1
|
Mantani Y, Sakata N, Kubota N, Shimada A, Nakanishi S, Yokoyama T, Hoshi N. Diurnal changes in bacterial settlement on the Peyer's patch and surrounding mucosa in the rat ileum and its effect against the intestinal immune system. Cell Tissue Res 2023:10.1007/s00441-023-03772-8. [PMID: 37148397 DOI: 10.1007/s00441-023-03772-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
Our previous study revealed the diurnal change in the indigenous bacteria settling on the terminal region of the rat ileum. In the present study, we investigated the diurnal change in indigenous bacteria on the most distal ileal Peyer's patch (PP) and surrounding ileal mucosa and explored how stimulation from indigenous bacteria for a day affects the intestinal immune system at the beginning of the light phase. Histological measurement revealed that bacteria adjacent to the follicle-associated epithelium of PP and to the villous epithelium of the surrounding ileal mucosa are more abundant at zeitgeber time (ZT)0 and ZT18 than at ZT12. On the other hand, tissue-section 16S rRNA amplicon sequencing revealed no significant difference between ZT0 and ZT12 in the bacterial composition on the ileal tissue including the PP. One-day treatment with an antibiotic (Abx) successfully impaired the settlement of bacteria around the ileal PP. In transcriptome analysis, 1-day Abx treatment led to the downregulation of several chemokines in both PP and ordinary ileal mucosa at ZT0. Histological analysis of the 1-day Abx group revealed decreases in both CD68+ macrophages in PP and naphthol AS-D chloroacetate esterase stain-positive mast cells in the ileal villi. Together, these findings suggest that the colonies of indigenous bacteria on the distal ileal PP and surrounding mucosa expand during the dark phase, which might lead to the expression of genes to regulate the intestinal immune system and contribute to the homeostasis of at least macrophages in PP and mast cells in the ileal mucosa.
Collapse
Affiliation(s)
- Youhei Mantani
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| | - Nanami Sakata
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Naoto Kubota
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Asaka Shimada
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Satoki Nakanishi
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
2
|
Sakata N, Mantani Y, Nakanishi S, Morishita R, Yokoyama T, Hoshi N. Histological study of diurnal changes in bacterial settlement in the rat alimentary tract. Cell Tissue Res 2022; 389:71-83. [PMID: 35403967 DOI: 10.1007/s00441-022-03626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
The composition of fecal bacteria is reported to change throughout the day, whereas the circadian rhythmicity of indigenous bacteria that settle on the epithelium is mostly unknown. The present study aimed to clarify the diurnal changes in the settlement of indigenous bacteria in the rat alimentary tract using histological analysis. The settlement of indigenous bacteria on the mucosal epithelium throughout the day and the diurnal changes in settlement levels were observed in the esophagus, the nonglandular area of the stomach, and the ileum. The peak of zeitgeber time (ZT) in the settlement level differed by segment: ZT 12 in the esophagus, ZT 6 in the nonglandular area of the stomach, and ZT 0 in the ileum. Moreover, 16S rRNA amplicon sequencing using tissue sections revealed that the compositions of the indigenous bacteria in the ileum differed among ZT. In the intervillous spaces of the ileum, the formation level of the mucus layer, one of the most fundamental host defenses against bacteria, was lowest at ZT 0. Bacteria were preferentially adjacent to the villous epithelium in the area without coverage by the mucus layer at ZT 0. These findings collectively suggest that the settlement level and possibly the composition of the indigenous bacteria changed diurnally in various segments of the alimentary tract, and the formation of the mucus layer might be the most likely to lead to such diurnal changes in indigenous bacteria, at least in the ileum.
