1
|
Hnasko R, Lin A, McGarvey J, Stanker L. Enhanced detection of infectious prions by direct ELISA from the brains of asymptomatic animals using DRM2-118 monoclonal antibody and Gdn-HCl. J Immunol Methods 2018; 456:38-43. [PMID: 29462604 DOI: 10.1016/j.jim.2018.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/15/2017] [Accepted: 02/15/2018] [Indexed: 11/16/2022]
Abstract
In this report we describe the use of a novel anti-prion monoclonal antibody (DRM2-118) for the direct detection of infectious prions by ELISA. Epitope mapping using overlapping hamster (SHa) prion peptides indicates DRM2-118 binding occurs between residues 93-100 and at the 310-helix (residues 163-170) between alpha helix-A and -B. This antibody shows broad species binding to endogenous prions from brain homogenates and corresponding recombinant prion proteins. To evaluate the performance of this MAb for the detection of prion proteins we performed an animal time course and evaluated prion detection from both crude brain homogenates and lipid raft fractions (DRM) by direct ELISA. Prion detection was significantly enhanced by the addition of the chaotropic guanidine-HCl (Gdn-HCl) during protein immobilization with detection of PK-resistant prion from asymptomatic animal brains at (45-DPI) and from lipid rafts at (24-DPI). Our data demonstrates enhanced prion detection from brain lipid rafts of asymptomatic animals by a simple direct ELISA using the DRM2-118 MAb combined with Gdn-HCl.
Collapse
Affiliation(s)
- Robert Hnasko
- United States Department of Agriculture (USDA), Agriculture Research Service (ARS), Pacific West Area (PWA), Western Regional Research Center (WRRC), Produce Safety and Microbiology Research Unit (PSM), 800 Buchanan Street, Albany, CA 94710, United States.
| | - Alice Lin
- United States Department of Agriculture (USDA), Agriculture Research Service (ARS), Pacific West Area (PWA), Western Regional Research Center (WRRC), Produce Safety and Microbiology Research Unit (PSM), 800 Buchanan Street, Albany, CA 94710, United States
| | - Jeffery McGarvey
- United States Department of Agriculture (USDA), Agriculture Research Service (ARS), Pacific West Area (PWA), Western Regional Research Center (WRRC), Foodborne Toxin Detection and Prevention (FTDP), 800 Buchanan Street, Albany, CA 94710, United States
| | - Larry Stanker
- United States Department of Agriculture (USDA), Agriculture Research Service (ARS), Pacific West Area (PWA), Western Regional Research Center (WRRC), Foodborne Toxin Detection and Prevention (FTDP), 800 Buchanan Street, Albany, CA 94710, United States
| |
Collapse
|
2
|
ONODERA T. Dual role of cellular prion protein in normal host and Alzheimer's disease. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:155-173. [PMID: 28413194 PMCID: PMC5489426 DOI: 10.2183/pjab.93.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/26/2017] [Indexed: 06/07/2023]
Abstract
Using PrPC-knockout cell lines, it has been shown that the inhibition of apoptosis through STI1 is mediated by PrPC-dependent SOD activation. Antioxidant PrPC may contribute to suppression of inflammasome activation. PrPC is functionally involved in copper metabolism, signal transduction, neuroprotection, and cell maturation. Recently several reports have shown that PrPC participates in trans-membrane signaling processes associated with hematopoietic stem cell replication and neuronal differentiation. In another role, PrPC also tends to function as a neurotoxic protein. Aβ oligomer, which is associated with neurodegeneration in Alzheimer's disease (AD), has also been reported to act as a ligand of PrPC. However, the physiological role of PrPC as an Aβ42-binding protein is not clear. Actually, PrPC is critical in Aβ42-mediated autophagy in neurons. PrPC shows a beneficial role in lipid rafts to promote autophagy. Further search for PrPC-interaction molecules using Prnp-/- mice and various types of Prnp-/- cell lines under various conditions may elucidate other important PrPC important functions.
