1
|
Sun J, Wang X, Xu T, Ren M, Gao M, Lin H. Quercetin antagonizes apoptosis, autophagy and immune dysfunction induced by di(2-ethylhexyl) phthalate via ROS/ASK1/JNK pathway. Comp Biochem Physiol C Toxicol Pharmacol 2024; 285:109991. [PMID: 39103134 DOI: 10.1016/j.cbpc.2024.109991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/20/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer that can damage various organizations and physiques through oxidative stress. Quercetin (Que) is a rich polyphenol flavonoid with good anti-inflammatory and antioxidant effects. However, the protection mechanism of Que against DEHP exposure-induced IPEC-J2 cell injury and the implication of autophagy, apoptosis and immunity are still unclear. In this experiment, we looked into the toxicity regime of DEHP exposure on IPEC-J2 cells and the antagonistic function of Que on DEHP. In the experiment, 135 μM DEHP and/or 80 μM Que were used to treat the IPEC-J2 cells for 24h. Experiments indicated that DEHP exposure can cause increased reactive oxygen species (ROS) levels leading to oxidative stress, decreased CAT, T-AOC and GSH-Px activities, increased MDA and H2O2 accumulation, activated the ASK1/JNK signalling pathway, and further increases in the levels of apoptosis markers Bax, Caspase3, Caspase9, and Cyt-c, while reduced the Bcl-2 expression. DEHP also increased the expression of genes linked to autophagy (ATG5, Beclin1, LC3), while decreasing the expression of P62. Additionally, DEHP exposure led to elevated levels of IL1-β, IL-6, MCP-1, and TNF expression. When exposed to Que alone, there were no significant changes in cellular oxidative stress level, ASK1/JNK signalling pathway expression level, apoptosis, autophagy and cellular immune function. The combination of DEHP and Que treatment remarkably decreased the proportion of autophagy and apoptosis, and recovered cellular immunity. In summary, Que can attenuate DEHP-induced apoptosis and autophagy in IPEC-J2 cells by regulating the ROS/ASK1/JNK signalling pathway and improving the immune dysfunction of IPEC-J2 cells.
Collapse
Affiliation(s)
- Jiatong Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaodan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Mengyao Ren
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
2
|
Panchal H, Bhardwaj JK. Quercetin Supplementation Alleviates Cadmium Induced Genotoxicity-Mediated Apoptosis in Caprine Testicular Cells. Biol Trace Elem Res 2024; 202:1-14. [PMID: 38158459 DOI: 10.1007/s12011-023-04038-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Being a common environmental pollutant, cadmium causes detrimental health effects, including testicular injury. Herein, we document the ameliorative potential of quercetin, a potent antioxidant, against cadmium-induced geno-cytotoxicity and steroidogenic toxicity in goat testicular tissue. Cadmium induced different comet types (Type 0 - Type 4), indicating the varying degree of DNA-damage in testicular cells. The quantitative analysis at 50 and 100 µM cadmium concentration revealed the DNA damage with per cent tail DNA as 75.78 ± 1.49 and 94.65 ± 0.95, respectively, in comparison to the control group (8.87 ± 0.48) post 8 h exposure duration. Cadmium caused a substantial decrease in the activity of key steroidogenic enzymes' (3β-HSD and 17β-HSD) along with reduction of testosterone level in testicular tissue. Furthermore, cadmium treatment induced various types of deformities in sperm, altered the Bax/Bcl-2 expression ratio in testicular tissue and thus suggesting the apoptosis-mediated death of testicular cells. Simultaneous quercetin supplementation, however, significantly (p < 0.05) averted the aforementioned cadmium-mediated damage in testicular tissue. Conclusively, the cadmium-induced DNA-damage and decrease in steroidogenic potential results in death of testicular cells via apoptosis, which was significantly counteracted by quercetin co-supplementation, and thus preventing the cadmium-mediated cytotoxicity of testicular cells.
