 21519155 DOI: 10.1292/jvms.11-0114] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To clarify the regulatory mechanism by bactericidal peptides secretion, the secretion of bactericidal peptides was immunohistochemically and histoplanimetrically compared with the degree of Gram-positive/negative bacterial colonization throughout the rat alimentary tract. In the associated exocrine glands from the oral cavity to the stomach, no comparable differences were observed under the changes of development of indigenous bacterial colonies. In the small intestine, immunopositive granules for lysozyme and secretory phospholipase A2 (sPLA2) were markedly decreased, whereas immunopositive vacuoles in the Paneth cells were more increased at sites with hyper-development of indigenous bacterial colonies in the intervillous spaces than at sites with no or less development. No changes in exocrine glands were observed in the large intestine because of the constant existence of large quantities of bacteria. Gram-positive bacterial colonies on the mucosal surfaces were dominant from the oral cavity to the stomach. Gram-negative bacteria were dominant in the large intestine, and the distributions of both Gram-positive and negative bacteria were intermediate in the small intestine. These findings suggest that lysozyme and sPLA2 secreted from the Paneth cells contribute to the regulation of the proliferation of indigenous bacteria in the intervillous spaces of the small intestine, and that the inversion of distributions of Gram-positive and -negative bacteria in the alimentary tract might be caused by the secretion of lysozyme and sPLA2 in the small intestine.
Collapse
Affiliation(s)
- Yuh Yokoo
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe 657–8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sipos F, Muzes G. Isolated lymphoid follicles in colon: switch points between inflammation and colorectal cancer? World J Gastroenterol 2011; 17:1666-1673. [PMID: 21483625 PMCID: PMC3072629 DOI: 10.3748/wjg.v17.i13.1666] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/12/2011] [Accepted: 02/19/2011] [Indexed: 02/06/2023] Open
Abstract
Gut-associated lymphoid tissue is supposed to play a central role in both the organization of colonic repair mechanisms and colorectal carcinogenesis. In inflammatory conditions, the number, diameter and density of isolated lymphoid follicles (ILFs) increases. They are not only involved in immune surveillance, but their presence is also indispensable in normal mucosal regeneration of the colon. In carcinogenesis, ILFs may play a dual role. On the one hand they may support tumor growth and the metastatic process by vascular endothelial growth factor receptor signaling and producing a specific cytokine and cellular milieu, but on the other hand their presence is sometimes associated with a better prognosis. The relation of ILFs to bone marrow derived stem cells, follicular dendritic cells, subepithelial myofibroblasts or crypt formation, which are all involved in mucosal repair and carcinogenesis, has not been directly studied. Data about the putative organizer role of ILFs is scattered in scientific literature.
Collapse
|
9
|
YOKOO Y, MIYATA H, UDAYANGA KGS, QI WM, TAKAHARA EI, YOKOYAMA T, KAWANO J, HOSHI N, KITAGAWA H. Immunohistochemical Study on the Secretory Host Defense System of Bactericidal Peptides in Rat Digestive Organs. J Vet Med Sci 2011; 73:217-25. [DOI: 10.1292/jvms.10-0293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Yuh YOKOO
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University
| | - Hidenori MIYATA
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University
| | | | - Wang-Mei QI
- Department of Bioresource and Agrobioscience, Graduate of Science and Technology, Kobe University
| | - Ei-ichirou TAKAHARA
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University
| | - Toshifumi YOKOYAMA
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University
| | - Junichi KAWANO
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University
| | - Nobuhiko HOSHI
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University
| | - Hiroshi KITAGAWA
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University
| |
Collapse
|
10
|
Yamamoto K, Qi WM, Yokoo Y, Miyata H, Udayanga KGS, Kawano J, Yokoyama T, Hoshi N, Kitagawa H. Lectin histochemical detection of special sugars on the mucosal surfaces of the rat alimentary tract. J Vet Med Sci 2010; 72:1119-27. [PMID: 20379083 DOI: 10.1292/jvms.10-0011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Surfaces of the most luminal positions of mucosae are fundamental settlement sites of indigenous bacteria throughout the rat alimentary tract. In these positions, also epithelial cell-shedding sites, the special sugar expression in the glycocalyx is very important as it provides possible ligands of bacterial lectins for attachment to epithelial cells. Therefore, the sugar expression in glycocalyx of epithelial cells was lectin-histochemically surveyed using 21 lectins throughout the rat alimentary tract. From the tongue to the nonglandular part of the stomach, α-D-Man, α-D-Glc and α-D-GalNAc were detected on the surface of the keratinized stratified squamous epithelium. In the glandular part of the stomach, α-D-Man, β-D-Gal-4GlcNAc, D-Gal, D-GalNAc, D-GlcNAc, α-L-Fuc- α-D-Gal-β(1-4)GlcNAc and bisected triantennary N-glycans were detected on the surface of gastric superficial epithelial cells. From the duodenum to the ileum, (GlcNAc)(2-4) was expressed exclusively on the epithelial cells in the apical portions of the intestinal villi. From the cecum to the rectum, α-D-Man, β-D-Gal-4GlcNAc, D-Gal, D-GalNAc, α-D-Gal(1-3)D-GalNAc, (GalNAc)(n) and NeuNAc were expressed on the intestinal superficial epithelial cells. These results suggest that special sugars are expressed on the most luminal portions of mucosae as exclusive epithelial cell-shedding sites, and that sugar expression differs among the various segments of the alimentary tract. These site differences might reflect differences in resident bacterial species in the rat alimentary tract.