Collapse
Affiliation(s)
- Takashi ONODERA
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Fluorescence-based bioassays for the detection and evaluation of food materials. SENSORS 2015; 15:25831-67. [PMID: 26473869 PMCID: PMC4634490 DOI: 10.3390/s151025831] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 12/12/2022]
Abstract
We summarize here the recent progress in fluorescence-based bioassays for the detection and evaluation of food materials by focusing on fluorescent dyes used in bioassays and applications of these assays for food safety, quality and efficacy. Fluorescent dyes have been used in various bioassays, such as biosensing, cell assay, energy transfer-based assay, probing, protein/immunological assay and microarray/biochip assay. Among the arrays used in microarray/biochip assay, fluorescence-based microarrays/biochips, such as antibody/protein microarrays, bead/suspension arrays, capillary/sensor arrays, DNA microarrays/polymerase chain reaction (PCR)-based arrays, glycan/lectin arrays, immunoassay/enzyme-linked immunosorbent assay (ELISA)-based arrays, microfluidic chips and tissue arrays, have been developed and used for the assessment of allergy/poisoning/toxicity, contamination and efficacy/mechanism, and quality control/safety. DNA microarray assays have been used widely for food safety and quality as well as searches for active components. DNA microarray-based gene expression profiling may be useful for such purposes due to its advantages in the evaluation of pathway-based intracellular signaling in response to food materials.
Collapse
|
4
|
Onodera T, Sakudo A, Tsubone H, Itohara S. Review of studies that have used knockout mice to assess normal function of prion protein under immunological or pathophysiological stress. Microbiol Immunol 2015; 58:361-74. [PMID: 24866463 DOI: 10.1111/1348-0421.12162] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/22/2014] [Accepted: 05/26/2014] [Indexed: 12/29/2022]
Abstract
Deletion of cellular isoform of prion protein (PrP(C)) increases neuronal predisposition to damage by modulating apoptosis and the negative consequences of oxidative stress. In vivo studies have demonstrated that PrP(C)-deficient mice are more prone to seizure, depression, and induction of epilepsy and experience extensive cerebral damage following ischemic challenge or viral infection. In addition, adenovirus-mediated overexpression of PrP(C) reduces brain damage in rat models of cerebral ischemia. In experimental autoimmune encephalomyelitis, PrP(C)-deficient mice reportedly have a more aggressive disease onset and less clinical improvement during the chronic phase than wild-type mice mice. In mice given oral dextran sulfate, PrP(C) has a potential protective role against inflammatory bowel disease. PrP(C)-deficient mice demonstrate significantly greater increases in blood glucose concentrations after intraperitoneal injection of glucose than wild-type mice. Further in vivo challenges to PrP gene-deficient models and conditional knockout models with siRNA and in vivo administration of PrP-ligating agents may assist in refining knowledge of the lymphoid function of PrP(C) and predicting the effects of anti-PrP treatment on the immune system. Together, these findings indicate that PrP(C) may have multiple neuroprotective and anti-inflammatory roles, which explains why this protein is so widely expressed.
Collapse
Affiliation(s)
- Takashi Onodera
- Research Center for Food Safety, School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657
| | | | | | | |
Collapse
|
5
|
Sakudo A, Onodera T. Prion protein (PrP) gene-knockout cell lines: insight into functions of the PrP. Front Cell Dev Biol 2015; 2:75. [PMID: 25642423 PMCID: PMC4295555 DOI: 10.3389/fcell.2014.00075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/22/2014] [Indexed: 11/13/2022] Open
Abstract
Elucidation of prion protein (PrP) functions is crucial to fully understand prion diseases. A major approach to studying PrP functions is the use of PrP gene-knockout (Prnp (-/-)) mice. So far, six types of Prnp (-/-) mice have been generated, demonstrating the promiscuous functions of PrP. Recently, other PrP family members, such as Doppel and Shadoo, have been found. However, information obtained from comparative studies of structural and functional analyses of these PrP family proteins do not fully reveal PrP functions. Recently, varieties of Prnp (-/-) cell lines established from Prnp (-/-) mice have contributed to the analysis of PrP functions. In this mini-review, we focus on Prnp (-/-) cell lines and summarize currently available Prnp (-/-) cell lines and their characterizations. In addition, we introduce the recent advances in the methodology of cell line generation with knockout or knockdown of the PrP gene. We also discuss how these cell lines have provided valuable insights into PrP functions and show future perspectives.