Collapse
Affiliation(s)
- Harish Panchal
- Department of Zoology, Shri Ramasamy Memorial University, Sikkim, 737102, India
| | - Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| |
Collapse
|
3
|
Lu X, Wu S, Ai H, Wu R, Cheng Y, Yun S, Chang M, Liu J, Meng J, Cheng F, Feng C, Cao J. Sparassis latifolia polysaccharide alleviated lipid metabolism abnormalities in kidney of lead-exposed mice by regulating oxidative stress-mediated inflammation and autophagy based on multi-omics. Int J Biol Macromol 2024; 278:134662. [PMID: 39128732 DOI: 10.1016/j.ijbiomac.2024.134662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Lead is a common environmental pollutant which can accumulate in the kidney and cause renal injury. However, regulatory effects and mechanisms of Sparassis latifolia polysaccharide (SLP) on lipid metabolism abnormality in kidney exposed to lead are not clarified. In this study, mice were used to construct an animal model to observe the histopathological changes in kidney, measure lead content, damage indicators, differentially expressed metabolites (DEMs) and genes (DEGs) in key signaling pathways that cause lipid metabolism abnormalities based on lipidomics and transcriptomics, which were later validated using qPCR and western blotting. Co-treatment of Pb and N-acetylcysteine (NAC) were used to verify the link between SLP and oxidative stress. Our results indicated that treatment with SLP identified 276 DEMs (including metabolism of glycerophospholipid, sphingolipid, glycerolipid and fatty acid) and 177 DEGs (including genes related to oxidative stress, inflammation, autophagy and lipid metabolism). Notably, regulatory effects of SLP on abnormal lipid metabolism in kidney were mainly associated with oxidative stress, inflammation and autophagy; SLP could regulate abnormal lipid metabolism in kidney by reducing oxidative stress and affecting its downstream-regulated autophagy and inflammatory to alleviate renal injury caused by lead exposure. This study provides a theoretical basis for SLP intervention in lead injury.
Collapse
Affiliation(s)
- Xingru Lu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Shanshan Wu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Honghu Ai
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Rui Wu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Shaojun Yun
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Collaborative Innovation Center of Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, Shanxi 030801, China
| | - Jingyu Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China
| | - Feier Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Collaborative Innovation Center of Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, Shanxi 030801, China.
| | - Jinling Cao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Collaborative Innovation Center of Quality and Efficiency of Loess Plateau Edible Fungi, Taigu, Shanxi 030801, China.
| |
Collapse
|
4
|
Kujawowicz K, Mirończuk-Chodakowska I, Witkowska AM. Sirtuin 1 as a potential biomarker of undernutrition in the elderly: a narrative review. Crit Rev Food Sci Nutr 2024; 64:9532-9553. [PMID: 37229564 DOI: 10.1080/10408398.2023.2214208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Undernutrition and inflammatory processes are predictors of early mortality in the elderly and require a rapid and accurate diagnosis. Currently, there are laboratory markers for assessing nutritional status, but new markers are still being sought. Recent studies suggest that sirtuin 1 (SIRT1) has the potential to be a marker for undernutrition. This article summarizes available studies on the association of SIRT1 and undernutrition in older people. Possible associations between SIRT1 and the aging process, inflammation, and undernutrition in the elderly have been described. The literature suggests that low SIRT1 levels in the blood of older people may not be associated with physiological aging processes, but with an increased risk of severe undernutrition associated with inflammation and systemic metabolic changes.
