1
|
Hryn V, Kostylenko Y, Svintsytska N, Bilash V, Lytovka V. THE ISSUE OF HISTOLOGICAL IDENTIFICATION OF М-CELLS IN THE PEYER'S PATCHES OF ALBINO RAT SMALL INTESTINE. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2022; 75:1309-1312. [PMID: 35758449 DOI: 10.36740/wlek202205214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
OBJECTIVE The aim: Based on the above cytological signs of M-cells, we set the goal of more detailed clarification of some of their topological relationships with other enterocytes in the follicle-associated epithelium of Peyer's patches of albino rat small intestine. PATIENTS AND METHODS Materials and methods: 10 mature albino male rats weighted 200,0±20,0 g were involved into the study. Anatomical dissection with the sampling of the sections of the small intestine containing Peyer's patches was carried out with subsequent embedment of the latter into paraffin blocks and making of serial histological sections of 4 μm thick in the cross-section of the small intestine, followed with hematoxylin-eosin staining. The specimens were studied and documented on the "Konus" light microscope equipped. Morphometric characteristics of the specimen tissue structures were studied using the Sigeta X 1 mm/100 Div.x0.01mm stage micrometer. RESULTS Results: The findings of the study revealed enterocytes with phagocytic properties found in the lymphoid-associated epithelium of Peyer's patches of the small intestine of albino rats. Moreover, if they are clearly visualized at the light-optical level, then M-cells are poorly recognizable, which is consistent with a similar assessment made by other authors. CONCLUSION Conclusions: Given this, the issue on the topology and functional purpose of M-cells remains uncertain to date and, thereby, the prospect of further research is being outlined, which, in our opinion, can be successful using the method of stereomorphological analysis. For this purpose, multilayer plastic reconstruction methods can be used for serial semi-thin sections of Peyer's patches embedded in epoxy resin, according to the requirements of transmission electron microscopy.
Collapse
|
2
|
Yuasa H, Mantani Y, Masuda N, Nishida M, Arai M, Yokoyama T, Tsuruta H, Kawano J, Hoshi N, Kitagawa H. Mechanism of M-cell differentiation accelerated by proliferation of indigenous bacteria in rat Peyer's patches. J Vet Med Sci 2017; 79:1826-1835. [PMID: 28993550 PMCID: PMC5709560 DOI: 10.1292/jvms.17-0470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The mechanism by which indigenous bacteria on the follicle-associated epithelium (FAE) of lymphatic follicles (LFs) accelerate the differentiation of microvillous columnar epithelial cells (MV) into M-cells was
immunohistochemically investigated in rat Peyer’s patches. The results showed that the number of Toll-like receptor (TLR) -4+ M-cells was greater in the FAE with expansion of bacterial colonies (LFs with bacterial
colonies on the FAE: b-LF) than the FAE without expansion of bacterial colonies (nb-LF). TLR-4 was also expressed in the striated borders of MV upstream next to M-cells in the FAE of the b-LF. TLR-4+ vesicles were
frequently detected in the cytoplasms of MV with TLR-4+ striated borders upstream next to TLR-4+ M-cells in the FAE of b-LF. These findings suggest that TLR-4+ MV take up TLR-4 ligands and
differentiate into M-cells in the b-LF. Neither the distribution of RANK nor that of RANKL was coincident with that of M-cells in the b-LF. Moreover, RANK, but not RANKL, was expressed in intestinal villi, whereas cleaved
caspase-3 was immunonegative in the MV and M-cells of the FAE, unlike in villous epithelial cells. Therefore, RANK/RANKL signaling in the LF might contribute to the down-regulation of epithelial apoptosis to facilitate the
differentiation of MV into M-cells in rat Peyer’s patches.