Collapse
Affiliation(s)
- Kenkichi Yamamoto
- Department of Bioresource and Agrobiosciences Graduate School of Science and Technology, Kobe University, Kobe, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sipos F, Muzes G, Galamb O, Spisák S, Krenács T, Tóth K, Tulassay Z, Molnár B. The possible role of isolated lymphoid follicles in colonic mucosal repair. Pathol Oncol Res 2010; 16:11-18. [PMID: 19557549 DOI: 10.1007/s12253-009-9181-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Accepted: 06/17/2009] [Indexed: 02/08/2023]
Abstract
The continuous reformation and rapid repair of the colonic mucosa is essential for avoiding the aggregation of pernicious mutations induced by bacterial, toxic, or mitogenic factors. Gut-associated lymphoid tissue is supposed to play a central role in the organization of the repair mechanisms. In inflammatory conditions, the number, the diameter and the density of isolated lymphoid follicles (ILFs) are increasing. They are involved not just in immune surveillance, but their presence is also indispensable in normal mucosal regeneration of the colon. The relation of ILFs to the components of mucosal renewal such as bone marrow derived stem cells, follicular dendritic cells, subepithelial myofibroblasts or crypt formation has not been directly studied, and data about their putative organizer role are scattered in scientific literature. Whether they act as a regenerative pool containing stem cells in case of mucosal damage, or they are responsible only for the optimal cytokine milieu for the differentiation of immigrating stem cells is a question under debate. Our aim is to review the relation of ILFs to the different elements of colonic mucosal repair.
Collapse
Affiliation(s)
- Ferenc Sipos
- 2nd Department of Internal Medicine, Cell Analysis Laboratory, Semmelweis University, 1088, Budapest, Szentkirályi street 46., Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Qi WM, Yamamoto K, Yokoo Y, Miyata H, Udayanga KGS, Kawano J, Yokoyama T, Hoshi N, Kitagawa H. Histoplanimetrical study on the relationship between cellular kinetics of epithelial cells and proliferation of indigenous bacteria in the rat colon. J Vet Med Sci 2009; 71:745-52. [PMID: 19578282 DOI: 10.1292/jvms.71.745] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to clarify the regulatory effects of epithelial kinetics on indigenous bacterial proliferation in the large intestine. The lifespan, migration speed and proliferation rate of crypt epithelial cells in the initial 20% of the colon (proximal colon) and the 50% of the colon (middle colon) in bromodeoxyuridine-administrated rats were histoplanimetrically and chronologically compared. The proximal colon possessed well-developed mucosal folds and a large amount of indigenous bacteria which filled the crypt lumen, whereas no folds or bacteria were found to occupy the crypt lumen in the middle colon. The cell lifespans were 32.2, 42.5 and 33.6 hr in the apical and the basal parts of the mucosal folds of the proximal colon, and in the middle colon, respectively. The migration speeds were 4.2, 2.1 and 3.3 microm/hr, respectively, while the appearance frequencies of proliferating cell nuclear antigen (PCNA)-positive crypt epithelial cells were 35.0, 24.6 and 33.8%. These findings suggest that the lifespan was shortened and the migration speed increased in the most luminal mucosa of colon, contributing to the elimination of the adhered bacteria from the most luminal mucosa. By contrast, the elongation of the lifespan and deceleration of the migration of epithelial cells in the basal parts of the mucosal folds might contribute to reliable settlement of indigenous bacteria, resulting in the maintenance of a large amount of indigenous bacteria in the lumen of the proximal colon.
Collapse
Affiliation(s)
- Wang-Mei Qi
- Department of Bioresource and Agrobiosciences, Graduate School of Science and Technology, Kobe University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Qi WM, Yamamoto K, Yokoo Y, Miyata H, Inamoto T, Udayanga KGS, Kawano J, Yokoyama T, Hoshi N, Kitagawa H. Histoplanimetrical study on the relationship between the cell kinetics of villous columnar epithelial cells and the proliferation of indigenous bacteria in rat small intestine. J Vet Med Sci 2009; 71:463-70. [PMID: 19420850 DOI: 10.1292/jvms.71.463] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The relationship between the kinetics of villous columnar epithelial cells and the expansion of colonies of indigenous bacteria from the narrow apical portions of intestinal villi was immunohistochemically and histoplanimetrically investigated in the small intestine of bromodeoxyuridine administred Wistar rats. As a result, the lifespan of villous columnar epithelial cells was slightly shorter in the distal ileum than in other portions of small intestine, accompanying the minimum height of the intestinal villi of the distal ileum in the small intestine. The migration speed of villous columnar epithelial cells was significantly decreased toward the distal small intestine. The migration speed in the distal ileum was about one-fourth of that in the duodenum. The migration speed of the villous columnar epithelial cells was greater and their lifespans were shorter in the sites with wide expansion of the indigenous bacterial colony from the narrow apical portions of the intestinal villi than that in sites with no or less expansion. Additionally, the expansion of the indigenous bacterial colony from narrow villous apices also immediately shortened the heights of the intestinal villi. These findings suggest that the migration speed of villous columnar epithelial cells might contribute to the regulation of the settlement of bacteria at the villous apices and the inevitable proliferation of indigenous bacteria at the intervillous spaces in the rat small intestine.
Collapse
Affiliation(s)
- Wang-Mei Qi
- Department of Bioresource and Agrobiosciences, Graduate School of Science and Technology, Kobe University, 657-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
TUNEL-based assays were used to demonstrate the presence of apoptotic cells in tissue sections derived from target tissues of animal models of different diseases. Emphasis was placed on tissue preparation and fixation, as these are crucial to successful histological staining. The protocol suggested here facilitates not only the reliable detection of TUNEL-positive cells but the immunodetection of different proteins in these cells and the surrounding tissues by DAB or fluorescence-based immunostaining.
Collapse
Affiliation(s)
- Eva Csizmadia
- Center for Vascular Biology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | |
Collapse
|