Collapse
Affiliation(s)
- Karolina Kujawowicz
- Department of Food Biotechnology, Medical University of Bialystok, Bialystok, Poland
| | | | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
5
|
Xue J, Liu H, Yin T, Zhou X, Song X, Zou Y, Li L, Jia R, Fu Y, Zhao X, Yin Z. Rat Hepatocytes Protect against Lead-Cadmium-Triggered Apoptosis Based on Autophagy Activation. TOXICS 2024; 12:285. [PMID: 38668508 PMCID: PMC11055059 DOI: 10.3390/toxics12040285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
Lead and cadmium are foodborne contaminants that threaten human and animal health. It is well known that lead and cadmium produce hepatotoxicity; however, defense mechanisms against the co-toxic effects of lead and cadmium remain unknown. We investigated the mechanism of autophagy (defense mechanism) against the co-induced toxicity of lead and cadmium in rat hepatocytes (BRL-3A cells). Cultured rat liver BRL-3A cell lines were co-cultured with 10, 20, 40 μM lead and 2.5, 5, 10 μM cadmium alone and in co-culture for 12 h and exposed to 5 mM 3-Methyladenine (3-MA), 10 μM rapamycin (Rapa), and 50 nM Beclin1 siRNA to induce cellular autophagy. Our results show that treatment of BRL-3A cells with lead and cadmium significantly decreased the cell viability, increased intracellular reactive oxygen species levels, decreased mitochondrial membrane potential levels, and induced apoptosis, which are factors leading to liver injury, and cell damage was exacerbated by co-exposure to lead-cadmium. In addition, the results showed that lead and cadmium co-treatment induced autophagy. We further observed that the suppression of autophagy with 3-MA or Beclin1 siRNA promoted lead-cadmium-induced apoptosis, whereas enhancement of autophagy with Rapa suppressed lead-cadmium-induced apoptosis. These results demonstrated that co-treatment with lead and cadmium induces apoptosis in BRL-3A cells. Interestingly, the activation of autophagy provides cells with a self-protective mechanism against induced apoptosis. This study provides insights into the role of autophagy in lead-cadmium-induced apoptosis, which may be beneficial for the treatment of lead-cadmium-induced liver injury.
Collapse
Affiliation(s)
- Junshu Xue
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Huimao Liu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianyi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xun Zhou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Renyong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.)
| | - Yuping Fu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinghong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
6
|
Xiao Y, Liu R, Tang W, Yang C. Cantharidin-induced toxic injury, oxidative stress, and autophagy attenuated by Astragalus polysaccharides in mouse testis. Reprod Toxicol 2024; 123:108520. [PMID: 38056682 DOI: 10.1016/j.reprotox.2023.108520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/17/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Cantharidin (CTD) is a chemical constituent derived from Mylabris and has good antitumor effects, but its clinical use is restricted by its inherent toxicity. However, few researches have reported its reproductive toxicity and mechanisms. This study aims to assess CTD's toxicity on mouse testes and the protective effect of Astragalus polysaccharides (APS). Briefly, biochemical analysis, histopathology, transmission electron microscopy, immunohistochemistry, and Western blotting were used to evaluate the oxidative damage of mouse testicular tissue after exposure to CTD and treatment by APS. Our research suggests a dramatic decrease in testicular index and serum testosterone levels after CTD exposure. The testis showed obvious oxidative damage accompanied by an increase in mitochondrial autophagy, the Nfr2-Keap1 pathway was inhibited, and the blood-testis barrier was destroyed. Notably, these changes were significantly improved after APS treatment. The internal mechanisms of APS ameliorate CTD-induced testicular oxidative damage in mice may be closely connected to regulatory the Nrf2-Keap1 signaling pathway, restraining autophagy, and repairing the blood-testis barrier, providing theoretical support for further study on the reproductive toxicity mechanism of CTD and clinical treatments to ameliorate it.