Collapse
Affiliation(s)
- Nanami Sakata
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Youhei Mantani
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| | - Satoki Nakanishi
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Rinako Morishita
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
3
|
Öztel Z, Gazan S, Balcan E. Tunicamycin induced endoplasmic reticulum stress in the small intestine. Biotech Histochem 2020; 96:507-519. [PMID: 32962446 DOI: 10.1080/10520295.2020.1823481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Because the small intestine is exposed to variety of foreign substances, it participates in host immune response. We investigated whether the expression levels of intestinal MAdCAM-1, PECAM-1 (CD31) and CAV-1 are affected by endoplasmic reticulum (ER) stress following brief treatment with tunicamycin (TN). We administered a single dose of TN intraperitoneally. Twenty-four hours later, MAdCAM-1, PECAM-1 and CAV-1 expression levels in Peyer's patches and villi were examined using immunohistochemistry (IHC), immunofluorescence (IF) and western blotting. Immunostaining of MAdCAM-1 and CAV-1 in control and TN treated Peyer's patches and villi exhibited similar staining patterns. The immunoreactivity of PECAM-1 was similar for the control and TN treated Payer's patches, whereas staining was decreased significantly in TN treated villi. Our findings suggest that short term TN treatment did not affect leukocyte movement to lymphoid compartments of the small intestine, but it altered villus architecture due to decreased PECAM-1 expression.
Collapse
Affiliation(s)
- Zübeyde Öztel
- Department of Biology, Manisa Celal Bayar University, Manisa, Turkey
| | - Sibel Gazan
- Department of Biology, Manisa Celal Bayar University, Manisa, Turkey
| | - Erdal Balcan
- Department of Biology, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
4
|
Sun C, Zou Y, Wang D, Geng Z, Xu W, Liu F, Cao J. Construction of Chitosan-Zn-Based Electrochemical Biosensing Platform for Rapid and Accurate Assay of Actin. SENSORS 2018; 18:s18061865. [PMID: 29875352 PMCID: PMC6021900 DOI: 10.3390/s18061865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/28/2018] [Accepted: 06/05/2018] [Indexed: 01/21/2023]
Abstract
This work reports a study on the development of a sensitive immunosensor for the assay of actin, which is fabricated using sensing material chitosan-Zn nanoparticles (NPs) and anti-actin modified on glassy carbon electrode respectively. The prepared materials were characterized using transmission electron microscope (TEM), fourier transform infrared spectra (FTIR), X-ray diffraction (XRD) spectra, and circular dichroism (CD) techniques. Meanwhile, the electrochemical properties were studied by linear sweep voltammetric (LSV), electrochemical impedance spectra (EIS), and differential pulse voltammetry (DPV). According to the experiments, under the optimum conditions, the linear fitting equation was I (μA) = −17.31 + 78.97c (R2 = 0.9948). The linear range was from 0.0001 to 0.1 mg/mL and the detection limit (LOD, S/N = 3) was 21.52 ng/mL. The interference studies were also performed for checking the sensors’ selectivity to actin. With better properties of the chitosan-Zn NPs, the modified electrode is considered as a better candidate than Western blot or immunohistochemical method for real-time usability. The detection limit reported is the lowest till date and this method provides a new approach for quality evaluation.
Collapse
Affiliation(s)
- Chong Sun
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Ye Zou
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Daoying Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China.
| | - Zhiming Geng
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Weimin Xu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Fang Liu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Jinxuan Cao
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
5
|
Mantani Y, Nishida M, Yamamoto K, Miyamoto K, Yuasa H, Masuda N, Omotehara T, Tsuruta H, Yokoyama T, Hoshi N, Kitagawa H. Ultrastructural and Immunohistochemical Study on the Lamina Propria Cells Beneath Paneth Cells in the Rat Ileum. Anat Rec (Hoboken) 2018; 301:1074-1085. [PMID: 29316348 DOI: 10.1002/ar.23778] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/14/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022]
Abstract