Collapse
Affiliation(s)
- Hideto Yuasa
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Youhei Mantani
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Natsumi Masuda
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Miho Nishida
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Masaya Arai
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Toshifumi Yokoyama
- Laboratory of Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Hiroki Tsuruta
- Center for Collaborative Research and Technology Development, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Junichi Kawano
- Laboratory of Microbiology and Immunology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Nobuhiko Hoshi
- Laboratory of Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Hiroshi Kitagawa
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
3
|
Radloff J, Falchuk EL, Markov AG, Amasheh S. Molecular Characterization of Barrier Properties in Follicle-Associated Epithelium of Porcine Peyer's Patches Reveals Major Sealing Function of Claudin-4. Front Physiol 2017; 8:579. [PMID: 28855873 PMCID: PMC5557736 DOI: 10.3389/fphys.2017.00579] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/26/2017] [Indexed: 12/22/2022] Open
Abstract
The pig represents a preferred model for the analysis of intestinal immunology. However, the barrier of the follicle-associated epithelium (FAE) covering porcine Peyer's patches (PP) has not yet been characterized in detail. This study aimed to perform this characterization in order to pave the way toward an understanding of the functional contribution of epithelial barrier properties in gut immunology. Porcine tissue specimens were taken from the distal small intestine in order to obtain electrophysiological data of PP FAE and neighboring villous epithelium (VE), employing the Ussing chamber technique. Transepithelial resistance (TER) and paracellular fluorescein flux were measured, and tissues were morphometrically compared. In selfsame tissues, expression and localization of major tight junction (TJ) proteins (claudin-1, -2, -3, -4, -5, and -8) were analyzed. PP FAE specimens showed a higher TER and a lower apparent permeability for sodium fluorescein than VE. Immunoblotting revealed an expression of all claudins within both epithelia, with markedly stronger expression of the sealing TJ protein claudin-4 in PP FAE compared with the neighboring VE. Immunohistochemistry confirmed the expression and localization of all claudins in both PP FAE and VE, with stronger claudin-4 abundance in PP FAE. The results are in accordance with the physiological function of the FAE, which strongly regulates and limits antigen uptake determining a mandatory transcellular route for antigen presentation, highlighting the importance of this structure for the first steps of the intestinal immune response. Thus, this study provides detailed insights into the specific barrier properties of the porcine FAE covering intestinal PP, at the interface of intestinal immunology and barriology.
Collapse
Affiliation(s)
- Judith Radloff
- Institute of Veterinary Physiology, Freie Universität BerlinBerlin, Germany
| | - Evgeny L Falchuk
- Department of General Physiology, Saint Petersburg State UniversitySt. Petersburg, Russia
| | - Alexander G Markov
- Department of General Physiology, Saint Petersburg State UniversitySt. Petersburg, Russia
| | - Salah Amasheh
- Institute of Veterinary Physiology, Freie Universität BerlinBerlin, Germany
| |
Collapse
|
4
|
Shin KS. The Chemical Characteristics and Immune-Modulating Activity of Polysaccharides Isolated from Cold-Brew Coffee. Prev Nutr Food Sci 2017; 22:100-106. [PMID: 28702426 PMCID: PMC5503418 DOI: 10.3746/pnf.2017.22.2.100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/09/2017] [Indexed: 11/06/2022] Open
Abstract
To elucidate new biological ingredients in cold-brew coffee extracted with cold water, crude polysaccharide (CCP-0) was isolated by ethanol precipitation, and its immune-stimulating activities were assayed. CCP-0 mainly comprised galactose (53.6%), mannose (15.7%), arabinose (11.9%), and uronic acid (12.4%), suggesting that it might exist as a mixture of galactomannan and arabinogalactan. CCP-0 significantly increased cell proliferation on both murine peritoneal macrophages and splenocytes in a dose dependent manner. CCP-0 also significantly augmented nitric oxide and reactive oxygen species production by murine peritoneal macrophages. In addition, macrophages stimulated by CCP-0 enhanced production of various cytokines such as tumor necrosis factor-α, interleukin (IL)-6, and IL-12. In an in vitro assay for intestinal immune-modulating activity, CCP-0 showed higher bone-marrow cell-proliferation activity through Peyer's patch cells at 100 μg/mL than the negative control. These results suggest that CCP-0 may potentially enhance macrophage functions and the intestinal immune system.