Collapse
Affiliation(s)
- Yuanyuan Xiao
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; School of Traditional Chinese medicine health preservation, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Ruxia Liu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Wenchao Tang
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Changfu Yang
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| |
Collapse
|
7
|
Onur M, Yalçın E, Çavuşoğlu K, Acar A. Elucidating the toxicity mechanism of AFM 2 and the protective role of quercetin in albino mice. Sci Rep 2023; 13:1237. [PMID: 36690753 PMCID: PMC9870885 DOI: 10.1038/s41598-023-28546-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Aflatoxin M2 (AFM2) is a type of mycotoxin detected in milk or dairy products from animals consuming contaminated feed. In this study, the toxicity mechanism of AFM2 and the protective effects of quercetin were investigated in albino mice. For this purpose, the mice were divided into 6 groups and the groups were fed with quercetin and AFM2. The toxic effects of AFM2 and the protective properties of quercetin were investigated using physiological, biochemical and cytogenetic parameters. The genotoxic mechanism of AFM2 and the protective role of quercetin were investigated by molecular docking, which is an in silico model. As a result, 16 mg/kg b.w AFM2 administration caused serious changes in body weight, organ index, kidney and liver weight, and deterioration of antioxidant/oxidant balance in liver and kidney organs. The decrease in glutathione levels along with an increase in malondialdehyde (MDA) levels in the liver and kidney after AFM2 administration indicates that oxidative stress is induced. The increases in alanine transaminase (ALT) and aspartat transaminase (AST) levels, which are indicators of liver damage, and the increases in serum levels of blood urea nitrogen (BUN) and creatinine, which are indicators of kidney damage, confirm the damage in both organs. AFM2 also caused genotoxicity by inducing micronucleus (MN) and chromosomal abnormalities (CAs) in bone marrow tissue. It has been determined that AFM2, which exhibits genotoxicity as a result of its clastogenic and aneugenic effects, causes CAs by interacting with DNA. Quercetin provided significant protection by improving liver and kidney tissues, partial normalization in serum parameter levels, and severe reductions in MN and CAs. The highest protection was determined as 74.1% against dicentric chromosome formations in 50 mg/kg b.w quercetin application. The interaction of quercetin with xanthine oxidase and nitric oxide synthase enzymes was determined in silico with an inhibition constant in the range of 283.71-476.17 nM. These interactions cause changes in the activity of enzymes, reducing the oxidative load in the cell, and in this way, quercetin provides protection. All toxic effects induced by AFM2 were decreased with quercetin administration dose-dependently, and this protective effect was associated with quercetin's reduction of oxidative load by inhibiting the free radical-producing enzyme. All toxic effects caused by AFM2 were decreased with quercetin administration in a dose-dependent manner, and this protective effect was associated with quercetin's reduction of oxidative load by inhibiting the enzyme that produces free radicals.
Collapse
Affiliation(s)
- Muhammed Onur
- Department of Biology, Institute of Science, Giresun University, Giresun, Turkey
| | - Emine Yalçın
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkey
| | - Kültiğin Çavuşoğlu
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkey.
| | - Ali Acar
- Department of Medical Services and Techniques, Vocational School of Health Services, Giresun University, Giresun, Turkey
| |
Collapse
|
8
|
Zal F, Neisy A, Koohpeyma F, Khorchani M, Karimi F. Quercetin modulates ovarian autophagy–related molecules and stereological parameters in a rat model of PCOS. Asian Pac J Trop Biomed 2023. [DOI: 10.4103/2221-1691.367686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
9
|
Požgajová M, Navrátilová A, Kovár M. Curative Potential of Substances with Bioactive Properties to Alleviate Cd Toxicity: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12380. [PMID: 36231680 PMCID: PMC9566368 DOI: 10.3390/ijerph191912380] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Rapid urbanization and industrialization have led to alarming cadmium (Cd) pollution. Cd is a toxic heavy metal without any known physiological function in the organism, leading to severe health threat to the population. Cd has a long half-life (10-30 years) and thus it represents serious concern as it to a great extent accumulates in organs or organelles where it often causes irreversible damage. Moreover, Cd contamination might further lead to certain carcinogenic and non-carcinogenic health risks. Therefore, its negative effect on population health has to be minimalized. As Cd is able to enter the body through the air, water, soil, and food chain one possible way to defend and eliminate Cd toxicities is via dietary supplements that aim to eliminate the adverse effects of Cd to the organism. Naturally occurring bioactive compounds in food or medicinal plants with beneficial, mostly antioxidant, anti-inflammatory, anti-aging, or anti-tumorigenesis impact on the organism, have been described to mitigate the negative effect of various contaminants and pollutants, including Cd. This study summarizes the curative effect of recently studied bioactive substances and mineral elements capable to alleviate the negative impact of Cd on various model systems, supposing that not only the Cd-derived health threat can be reduced, but also prevention and control of Cd toxicity and elimination of Cd contamination can be achieved in the future.