Paneth cells secrete bactericidal substances in response to bacterial proliferation on the mucosal surface without directly contacting bacteria. However, the induction mechanism of this transient secretion has not been clarified, although nervous system and/or immunocompetent cells in the lamina propria (LP) might be involved. In this study, we ultrastructurally and immunohistochemically investigated which LP cells are localized beneath Paneth cells and examined the relationship between the Paneth cell-derived cellular processes which extended into the LP and the LP cells. The results showed that various cells-including blood capillary, subepithelial stromal cell, and nerve fiber-were present in the LP beneath Paneth cells. Endothelial cells of blood capillary were the cells most frequently found in this location; they were situated within 1 μm of the Paneth cells and possessed fenestration on the surfaces adjacent to Paneth cells. The Paneth cells rarely extended the cellular processes toward the LP across the basal lamina. Most of the cellular processes of Paneth cells contacted the subepithelial stromal cells. Immunohistochemistry revealed that the CD34+ CD31- αSMA- stromal cells preferentially localized in the LP beneath the intestinal crypt base, while PDGFRαhi αSMA+ stromal cells mainly localized around the lateral portions of the intestinal crypt and PDGFRαhi αSMA- stromal cells localized in the intestinal villus. From these findings, the existence of blood capillaries beneath Paneth cells might reflect the active exocrine function of Paneth cells. Furthermore, subepithelial stromal cells, probably with a CD34+ CD31- αSMA- PDGFRα-/lo phenotype, beneath the crypt base might affect Paneth cell activity by interacting with their cellular processes. Anat Rec, 301:1074-1085, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Youhei Mantani
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Miho Nishida
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Kyouji Yamamoto
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Kazuki Miyamoto
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Hideto Yuasa
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Natsumi Masuda
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Takuya Omotehara
- Department of Anatomy, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8042, Japan
| | - Hiroki Tsuruta
- Center for Collaborative Research and Technology Development, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan.,Research Unit for Future Creation & Innovation "Creative Dojo", Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Hiroshi Kitagawa
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
6
|
Yuasa H, Mantani Y, Masuda N, Nishida M, Kawano J, Yokoyama T, Hoshi N, Kitagawa H. Differential expression of Toll-like receptor-2, -4 and -9 in follicle-associated epithelium from epithelia of both follicle-associated intestinal villi and ordinary intestinal villi in rat Peyer's patches. J Vet Med Sci 2016; 78:1797-1804. [PMID: 27593683 PMCID: PMC5240757 DOI: 10.1292/jvms.16-0349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The expressions of Toll-like receptor (TLR) -2, -4 and -9 were immunohistochemically
investigated in the follicle-associated epithelium (FAE), and epithelia of the
follicle-associated intestinal villus (FAIV) and ordinary intestinal villus (IV) in rat
Peyer’s patch regions with no bacterial colonies on the mucous membranes. TLR-2 was
expressed in the striated borders of microvillous columnar epithelial cells (MV) in both
FAIV and IV except in the apices. However, TLR-2 expression in the striated borders was
weaker in the epithelium of the follicular side of FAIV (f-FAIV) than in epithelia of IV
and the anti-follicular side of FAIV. TLR-4 and -9 were not expressed in the FAIV and IV.
In the FAE, TLR-2, -4 and -9 were not expressed in the striated borders of MV, but the
roofs of some typical M-cells were immunopositive for all TLRs. Especially, no
TLR-positive MV were found at the FAE sites where M-cells appeared most frequently. In the
follicle-associated intestinal crypt (FAIC), immunopositivity for all TLRs was observed in
the striated borders of MV and the luminal substances. In conclusion, the lower levels of
TLR-2 in both FAE and the epithelium of f-FAIV probably reduce recognition of indigenous
bacteria. TLR-2, -4 and -9 appear not to participate directly in differentiation of MV
into M-cells, because TLRs were not expressed in any MV in the upstream region of M-cells
in FAE with no settlement of indigenous bacteria in the rat Peyer’s patches.
Collapse
Affiliation(s)
- Hideto Yuasa
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Mantani Y, Ito E, Nishida M, Yuasa H, Masuda N, Qi WM, Kawano J, Yokoyama T, Hoshi N, Kitagawa H. Ultrastructural study on the morphological changes in indigenous bacteria of mucous layer and chyme throughout the rat intestine. J Vet Med Sci 2015; 77:1121-8. [PMID: 25890991 PMCID: PMC4591154 DOI: 10.1292/jvms.15-0139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Indigenous bacteria in the alimentary tract are exposed to various bactericidal
peptides and digestive enzymes, but the viability status and morphological changes of
indigenous bacteria are unclear. Therefore, the present study aimed to ultrastructurally
clarify the degeneration and viability status of indigenous bacteria in the rat intestine.