Collapse
Affiliation(s)
- Kwang-Soon Shin
- Department of Food Science and Biotechnology, Kyonggi University, Gyeonggi 16227, Korea
| |
Collapse
|
5
|
Yuasa H, Mantani Y, Masuda N, Nishida M, Kawano J, Yokoyama T, Hoshi N, Kitagawa H. Differential expression of Toll-like receptor-2, -4 and -9 in follicle-associated epithelium from epithelia of both follicle-associated intestinal villi and ordinary intestinal villi in rat Peyer's patches. J Vet Med Sci 2016; 78:1797-1804. [PMID: 27593683 PMCID: PMC5240757 DOI: 10.1292/jvms.16-0349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The expressions of Toll-like receptor (TLR) -2, -4 and -9 were immunohistochemically
investigated in the follicle-associated epithelium (FAE), and epithelia of the
follicle-associated intestinal villus (FAIV) and ordinary intestinal villus (IV) in rat
Peyer’s patch regions with no bacterial colonies on the mucous membranes. TLR-2 was
expressed in the striated borders of microvillous columnar epithelial cells (MV) in both
FAIV and IV except in the apices. However, TLR-2 expression in the striated borders was
weaker in the epithelium of the follicular side of FAIV (f-FAIV) than in epithelia of IV
and the anti-follicular side of FAIV. TLR-4 and -9 were not expressed in the FAIV and IV.
In the FAE, TLR-2, -4 and -9 were not expressed in the striated borders of MV, but the
roofs of some typical M-cells were immunopositive for all TLRs. Especially, no
TLR-positive MV were found at the FAE sites where M-cells appeared most frequently. In the
follicle-associated intestinal crypt (FAIC), immunopositivity for all TLRs was observed in
the striated borders of MV and the luminal substances. In conclusion, the lower levels of
TLR-2 in both FAE and the epithelium of f-FAIV probably reduce recognition of indigenous
bacteria. TLR-2, -4 and -9 appear not to participate directly in differentiation of MV
into M-cells, because TLRs were not expressed in any MV in the upstream region of M-cells
in FAE with no settlement of indigenous bacteria in the rat Peyer’s patches.
Collapse
Affiliation(s)
- Hideto Yuasa
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Mantani Y, Yuasa H, Nishida M, Takahara EI, Omotehara T, Udayanga KGS, Kawano J, Yokoyama T, Hoshi N, Kitagawa H. Peculiar composition of epithelial cells in follicle-associated intestinal crypts of Peyer's patches in the rat small intestine. J Vet Med Sci 2014; 76:833-8. [PMID: 24572630 PMCID: PMC4108766 DOI: 10.1292/jvms.14-0026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The epithelial cell
composition was investigated in the follicle-associated intestinal crypt (FAIC) of rat
Peyer’s patches. The epithelium of the FAIC mainly consisted of columnar epithelial cells,
goblet cells and Paneth cells. The characteristics of secretory granules in Paneth cells
and goblet cells of both the FAIC and ordinary intestinal crypts (IC) were almost the same
in periodic acid-Schiff (PAS) reaction, Alcian blue (AB) staining and the
immunohistochemical detection of lysozymes and soluble phospholipase A2. Both goblet cells
and Paneth cells were markedly less frequent on the follicular sides than on the
anti-follicular sides of the FAIC. Goblet cells were also markedly less frequent in the
follicle-associated epithelium (FAE) than in the ordinary intestinal villi (IV).
Indigenous bacteria were more frequently adhered to FAE than to follicle-associated
intestinal villi or IV. These findings suggest that the host defense against indigenous
bacteria is inhibited on the follicular sides of FAIC, which might contribute to the
preferential settlement of indigenous bacteria on the FAE; they also suggest that
differentiation into secretory cells is inhibited in the epithelium of the follicular
sides of FAIC, so that differentiation into M cells might be admitted in the FAE of rat
Peyer’s patches. Furthermore, intermediate cells possessing characteristics of both Paneth
cells and goblet cells were rarely found in the FAIC, but not in the IC. This finding
suggests that the manner of differentiation into Paneth cells in the FAIC differs from
that in the IC.