Collapse
Affiliation(s)
- Miroslava Požgajová
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Alica Navrátilová
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Marek Kovár
- Institute of Plant and Environmental Science, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| |
Collapse
|
10
|
Huang R, Ding L, Ye Y, Wang K, Yu W, Yan B, Liu Z, Wang J. Protective effect of quercetin on cadmium-induced renal apoptosis through cyt-c/caspase-9/caspase-3 signaling pathway. Front Pharmacol 2022; 13:990993. [PMID: 36052148 PMCID: PMC9425064 DOI: 10.3389/fphar.2022.990993] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Cadmium (Cd), a heavy metal, has harmful effects on animal and human health, and it can also obviously induce cell apoptosis. Quercetin (Que) is a flavonoid compound with antioxidant and other biological activities. To investigate the protective effect of Que on Cd-induced renal apoptosis in rats. 24 male SD rats were randomly divided into four groups. They were treated as follows: control group was administered orally with normal saline (10 ml/kg); Cd group was injected with 2 mg/kg CdCl2 intraperitoneally; Cd + Que group was injected with 2 mg/kg CdCl2 and intragastric administration of Que (100 mg/kg); Que group was administered orally with Que (100 mg/kg). The experimental results showed that the body weight of Cd-exposed rats significantly decreased and the kidney coefficient increased. In addition, Cd significantly increased the contents of Blood Urea Nitrogen, Creatinine and Uric acid. Cd also increased the glutathione and malondialdehyde contents in renal tissues. The pathological section showed that Cd can cause pathological damages such as narrow lumen and renal interstitial congestion. Cd-induced apoptosis of kidney, which could activate the mRNA and protein expression levels of Cyt-c, Caspase-9 and Caspase-3 were significantly increased. Conversely, Que significantly reduces kidney damage caused by Cd. Kidney pathological damage was alleviated by Que. Que inhibited Cd-induced apoptosis and decreased Cyt-c, Caspase-9 and Caspase-3 proteins and mRNA expression levels. To sum up, Cd can induce kidney injury and apoptosis of renal cells, while Que can reduce Cd-induced kidney damage by reducing oxidative stress and inhibiting apoptosis. These results provide a theoretical basis for the clinical application of Que in the prevention and treatment of cadmium poisoning.
Collapse
Affiliation(s)
- Ruxue Huang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Lulu Ding
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Ying Ye
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Ke Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Wenjing Yu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Bingzhao Yan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jicang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- *Correspondence: Jicang Wang,
| |
Collapse
|
11
|
Wang J, Wang K, Ding L, Zhao P, Zhang C, Wang H, Yang Z, Liu Z. Alleviating effect of quercetin on cadmium-induced oxidative damage and apoptosis by activating the Nrf2-keap1 pathway in BRL-3A cells. Front Pharmacol 2022; 13:969892. [PMID: 36034823 PMCID: PMC9403134 DOI: 10.3389/fphar.2022.969892] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022] Open
Abstract