The majority of indigenous bacteria in the ileal mucous layer possessed intact cytoplasm,
but the cytoplasm of a few bacteria contained vacuoles. The vacuoles were more frequently
found in bacteria of ileal chyme than in those of ileal mucous layer and were found in a
large majority of bacteria in both the mucous layer and chyme throughout the large
intestine. In the dividing bacteria of the mucous layer and chyme throughout the
intestine, the ratio of area occupied by vacuoles was almost always less than 10%. Lysis
or detachment of the cell wall in the indigenous bacteria was more frequently found in the
large intestine than in the ileum, whereas bacterial remnants, such as cell walls, were
distributed almost evenly throughout the intestine. In an experimental control of
long-time-cultured Staphylococcus epidermidis on agar, similar vacuoles
were also found, but cell-wall degeneration was never observed. From these findings,
indigenous bacteria in the mucous layer were ultrastructurally confirmed to be the source
of indigenous bacteria in the chyme. Furthermore, the results suggested that indigenous
bacteria were more severely degenerated toward the large intestine and were probably
degraded in the intestine.
Collapse
Affiliation(s)
- Youhei Mantani
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Mantani Y, Yuasa H, Nishida M, Takahara EI, Omotehara T, Udayanga KGS, Kawano J, Yokoyama T, Hoshi N, Kitagawa H. Peculiar composition of epithelial cells in follicle-associated intestinal crypts of Peyer's patches in the rat small intestine. J Vet Med Sci 2014; 76:833-8. [PMID: 24572630 PMCID: PMC4108766 DOI: 10.1292/jvms.14-0026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The epithelial cell
composition was investigated in the follicle-associated intestinal crypt (FAIC) of rat
Peyer’s patches. The epithelium of the FAIC mainly consisted of columnar epithelial cells,
goblet cells and Paneth cells. The characteristics of secretory granules in Paneth cells
and goblet cells of both the FAIC and ordinary intestinal crypts (IC) were almost the same
in periodic acid-Schiff (PAS) reaction, Alcian blue (AB) staining and the
immunohistochemical detection of lysozymes and soluble phospholipase A2. Both goblet cells
and Paneth cells were markedly less frequent on the follicular sides than on the
anti-follicular sides of the FAIC. Goblet cells were also markedly less frequent in the
follicle-associated epithelium (FAE) than in the ordinary intestinal villi (IV).
Indigenous bacteria were more frequently adhered to FAE than to follicle-associated
intestinal villi or IV. These findings suggest that the host defense against indigenous
bacteria is inhibited on the follicular sides of FAIC, which might contribute to the
preferential settlement of indigenous bacteria on the FAE; they also suggest that
differentiation into secretory cells is inhibited in the epithelium of the follicular
sides of FAIC, so that differentiation into M cells might be admitted in the FAE of rat
Peyer’s patches. Furthermore, intermediate cells possessing characteristics of both Paneth
cells and goblet cells were rarely found in the FAIC, but not in the IC. This finding
suggests that the manner of differentiation into Paneth cells in the FAIC differs from
that in the IC.
Collapse
Affiliation(s)
- Youhei Mantani
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mantani Y, Takahara EI, Takeuchi T, Kawano J, Yokoyama T, Hoshi N, Kitagawa H. Histoplanimetrical study on the relationship between invasion of indigenous bacteria into intestinal crypts and proliferation of epithelial cells in rat ascending colon. J Vet Med Sci 2013; 75:939-47. [PMID: 23470279 DOI: 10.1292/jvms.13-0036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The relationship between the invasion of indigenous bacteria into intestinal crypts and the proliferation of epithelial cells was histoplanimetrically investigated in the rat ascending colon. Indigenous bacteria preferentially adhered to the intestinal superficial epithelial cells in the mesenterium-attached mucosa (MAM) compared to those in the mesenterium-non-attached mucosa (MNM). Intestinal crypts with indigenous bacteria were also significantly more frequently found in MAM than in MNM. Total epithelial cells, columnar epithelial cells and goblet cells were significantly more abundant in the intestinal crypts with no-indigenous bacteria in MAM (MAM-C) than those in MNM (MNM-C), whereas the columnar epithelial cells were less abundant in MAM-C than in the intestinal crypts with indigenous bacteria in MAM (MAM-C-B). Columnar epithelial cells and goblet cells immuno-positive for proliferating cell nuclear antigen (PCNA) in MAM-C were more abundant than those in MNM-C, but less abundant than those in MAM-C-B. Toll-like receptor (TLR)-2, -4 and -9 were immuno-positive in the striated borders of the intestinal superficial epithelial cells, but their positive intensities were weaker in MAM than in MNM. From these findings, indigenous bacteria were confirmed to preferentially settle on the intestinal superficial epithelium of MAM in the rat ascending colon, and low TLRs-expression might contribute to the preferential settlement of indigenous bacteria in MAM. The increase of proliferating epithelial cells is probably induced by the invasion of indigenous bacteria into the intestinal crypts of MAM.