Collapse
Affiliation(s)
- Akikazu Sakudo
- Laboratory of Biometabolic Chemistry, Faculty of Medicine, School of Health Sciences, University of the Ryukyus Nishihara, Japan
| | - Takashi Onodera
- Research Center for Food Safety, School of Agricultural and Life Sciences, University of Tokyo Tokyo, Japan
| |
Collapse
|
6
|
Nishimura T, Sakudo A, Hashiyama Y, Yachi A, Saeki K, Matsumoto Y, Ogawa M, Sakaguchi S, Itohara S, Onodera T. Serum Withdrawal-Induced Apoptosis in ZrchI Prion Protein (PrP) Gene-Deficient Neuronal Cell Line Is Suppressed by PrP, Independent of Doppel. Microbiol Immunol 2013; 51:457-66. [PMID: 17446686 DOI: 10.1111/j.1348-0421.2007.tb03920.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous studies have shown that cellular prion protein (PrP(C)) plays anti-apoptotic and antioxidative role against cell death induced by serum-deprivation (SDP) in an immortalized prion protein gene-deficient neuronal cell line derived from Rikn prion protein (PrP) gene-deficient (Prnp(-/-)) mice, which ectopically produce excess Doppel (Dpl) (PrP-like glycoprotein). To investigate whether PrP(C) inhibits apoptotic neuronal cell death without Dpl, an immortalized cell line was established from the brain of ZrchI Prnp(-/-) mice, which do not show ectopic expression of Dpl. The results using a ZrchI neuronal Prnp(-/-) cell line (NpL2) showed that PrP(C) potently inhibited SDP-induced apoptotic cell death. Furthermore, PrP(C) expression enhanced the superoxide dismutase (SOD) activity in NpL2 cells. These results indicate that Dpl production did not affect anti-apoptotic and anti-oxidative functions of PrP, suggesting that PrP(C) may be directly correlated with protection against oxidative stress.
Collapse
Affiliation(s)
- Takuya Nishimura
- Department of Molecular Immunology, School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Barrenetxea G. Iatrogenic prion diseases in humans: an update. Eur J Obstet Gynecol Reprod Biol 2012; 165:165-9. [PMID: 22951159 DOI: 10.1016/j.ejogrb.2012.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 07/02/2012] [Accepted: 08/08/2012] [Indexed: 11/17/2022]
Abstract
Although Creutzfeldt-Jakob disease (CJD) was first identified in 1920, prevention of transmission raised particular concern all over the world when a new variant of the disease was first described in 1996. There is good evidence of iatrogenic transmission of this new variant among human beings through blood, blood components, tissues and growth hormone. Furthermore, four cases of iatrogenic transmission of CJD through fertility treatment with human pituitary-derived gonadotrophins have been reported. It is important to distinguish the categories of infectivity and categories of risk, which require consideration not only of the level of infectivity of a given tissue or fluid, but also the amount of tissue/fluid to which a person is exposed, the duration of exposure and the route by which infection is transmitted. The potential presence and infectivity of prion proteins in human urinary gonadotrophin preparations is a matter of debate. Differences in the sensitivity of bioassay methods are of paramount importance when considering the infectivity of a tissue. Some new methods might detect small amounts of agent in some tissues currently thought to be free of infectivity. No cases of human prion disease due to the use of urinary gonadotrophins have been recognized to date. However, the detection of prions in the urine of experimental animals and in some urine-based preparations, and the young age of fertility drug recipients, require the application of the precautionary principle to urinary preparations.
Collapse
Affiliation(s)
- Gorka Barrenetxea
- Quiron Bilbao, Assisted Reproduction Center, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Ribera Botica Vieja 23, 48014 Bilbao, Spain.
| |
Collapse
|
8
|
Zimmerman TA, Rubakhin SS, Sweedler JV. MALDI mass spectrometry imaging of neuronal cell cultures. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:828-36. [PMID: 21472517 PMCID: PMC3113696 DOI: 10.1007/s13361-011-0111-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 02/21/2011] [Accepted: 02/23/2011] [Indexed: 05/09/2023]
Abstract
Mass spectrometry imaging (MSI) provides the ability to detect and identify a broad range of analytes and their spatial distributions from a variety of sample types, including tissue sections. Here we describe an approach for probing neuropeptides from sparse cell cultures using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MSI--at single cell spatial resolution-in both MS and tandem MS modes. Cultures of Aplysia californica neurons are grown on an array of glass beads embedded in a stretchable layer of Parafilm M. As the membrane is stretched, the beads/neurons are separated physically and the separated beads/neurons analyzed via MALDI TOF MS. Compared with direct MS imaging of samples, the stretching procedure enhances analyte extraction and incorporation into the MALDI matrix, with negligible analyte spread between separated beads. MALDI tandem MSI using the stretched imaging approach yields localization maps of both parent and fragment ions from Aplysia pedal peptide, thereby confirming peptide identification. This methodology represents a flexible platform for MSI investigation of a variety of cell cultures, including functioning neuronal networks.