Cadmium (Cd) is a toxic heavy metal extensively used in industrial and agricultural production. Among the main mechanisms of Cd-induced liver damage is oxidative stress. Quercetin (QE) is a natural antioxidant. Herein, the protective effect of QE on Cd-induced hepatocyte injury was investigated. BRL-3A cells were treated with 12.5 μmol/L CdCl2 and/or 5 μmol/L QE for 24 h. The cells and medium supernatant were collected, and the ALT, AST, and LDH contents of the medium supernatant were detected. The activities or contents of SOD, CAT, GSH, and MDA in cells were determined. Intracellular ROS levels were examined by flow cytometry. Apoptosis rate and mitochondrial-membrane potential (ΔΨm) were detected by Hoechst 33,258 and JC-1 methods, respectively. The mRNA and protein expression levels of Nrf2, NQO1, Keap1, CytC, caspase-9, caspase-3, Bax, and Bcl-2 were determined by real-time PCR (RT-PCR) and Western blot methods. Results showed that Cd exposure injured BRL-3A cells, the activity of antioxidant enzymes decreased and the cell ROS level increased, whereas the ΔΨm decreased, and the expression of apoptotic genes increased. Cd inhibited the Nrf2-Keap1 pathway, decreased Nrf2 and NQO1, or increased Keap1 mRNA and protein expression. Through the combined action of Cd and QE, QE activated the Nrf2-Keap1 pathway. Consequently, antioxidant-enzyme activity decreased, cellular ROS level decreased, ΔΨm increased, Cd-induced BRL-3A cell damage was alleviated, and cell apoptosis was inhibited. After the combined action of QE and Cd, Nrf2 and NQO1 mRNA and protein expression increased, Keap1 mRNA and protein expression decreased. Therefore, QE exerted an antioxidant effect by activating the Nrf2-Keap1 pathway in BRL-3A cells.
Collapse
Affiliation(s)
- Jicang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Ke Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Lulu Ding
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Pengli Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Cai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Hongwei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Zijun Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Alshehri AS, El-Kott AF, El-Kenawy AE, Zaki MSA, Morsy K, Ghanem RA, Salem ET, Ebealy ER, Khalifa HS, Altyar AE, AlGwaiz HIM, Ibrahim EH, Mahmoud MS, Dallak MA, Abd-Ella EM. The ameliorative effect of kaempferol against CdCl 2- mediated renal damage entails activation of Nrf2 and inhibition of NF-kB. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57591-57602. [PMID: 35355181 DOI: 10.1007/s11356-022-19876-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
This study evaluated the nephroprotective effect of kaempferol against cadmium chloride (CdCl2) -induced nephropathy in rats. It also investigated if activation of Nrf2 is a common mechanism of action. Adult male rats ((150 ± 15 g) were divided into 4 groups (n = 8/each) as a control (1% DMSO, orally), control + kaempferol (200 mg/kg, orally), CdCl2 (50 mg/l in drinking water), and CdCl2 + kaempferol (200 mg/kg)-treated rats. All treatments were conducted for 8 weeks. Kaempferol significantly attenuated CdCl2-induced weight loss, reduction in kidney weights, and the injury in the glomeruli, proximal tubules, and distal tubules in the treated rats. It also significantly lowered serum levels of urea and creatinine, increased urine output and urinary creatinine levels and clearance but reduced urinary levels of albumin urinary albumin exertion (UAER), and urinary albumin/creatinine ratio (UACR) in these rats. In parallel, kaempferol downregulated renal levels of cleaved caspase-3 and Bax and unregulated those of Bcl2. In the kidney tissues of the control animals and CdCl2 rats, kaempferol significantly attenuated oxidative stress, inflammation and significantly boosted levels of manganese superoxide dismutase and glutathione. Also, and in both groups, kaempferol suppressed the nuclear levels of NF-κB p65, downregulated Keap1, and stimulated the nuclear activation and protein levels of Nrf2. In conclusion, kaempferol is a potential therapeutic drug to prevent CdCl2-induced nephropathy due to its anti-inflammatory and anti-oxidant effects mediated by suppressing NF- NF-κB p65 and transactivating Nrf2.
Collapse
Affiliation(s)
- Ali S Alshehri
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Saudi Arabia.