Collapse
Affiliation(s)
- Youhei Mantani
- Laboratory of Histophysiology, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Mantani Y, Yokoo Y, Kamezaki A, Udayanga KGS, Takahara EI, Takeuchi T, Kawano J, Yokoyama T, Hoshi N, Kitagawa H. Immunohistochemical detection of toll-like receptor-2, -4 and -9 in exocrine glands associated with rat alimentary tract. J Vet Med Sci 2012; 74:1429-38. [PMID: 22785180 DOI: 10.1292/jvms.12-0146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Localization of Toll-like receptors (TLRs) in the exocrine glands associated with the rat alimentary tract was immunohistochemically studied using anti-TLR antibodies. TLR-2, -4 and -9 were detected in the secretory granules of acinar cells or the luminal substances of the gustatory gland, extraorbital lacrimal gland, Harderian gland, proper gastric gland and pancreas. TLR-2 and -9 were also detected in the mucous acinar cells of the sublingual gland. Positivity for all TLRs was found in the striated borders of columnar epithelial cells and the luminal substances of the intestinal crypts throughout the small intestine, and also in the goblet cells throughout the large intestine. Only TLR-4 was detected in the secretory granules of Paneth cells. A reduction of TLR-4-positive secretory granules and the formation of TLR-4-positive vacuoles were found in the ileal Paneth cells under the hyper-proliferation of indigenous bacteria. In the apical to middle intervillous portions of the ileum, Gram-positive bacterial colonies were significantly more abundant than Gram-negative bacterial colonies, whereas this difference disappeared in the basal intervillous portions. These findings suggest that there are distribution differences in the secretory sources of soluble TLRs that possibly neutralize their luminal ligands, in the rat alimentary tract. Therefore, the bacterial ligand-recognition system composed of the membranous TLRs of villous columnar epithelial cells and soluble TLRs from crypt epithelial cells might contribute to host defense mechanisms for the selective elimination of Gram-positive bacteria rather than Gram-negative bacteria in the rat small intestine.
Collapse
Affiliation(s)
- Youhei Mantani
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yokoo Y, Miyata H, Udayanga KGS, Qi WM, Takahara EI, Mantani Y, Yokoyama T, Kawano J, Hoshi N, Kitagawa H. Immunohistochemical and histoplanimetrical study on the spatial relationship between the settlement of indigenous bacteria and the secretion of bactericidal peptides in rat alimentary tract. J Vet Med Sci 2011; 73:1043-50. [PMID: 21519155 DOI: 10.1292/jvms.11-0114] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To clarify the regulatory mechanism by bactericidal peptides secretion, the secretion of bactericidal peptides was immunohistochemically and histoplanimetrically compared with the degree of Gram-positive/negative bacterial colonization throughout the rat alimentary tract. In the associated exocrine glands from the oral cavity to the stomach, no comparable differences were observed under the changes of development of indigenous bacterial colonies. In the small intestine, immunopositive granules for lysozyme and secretory phospholipase A2 (sPLA2) were markedly decreased, whereas immunopositive vacuoles in the Paneth cells were more increased at sites with hyper-development of indigenous bacterial colonies in the intervillous spaces than at sites with no or less development. No changes in exocrine glands were observed in the large intestine because of the constant existence of large quantities of bacteria. Gram-positive bacterial colonies on the mucosal surfaces were dominant from the oral cavity to the stomach. Gram-negative bacteria were dominant in the large intestine, and the distributions of both Gram-positive and negative bacteria were intermediate in the small intestine. These findings suggest that lysozyme and sPLA2 secreted from the Paneth cells contribute to the regulation of the proliferation of indigenous bacteria in the intervillous spaces of the small intestine, and that the inversion of distributions of Gram-positive and -negative bacteria in the alimentary tract might be caused by the secretion of lysozyme and sPLA2 in the small intestine.