Collapse
Affiliation(s)
- Youhei Mantani
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Yokoo Y, Miyata H, Udayanga KGS, Qi WM, Takahara EI, Mantani Y, Yokoyama T, Kawano J, Hoshi N, Kitagawa H. Immunohistochemical and histoplanimetrical study on the spatial relationship between the settlement of indigenous bacteria and the secretion of bactericidal peptides in rat alimentary tract. J Vet Med Sci 2011; 73:1043-50. [PMID: 21519155 DOI: 10.1292/jvms.11-0114] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To clarify the regulatory mechanism by bactericidal peptides secretion, the secretion of bactericidal peptides was immunohistochemically and histoplanimetrically compared with the degree of Gram-positive/negative bacterial colonization throughout the rat alimentary tract. In the associated exocrine glands from the oral cavity to the stomach, no comparable differences were observed under the changes of development of indigenous bacterial colonies. In the small intestine, immunopositive granules for lysozyme and secretory phospholipase A2 (sPLA2) were markedly decreased, whereas immunopositive vacuoles in the Paneth cells were more increased at sites with hyper-development of indigenous bacterial colonies in the intervillous spaces than at sites with no or less development. No changes in exocrine glands were observed in the large intestine because of the constant existence of large quantities of bacteria. Gram-positive bacterial colonies on the mucosal surfaces were dominant from the oral cavity to the stomach. Gram-negative bacteria were dominant in the large intestine, and the distributions of both Gram-positive and negative bacteria were intermediate in the small intestine. These findings suggest that lysozyme and sPLA2 secreted from the Paneth cells contribute to the regulation of the proliferation of indigenous bacteria in the intervillous spaces of the small intestine, and that the inversion of distributions of Gram-positive and -negative bacteria in the alimentary tract might be caused by the secretion of lysozyme and sPLA2 in the small intestine.
Collapse
Affiliation(s)
- Yuh Yokoo
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe 657–8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hondo T, Kanaya T, Takakura I, Watanabe H, Takahashi Y, Nagasawa Y, Terada S, Ohwada S, Watanabe K, Kitazawa H, Rose MT, Yamaguchi T, Aso H. Cytokeratin 18 is a specific marker of bovine intestinal M cell. Am J Physiol Gastrointest Liver Physiol 2011; 300:G442-53. [PMID: 21193527 DOI: 10.1152/ajpgi.00345.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Microfold (M) cells in the follicle-associated epithelium (FAE) of Peyer's patches have an important role in mucosal immune responses. A primary difficulty for investigations of bovine M cells is the lack of a specific molecular marker. To identify such a marker, we investigated the expression of several kinds of intermediate filament proteins using calf Peyer's patches. The expression patterns of cytokeratin (CK) 18 in jejunal and ileal FAE were very similar to the localization pattern of M cells recognized by scanning electron microscopy. Mirror sections revealed that jejunal CK18-positive cells had irregular and sparse microvilli, as well as pocket-like structures containing lymphocytes, typical morphological characteristic of M cells. However, CK18-negative cells had regular and dense microvilli on their surface, typical of the morphology of enterocytes. In contrast, CK20 immunoreactivity was detected in almost all villous epithelial cells and CK18-negative cells in the FAE. CK18-positive proliferating transit-amplifying cells in the crypt exchanged CK18 for CK20 above the mouth of the crypt and after moving to the villi; however, CK18-positive M cells in the crypt continued their expression of CK18 during movement to the FAE region. Terminal deoxynucleotidyl-transferase-mediated deoxyuridine-triphosphate-biotin nick-end labeling-positive apoptotic cells were specifically detected at the apical region of villi and FAE in the jejunum and ileum, and all were also stained for CK20. These data indicate that CK18 may be a molecular marker for bovine M cells in FAE and that M cells may transdifferentiate to CK20-positive enterocytes and die by apoptosis in the apex of the FAE.