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, 22511, Egypt.
| | - Ayman E El-Kenawy
- Department of Pathology, College of Medicine, Taif University, Taif, 21944, Saudi Arabia
| | - Mohamed Samir A Zaki
- Department of Anatomy, College of Medicine, King Khalid University, P.O. Box 62529, Abha, Saudi Arabia
- Department of Histology and Cell Biology, College of Medicine, Zagazig University, P.O. Box 31527, Zagazig, Egypt
| | - Kareem Morsy
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
- Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Reham A Ghanem
- Department of Oral Biology, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Gamasa, Egypt
| | - Eman T Salem
- Department of Basic Sciences, Faculty of Physical Therapy, Horus University, New Damietta, 34518, Egypt
| | - Eman R Ebealy
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Heba S Khalifa
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, 22511, Egypt
| | - Ahmed E Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah, 21589, Saudi Arabia
| | - Hussah I M AlGwaiz
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, 11474, Riyadh, Saudi Arabia
| | - Essam H Ibrahim
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Blood Products Quality Control and Research Department, National Organization for Research and Control of Biologicals, 12611, Cairo, Egypt
| | - Mohammed S Mahmoud
- Department of Zoology, College of Science, Fayoum University, Fayoum, Egypt
| | - Mohammad A Dallak
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Eman M Abd-Ella
- Department of Zoology, College of Science, Fayoum University, Fayoum, Egypt
- Department of Biology, College of Science and Art, Al-Baha University, Al-Mandaq, Saudi Arabia
| |
Collapse
|
13
|
Hernández-Cruz EY, Amador-Martínez I, Aranda-Rivera AK, Cruz-Gregorio A, Pedraza Chaverri J. Renal damage induced by cadmium and its possible therapy by mitochondrial transplantation. Chem Biol Interact 2022; 361:109961. [DOI: 10.1016/j.cbi.2022.109961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/05/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022]
|
14
|
Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S. Autophagy as a molecular target of quercetin underlying its protective effects in human diseases. Arch Physiol Biochem 2022; 128:200-208. [PMID: 31564166 DOI: 10.1080/13813455.2019.1671458] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autophagy, known as a "self-eating" process, is associated with degradation of aged or damaged components and organelles. Generally, autophagy is a survival mechanism that provides energy during nutritional deprivation. This mechanism plays a remarkable role during the physiological condition by maintaining homeostasis and energy balance and several pathological conditions, particularly neurological disorders. Due to the critical role of autophagy in cancer, much attention has been made in the regulation of autophagy using both naturally occurring and synthetic drugs. Quercetin is a plant-derived chemical belonging to the family of flavonoids. Quercetin has valuable biological and therapeutic effects such as anti-tumor, antioxidant, anti-inflammatory, anti-diabetic, hepatoprotective, and cardioprotective. At the present review, we first provide an introduction about quercetin and autophagy with its related molecular pathways. We also describe how quercetin modulates autophagy mechanism to exert its therapeutic effects.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zahra Ahmadi
- Department of basic science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Basic Medical Science, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
15
|
Cheng J, Zhao L, Liu D, Shen R, Bai D. Potentilla anserine L. polysaccharide protects against cadmium-induced neurotoxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 90:103816. [PMID: 35066145 DOI: 10.1016/j.etap.2022.103816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/28/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Cadmium is a toxic metal that can damage the brain and other organs. This study aimed to explore the protective effects of Potentilla anserine L. polysaccharide (PAP) against CdCl2-induced neurotoxicity in N2a and SH-SY5Y cells and in the cerebral cortex of BALB/c mice. In addition, we aimed to identify the potential mechanisms underlying these protective effects. Relative to CdCl2 treatment alone, pretreatment with PAP prevented the reduction in cell viability evoked by CdCl2, decreased rates of apoptosis, promoted calcium homeostasis, decreased ROS accumulation, increased mitochondrial membrane potential, inhibited cytochrome C and AIF release, and prevented the cleavage of caspase-3 and PARP. In addition, PAP significantly decreased the CdCl2-induced phosphorylation of CaMKII, Akt, and mTOR. In conclusion, PAP represents a potential therapeutic agent for the treatment of Cd-induced neurotoxicity, functioning in part via attenuating the activation of the mitochondrial apoptosis pathway and the Ca2+-CaMKII-dependent Akt/mTOR pathway.