Collapse
Affiliation(s)
- Yuh Yokoo
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe 657–8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
YOKOO Y, MIYATA H, UDAYANGA KGS, QI WM, TAKAHARA EI, YOKOYAMA T, KAWANO J, HOSHI N, KITAGAWA H. Immunohistochemical Study on the Secretory Host Defense System of Bactericidal Peptides in Rat Digestive Organs. J Vet Med Sci 2011; 73:217-25. [DOI: 10.1292/jvms.10-0293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Yuh YOKOO
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University
| | - Hidenori MIYATA
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University
| | | | - Wang-Mei QI
- Department of Bioresource and Agrobioscience, Graduate of Science and Technology, Kobe University
| | - Ei-ichirou TAKAHARA
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University
| | - Toshifumi YOKOYAMA
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University
| | - Junichi KAWANO
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University
| | - Nobuhiko HOSHI
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University
| | - Hiroshi KITAGAWA
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University
| |
Collapse
|
13
|
Yamamoto K, Qi WM, Yokoo Y, Miyata H, Udayanga KGS, Kawano J, Yokoyama T, Hoshi N, Kitagawa H. Lectin histochemical detection of special sugars on the mucosal surfaces of the rat alimentary tract. J Vet Med Sci 2010; 72:1119-27. [PMID: 20379083 DOI: 10.1292/jvms.10-0011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Surfaces of the most luminal positions of mucosae are fundamental settlement sites of indigenous bacteria throughout the rat alimentary tract. In these positions, also epithelial cell-shedding sites, the special sugar expression in the glycocalyx is very important as it provides possible ligands of bacterial lectins for attachment to epithelial cells. Therefore, the sugar expression in glycocalyx of epithelial cells was lectin-histochemically surveyed using 21 lectins throughout the rat alimentary tract. From the tongue to the nonglandular part of the stomach, α-D-Man, α-D-Glc and α-D-GalNAc were detected on the surface of the keratinized stratified squamous epithelium. In the glandular part of the stomach, α-D-Man, β-D-Gal-4GlcNAc, D-Gal, D-GalNAc, D-GlcNAc, α-L-Fuc- α-D-Gal-β(1-4)GlcNAc and bisected triantennary N-glycans were detected on the surface of gastric superficial epithelial cells. From the duodenum to the ileum, (GlcNAc)(2-4) was expressed exclusively on the epithelial cells in the apical portions of the intestinal villi. From the cecum to the rectum, α-D-Man, β-D-Gal-4GlcNAc, D-Gal, D-GalNAc, α-D-Gal(1-3)D-GalNAc, (GalNAc)(n) and NeuNAc were expressed on the intestinal superficial epithelial cells. These results suggest that special sugars are expressed on the most luminal portions of mucosae as exclusive epithelial cell-shedding sites, and that sugar expression differs among the various segments of the alimentary tract. These site differences might reflect differences in resident bacterial species in the rat alimentary tract.
Collapse
Affiliation(s)
- Kenkichi Yamamoto
- Department of Bioresource and Agrobiosciences Graduate School of Science and Technology, Kobe University, Kobe, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Qi WM, Yamamoto K, Yokoo Y, Miyata H, Udayanga KGS, Kawano J, Yokoyama T, Hoshi N, Kitagawa H. Histoplanimetrical study on the relationship between cellular kinetics of epithelial cells and proliferation of indigenous bacteria in the rat colon. J Vet Med Sci 2009; 71:745-52. [PMID: 19578282 DOI: 10.1292/jvms.71.745] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to clarify the regulatory effects of epithelial kinetics on indigenous bacterial proliferation in the large intestine. The lifespan, migration speed and proliferation rate of crypt epithelial cells in the initial 20% of the colon (proximal colon) and the 50% of the colon (middle colon) in bromodeoxyuridine-administrated rats were histoplanimetrically and chronologically compared. The proximal colon possessed well-developed mucosal folds and a large amount of indigenous bacteria which filled the crypt lumen, whereas no folds or bacteria were found to occupy the crypt lumen in the middle colon. The cell lifespans were 32.2, 42.5 and 33.6 hr in the apical and the basal parts of the mucosal folds of the proximal colon, and in the middle colon, respectively. The migration speeds were 4.2, 2.1 and 3.3 microm/hr, respectively, while the appearance frequencies of proliferating cell nuclear antigen (PCNA)-positive crypt epithelial cells were 35.0, 24.6 and 33.8%. These findings suggest that the lifespan was shortened and the migration speed increased in the most luminal mucosa of colon, contributing to the elimination of the adhered bacteria from the most luminal mucosa. By contrast, the elongation of the lifespan and deceleration of the migration of epithelial cells in the basal parts of the mucosal folds might contribute to reliable settlement of indigenous bacteria, resulting in the maintenance of a large amount of indigenous bacteria in the lumen of the proximal colon.