Collapse
Affiliation(s)
- Tetsuya Hondo
- Cellular Biology Laboratory, Graduate School of Agricultural Science, Tohoku Univ., Sendai, Miyag, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Terahara K, Nochi T, Yoshida M, Takahashi Y, Goto Y, Hatai H, Kurokawa S, Jang MH, Kweon MN, Domino SE, Hiroi T, Yuki Y, Tsunetsugu-Yokota Y, Kobayashi K, Kiyono H. Distinct fucosylation of M cells and epithelial cells by Fut1 and Fut2, respectively, in response to intestinal environmental stress. Biochem Biophys Res Commun 2011; 404:822-8. [PMID: 21172308 DOI: 10.1016/j.bbrc.2010.12.067] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 12/14/2010] [Indexed: 11/26/2022]
Abstract
The intestinal epithelium contains columnar epithelial cells (ECs) and M cells, and fucosylation of the apical surface of ECs and M cells is involved in distinguishing the two populations and in their response to commensal flora and environmental stress. Here, we show that fucosylated ECs (F-ECs) were induced in the mouse small intestine by the pro-inflammatory agents dextran sodium sulfate and indomethacin, in addition to an enteropathogen derived cholera toxin. Although F-ECs showed specificity for the M cell-markers, lectin Ulex europaeus agglutinin-1 and our monoclonal antibody NKM 16-2-4, these cells also retained EC-phenotypes including an affinity for the EC-marker lectin wheat germ agglutinin. Interestingly, fucosylation of Peyer's patch M cells and F-ECs was distinctly regulated by α(1,2)fucosyltransferase Fut1 and Fut2, respectively. These results indicate that Fut2-mediated F-ECs share M cell-related fucosylated molecules but maintain distinctive EC characteristics, Fut1 is, therefore, a reliable marker for M cells.
Collapse
Affiliation(s)
- Kazutaka Terahara
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
YOKOO Y, MIYATA H, UDAYANGA KGS, QI WM, TAKAHARA EI, YOKOYAMA T, KAWANO J, HOSHI N, KITAGAWA H. Immunohistochemical Study on the Secretory Host Defense System of Bactericidal Peptides in Rat Digestive Organs. J Vet Med Sci 2011; 73:217-25. [DOI: 10.1292/jvms.10-0293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Yuh YOKOO
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University
| | - Hidenori MIYATA
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University
| | | | - Wang-Mei QI
- Department of Bioresource and Agrobioscience, Graduate of Science and Technology, Kobe University
| | - Ei-ichirou TAKAHARA
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University
| | - Toshifumi YOKOYAMA
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University
| | - Junichi KAWANO
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University
| | - Nobuhiko HOSHI
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University
| | - Hiroshi KITAGAWA
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University
| |
Collapse
|
11
|
Sayed SM, Abou El-Ella GA, Wahba NM, El Nisr NA, Raddad K, Abd El Rahman MF, Abd El Hafeez MM, Abd El Fattah Aamer A. Immune defense of rats immunized with fennel honey, propolis, and bee venom against induced staphylococcal infection. J Med Food 2009; 12:569-75. [PMID: 19627205 DOI: 10.1089/jmf.2008.0171] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The objective of this work was to evaluate the potency of bee product-immunized rats to overcome an induced Staphylococcus aureus infection. Forty rats were divided to eight groups: T1, T3, and T5 received, respectively, fennel honey, ethanol, and aqueous propolis extracts orally, and T2, T4, and T6 were administered the respective materials intraperitoneally; T7 received bee venom by the bee sting technique; and T8 was the control group. All groups were challenged by a bovine clinical mastitis isolate of S. aureus. Each rat received 2 mL of broth inoculated with 1 x 10(5) colony-forming units/mL intraperitoneally. Two weeks post-induced infection all rats were sacrificed and eviscerated for postmortem inspection and histopathological study. Three rats from T8 and one rat from T7 died before sacrifice. Another two rats, one each in T4 and T5, had morbidity manifestations. The remaining experimental animals showed apparently healthy conditions until time of sacrifice. Postmortem inspection revealed that all T8 rats showed different degrees of skeletal muscle and internal organ paleness with scattered focal pus nodules mainly on lungs and livers. All rats of the treated groups showed normal postmortem features except three rats. A dead rat in group T7 showed focal pus nodules on the lung surface only, whereas the affected two rats in groups T4 and T5 appeared normal except with some pus nodules, but much smaller than in the control, scattered on the hepatic surface and mesentery. Histopathological studies revealed that T8 rats had typical suppurative bronchopneumonia and or severe degenerative and necrobiotic changes in hepatic tissues. Three affected rats of the treated groups showed slight bronchopneumonia or degenerative hepatic changes only. The other animals of the treated groups showed completely normal parenchymatous organs with stimulated lymphatic tissues. It was concluded that all tested previously bee product-immunized rats could significantly challenge the induced S. aureus infection (P < .01). The effects were more pronounced in rats that had received fennel honey solution.