Collapse
Affiliation(s)
- Tyler A. Zimmerman
- Department of Chemistry, University of Illinois, 600 South Mathews Ave.; 63–5, Urbana, IL 61801, USA
- Beckman Institute, University of Illinois, Urbana, IL 61801, USA
| | - Stanislav S. Rubakhin
- Department of Chemistry, University of Illinois, 600 South Mathews Ave.; 63–5, Urbana, IL 61801, USA
- Beckman Institute, University of Illinois, Urbana, IL 61801, USA
| | - Jonathan V. Sweedler
- Department of Chemistry, University of Illinois, 600 South Mathews Ave.; 63–5, Urbana, IL 61801, USA
- Beckman Institute, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
9
|
Geoghegan JC, Miller MB, Kwak AH, Harris BT, Supattapone S. Trans-dominant inhibition of prion propagation in vitro is not mediated by an accessory cofactor. PLoS Pathog 2009; 5:e1000535. [PMID: 19649330 PMCID: PMC2713408 DOI: 10.1371/journal.ppat.1000535] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 07/08/2009] [Indexed: 11/21/2022] Open
Abstract
Previous studies identified prion protein (PrP) mutants which act as dominant negative inhibitors of prion formation through a mechanism hypothesized to require an unidentified species-specific cofactor termed protein X. To study the mechanism of dominant negative inhibition in vitro, we used recombinant PrPC molecules expressed in Chinese hamster ovary cells as substrates in serial protein misfolding cyclic amplification (sPMCA) reactions. Bioassays confirmed that the products of these reactions are infectious. Using this system, we find that: (1) trans-dominant inhibition can be dissociated from conversion activity, (2) dominant-negative inhibition of prion formation can be reconstituted in vitro using only purified substrates, even when wild type (WT) PrPC is pre-incubated with poly(A) RNA and PrPSc template, and (3) Q172R is the only hamster PrP mutant tested that fails to convert into PrPSc and that can dominantly inhibit conversion of WT PrP at sub-stoichiometric levels. These results refute the hypothesis that protein X is required to mediate dominant inhibition of prion propagation, and suggest that PrP molecules compete for binding to a nascent seeding site on newly formed PrPSc molecules, most likely through an epitope containing residue 172. Over the past two decades, various investigators have observed that heterozygous animals possessing two different forms of the gene encoding the prion protein (PrP) are more difficult to infect with some strains of infectious prions than homozygous animals possessing only the most commonly occurring form of the gene encoding PrP for that species. In 1995, it was hypothesized that the inhibition of prion infection in heterozygous animals might be caused by competition between the two different types of PrP molecules for binding to a common cofactor required for prion propagation, provisionally named “protein X,” through a specific portion of the PrP molecule. Here, we report that mixing different purified PrP molecules together in test tube reactions lacking accessory proteins can also interfere with prion propagation. We also found that some mutations of the putative protein X binding site do not inhibit the formation of hamster prions in chemical reactions. Our work suggests that different PrP molecules most likely compete for binding to newly formed prions rather than an accessory protein cofactor, and argues against the existence of protein X.
Collapse
Affiliation(s)
- James C. Geoghegan
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Michael B. Miller
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Aimee H. Kwak
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Brent T. Harris
- Department of Pathology, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Surachai Supattapone
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire, United States of America
- Department of Medicine, Dartmouth Medical School, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
10
|
Shi S, Dong CF, Tian C, Zhou RM, Xu K, Zhang BY, Gao C, Han J, Dong XP. The propagation of hamster-adapted scrapie PrPSc can be enhanced by reduced pyridine nucleotide in vitro. FEBS J 2009; 276:1536-45. [PMID: 19220459 DOI: 10.1111/j.1742-4658.2009.06871.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs), or prion diseases, are fatal neurodegenerative disorders caused by an infectious agent termed a prion, which can convert normal cellular prion protein (PrP(C)) into a pathologically misfolded isoform (PrP(Sc)). Taking advantage of protein misfolding cyclic amplification (PMCA), a series of experiments was conducted to investigate the possible influences of pyridine nucleotides on the propagation activities of hamster-adapted scrapie agents 263K and 139A in vitro using normal hamster brain homogenates and recombinant hamster PrP as the substrates. The results showed that PrP(Sc) from both scrapie agent 263K- and 139A-infected brains propagated more efficiently in PMCA with the addition of reduced NADPH, showing an obvious dose-dependent enhancement. Reduced NADH also prompted PrP(Sc) propagation, whereas NADP, NAD and vitamin C failed. Moreover, following incubation with NADPH, recombinant hamster PrP could be efficiently converted into the proteinase K-resistant form when exposed to the trace of PrP(Sc) from infected hamsters. Our data provide evidence that the reduced pyridine nucleotide plays an important role in the propagation of prion and this process seems to target PrP(C) molecules.