Collapse
Affiliation(s)
- Wang-Mei Qi
- Department of Bioresource and Agrobiosciences, Graduate School of Science and Technology, Kobe University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yamamoto K, Qi WM, Yokoo Y, Miyata H, Udayanga KGS, Kawano J, Yokoyama T, Hoshi N, Kitagawa H. Histoplanimetrical study on the spatial relationship of distribution of indigenous bacteria with mucosal lymphatic follicles in alimentary tract of rat. J Vet Med Sci 2009; 71:621-30. [PMID: 19498289 DOI: 10.1292/jvms.71.621] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The spatial relationship between the distribution of indigenous bacteria (IB) and the situation of mucosal lymphatic follicles (LF) is histoplanimetrically studied in the rat alimentary tract. From the oral cavity to the nonglandular part of the stomach, IB adhered to the corneal layer of the most luminal mucosa. In the glandular part of the stomach, IB adhered only to the most luminal mucosa but not in the gastric pits. In the small intestine, IB consistently adhered around the apices of both intestinal villi and the domes, and their amounts decreased toward their basal portions. No IB entered the intestinal crypts. In the large intestine, IB consistently adhered to the most luminal mucosa. Numerous IB were suspended in the intestinal crypts of both the cecum and the proximal colon, whereas there were no IB in the crypts of the distal colon and the rectum. When IB spread over the basal portions of the intestinal villi, IB with the same morphology were detected on the neighboring LF, whereas no bacteria were detected on the neighboring LF, when IB were located in the apical to middle portions of the intestinal villi. This close relationship between the distribution of IB and mucosal LF was also observed in the large intestine. These results suggest that the most luminal mucosae are a fundamental settlement site of IB throughout the alimentary tract and that the hyperproliferation of IB's colonies might be detected by neighboring LF in the rat intestine.
Collapse
Affiliation(s)
- Kenkichi Yamamoto
- Department of Bioresource and Agrobiosciences, Kobe University, Kobe, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Qi WM, Yamamoto K, Yokoo Y, Miyata H, Inamoto T, Udayanga KGS, Kawano J, Yokoyama T, Hoshi N, Kitagawa H. Histoplanimetrical study on the relationship between the cell kinetics of villous columnar epithelial cells and the proliferation of indigenous bacteria in rat small intestine. J Vet Med Sci 2009; 71:463-70. [PMID: 19420850 DOI: 10.1292/jvms.71.463] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The relationship between the kinetics of villous columnar epithelial cells and the expansion of colonies of indigenous bacteria from the narrow apical portions of intestinal villi was immunohistochemically and histoplanimetrically investigated in the small intestine of bromodeoxyuridine administred Wistar rats. As a result, the lifespan of villous columnar epithelial cells was slightly shorter in the distal ileum than in other portions of small intestine, accompanying the minimum height of the intestinal villi of the distal ileum in the small intestine. The migration speed of villous columnar epithelial cells was significantly decreased toward the distal small intestine. The migration speed in the distal ileum was about one-fourth of that in the duodenum. The migration speed of the villous columnar epithelial cells was greater and their lifespans were shorter in the sites with wide expansion of the indigenous bacterial colony from the narrow apical portions of the intestinal villi than that in sites with no or less expansion. Additionally, the expansion of the indigenous bacterial colony from narrow villous apices also immediately shortened the heights of the intestinal villi. These findings suggest that the migration speed of villous columnar epithelial cells might contribute to the regulation of the settlement of bacteria at the villous apices and the inevitable proliferation of indigenous bacteria at the intervillous spaces in the rat small intestine.
Collapse
Affiliation(s)
- Wang-Mei Qi
- Department of Bioresource and Agrobiosciences, Graduate School of Science and Technology, Kobe University, 657-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|