Collapse
Affiliation(s)
- S M Sayed
- Animal Health Research, Cairo, Egypt
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Zidan M, Pabst R. Unique Microanatomy of Ileal Peyer's Patches of the One Humped Camel (Camelus dromedarius) is not Age-Dependent. Anat Rec (Hoboken) 2008; 291:1023-8. [DOI: 10.1002/ar.20697] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Inamoto T, Kawata Y, Qi WM, Yamamoto K, Warita K, Kawano J, Yokoyama T, Hoshi N, Kitagawa H. Ultrastructural study on the epithelial responses against attachment of indigenous bacteria to epithelial membranes in peyer's patches of rat small intestine. J Vet Med Sci 2008; 70:235-41. [PMID: 18388422 DOI: 10.1292/jvms.70.235] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ultrastructure of epithelial responses against the membrane adhesion of indigenous bacteria was investigated in the follicle-associated epithelium (FAE) of rat small intestine. The most frequent adherence of the various morphological types of bacteria to the epithelial membranes was found at the apex of the FAE. The attachment sites were deeply invaginated, and their bottoms were deformed into a sharp cone shape. Four layers with different electron densities were formed just beneath the apical membranes by microfilaments which surrounded the invaginations. The electron density of each layer was gradually decreased as being apart from the invaginations. The extremities of some bacteria in the invaginations were deformed into sharpened shapes. The cell walls of the extremities of the bacteria were occasionally dissolved in the invaginations, and their cytoplasms were slightly swollen with low electron densities. In some invaginations, the attached bacteria were eliminated to leave their fragments such as filamentous debris and a part of cell walls. Finally these remnants disappeared completely. When the bacterial colonies existed in the middle region of the FAE, the attachment of bacteria resulted in the engulfment of bacteria by M cells. The degenerated bacteria whose cytoplasmic matrices were separated into high electron dense materials and cleared materials were occasionally engulfed by ordinary microvillous columnar epithelial cells or goblet cells throughout the FAE. These findings suggest that the epithelial cells reject the attachment of live indigenous bacteria and that the M cells absorb indigenous bacteria in rat Peyer's patches.
Collapse
Affiliation(s)
- Tetsurou Inamoto
- Department of Bioresource and Agrobiosciences, Graduate School of Science and Technology, Kobe University, Kobe, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Onishi S, Miyata H, Inamoto T, Qi WM, Yamamoto K, Yokoyama T, Warita K, Hoshi N, Kitagawa H. Immunohistochemical study on the delayed progression of epithelial apoptosis in follicle-associated epithelium of rat Peyer's patch. J Vet Med Sci 2008; 69:1123-9. [PMID: 18057826 DOI: 10.1292/jvms.69.1123] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is well known that some caspases in apoptosis is involved in determinant of terminal differentiation and maturation of various cells. Our previous study ultrastructurally clarified the differentiation into M cells from immature microvillous epithelial cells and the redifferentiation from M cells to microvillous epithelial cells in the follicle-associated epithelium (FAE) of rat Peyer's patch. In this study, the difference of epithelial apoptosis between the FAE of Peyer's patch and intestinal villi was immunohistochemically investigated in rat jejunoileum. As a result, cleaved caspase-3 was limited to several epithelial cells at the tip of FAE, whereas almost all of the epithelial cells were cleaved caspase-3 positive in intestinal villi. Cleaved caspase-9 was detected only in a few exfoliating or exfoliated epithelial cells of both FAE and intestinal villi. Nuclear DNA-fragmentation was detected only in several epithelial cells of the tip of FAE, while it was expressed from the middle regions in the intestinal villi. The DNase I expression of the epithelial cytoplasm was much weaker in FAE than in intestinal villi. Bcl-x expression was restricted in the apical cytoplasms of epithelial cells in the FAE, whereas it was restricted in whole cytoplasms in villous epithelial cells. These findings suggest that the progression of the apoptotic process in the epithelial cells of FAE is later than in the intestinal villi, so that the possibility of epithelial differentiation might be remained in the FAE, unlike in the intestinal villi.
Collapse
Affiliation(s)
- Sachiko Onishi
- Department of Bioresource and Agrobiosciences, Graduate School of Science and Technology, Kobe University, kobe 657-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|