Collapse
Affiliation(s)
- Song Shi
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhang W, Wu J, Li Y, Carke RC, Wong T. The In Vitro Bioassay Systems for the Amplification and Detection of Abnormal Prion PrPSc in Blood and Tissues. Transfus Med Rev 2008; 22:234-42. [DOI: 10.1016/j.tmrv.2008.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Cellular prion protein prevents brain damage after encephalomyocarditis virus infection in mice. Arch Virol 2008; 153:1007-12. [DOI: 10.1007/s00705-008-0086-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 04/01/2008] [Indexed: 12/26/2022]
|
13
|
LeBrun M, Huang H, Li X. Susceptibility of cell substrates to PrPSc infection and safety control measures related to biological and biotherapeutical products. Prion 2008; 2:17-22. [PMID: 19164901 DOI: 10.4161/pri.2.1.6280] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Concerns over the potential for infectious prion proteins to contaminate human biologics and biotherapeutics have been raised from time to time. Transmission of the pathogenic form of prion protein (PrP(Sc)) through veterinary vaccines has been observed, yet no human case through the use of vaccine products has been reported. However, iatrogenic transmissions of PrP(Sc) in humans through blood components, tissues and growth hormone have been reported. These findings underscore the importance of reliable detection or diagnostic methods to prevent the transmission of prion diseases, given that the number of asymptomatic infected individuals remains unknown, the perceived incubation time for human prion diseases could be decades, and no cure of the diseases has been found yet. A variety of biochemical and molecular methods can selectively concentrate PrP(Sc) to facilitate its detection in tissues and cells. Furthermore, some methods routinely used in the manufacturing process of biological products have been found to be effective in reducing PrP(Sc) from the products. Questions remain unanswered as to the validation criteria of these methods, the minimal infectious dose of the PrP(Sc) required to cause infection and the susceptibility of cells used in gene therapy or the manufacturing process of biological products to PrP(Sc) infections. Here, we discuss some of these challenging issues.
Collapse
Affiliation(s)
- Matthew LeBrun
- Centre for Biologics Research, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
14
|
Sakudo A, Wu G, Onodera T, Ikuta K. Octapeptide repeat region of prion protein (PrP) is required at an early stage for production of abnormal prion protein in PrP-deficient neuronal cell line. Biochem Biophys Res Commun 2008; 365:164-9. [PMID: 17981146 DOI: 10.1016/j.bbrc.2007.10.158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 10/25/2007] [Indexed: 11/30/2022]
Abstract
An abnormal isoform of prion protein (PrP(Sc)), which is composed of the same amino acids as cellular PrP (PrP(C)) and has proteinase K (PK)-resistance, hypothetically converts PrP(C) into PrP(Sc). To investigate the region important for PrP(Sc) production, we examined the levels of PrP(Sc) in PrP gene-deficient cells (HpL3-4) expressing PrP(C) deleted of various regions including the octapeptide repeat region (OR) or hydrophobic region (HR). After Chandler or Obihiro prion infection, PrP(Sc) was produced in HpL3-4 cells expressing wild-type PrP(C) or PrP(C) deleted of HR at an early stage and further reduced to below the detectable level, whereas cells expressing PrP(C) deleted of OR showed no PrP(Sc) production. The results suggest that OR of PrP(C) is required for the early step of efficient PrP(Sc) production.
Collapse
Affiliation(s)
- Akikazu Sakudo
- Department of Virology, Center for Infectious Disease Control, Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | |
Collapse
|
15
|
Sakudo A, Onodera T, Ikuta K. PrPSc level and incubation time in a transgenic mouse model expressing Borna disease virus phosphoprotein after intracerebral prion infection. Neurosci Lett 2007; 431:81-5. [PMID: 18155836 DOI: 10.1016/j.neulet.2007.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 11/12/2007] [Accepted: 11/21/2007] [Indexed: 10/22/2022]
Abstract
Our previous studies have shown that the persistent expression of Borna disease virus phosphoprotein (BDV P) in mice leads to behavioral abnormalities resembling those in BDV-infected animals. In this study, we investigated whether the neurobehavioral abnormalities genetically induced by BDV P influence experimental prion disease. The effect of the phosphoprotein on prion diseases was evaluated based on the incubation time and survival curve, as well as the abnormal isoform of prion protein (PrP(Sc)) levels in brains of BDV P Tg mice treated with proteinase K (PK) treatment and subjected to western blotting. Increased expression of the BDV P transgene had no effect on the PrP(Sc) level, incubation time, or survival curve. The abnormalities induced by BDV P are different from those induced by prion diseases, indicating that the signaling cascades induced by the phosphoprotein differ from those induced by prion diseases.
Collapse
Affiliation(s)
- Akikazu Sakudo
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | |
Collapse
|