Collapse
Affiliation(s)
- Ju Cheng
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; Institute of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Lixia Zhao
- School of nursing, Gansu University of Chinese Medicine, Lanzhou 730000, China; Laboratory Center for Medical Sciences, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; Institute of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Di Liu
- Keylaboratory of Evidence Science Techniques Research and Application of Gansu Province, Gansu University of Political Science and Law, Lanzhou 730000, China; Institute of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Rong Shen
- Laboratory Center for Medical Sciences, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; Institute of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Decheng Bai
- School of nursing, Gansu University of Chinese Medicine, Lanzhou 730000, China; Institute of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
16
|
Li Z, Ali Shah SW, Zhou Q, Yin X, Teng X. The contributions of miR-25-3p, oxidative stress, and heat shock protein in a complex mechanism of autophagy caused by pollutant cadmium in common carp (Cyprinus carpio L.) hepatopancreas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117554. [PMID: 34174664 DOI: 10.1016/j.envpol.2021.117554] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 05/27/2021] [Accepted: 06/05/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal that can be discharged into water environment through industrial activities, threatening the health of aquatic organisms and humans. MicroRNA (miRNA) plays an important role in the process of autophagy. The purpose of this experiment was to study the mechanism of Cd-induced autophagy in common carp hepatopancreas. We established a Cd poisoning model of common carp and explored ultrastructure, two oxidation indicators, three antioxidant indicators, miR-25-3p, two heat shock proteins (Hsps), and nine autophagy-related genes. The results confirmed that deleterious effect of Cd caused the injury of hepatopancreas and the appearance of hepatopancreas autophagic cells in common carp. At the same time, Cd exposure increased the contents of hydrogen peroxide (H2O2) and malonaldehyde (MDA), and decreased the activities of catalase (CAT), superoxide dismutase (SOD), and total antioxidative capacity (T-AOC), meaning that Cd caused oxidative stress via the imbalance between peroxide level and antioxidant capacity. Moreover, exposure to Cd increased mRNA expression of microtubule associated protein-1 light chain 3 beta (LC3-II), Dynein, Beclin 1, autophagy-related gene 5 (Atg5), and autophagy-related gene 12 (Atg12); and decreased mRNA expression of mechanistic target of rapamycin kinase (mTOR), indicating that excess Cd caused autophagy, and AMPK/mTOR/ULK1 signaling pathway took part in autophagy induced by Cd in common carp hepatopancreas. Furthermore, Cd down-regulated miR-25-3p and up-regulated its three target genes (AMPK, ULK1 as well as PTEN), suggesting that miR-25-3p mediated autophagy induced by Cd. In addition, we found that Hsps were activated via the up-regulation of Hsp70 and Hsp90. Moreover, oxidative stress mediated autophagy via Hsps in Cd-treated common carp hepatopancreas and Cd-induced autophagy was time dependent. In summary, miR-25-3p, oxidative stress, and Hsps participated in autophagy caused by Cd in common carp hepatopancreas. This study provided a new idea for the mechanism of Cd-induced autophagy in hepatopancreas.
Collapse
Affiliation(s)
- Zhuo Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Syed Waqas Ali Shah
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qin Zhou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiujie Yin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China; Electrical and Information Engineering College, Jilin Agricultural Science and Technology University, Jilin, 132101, People's Republic of China.
| |
Collapse
|
17
|
Xue H, Cao H, Xing C, Feng J, Zhang L, Zhang C, Hu G, Yang F. Selenium triggers Nrf2-AMPK crosstalk to alleviate cadmium-induced autophagy in rabbit cerebrum. Toxicology 2021; 459:152855. [PMID: 34252479 DOI: 10.1016/j.tox.2021.152855] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/28/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal that accumulates in the brain and causes a series of histopathological changes. Selenium (Se) exerts a crucial function in protecting damage caused by toxic heavy metals, but its potential mechanism is rarely studied. The main purpose of this study is to explore the protective effects of Se on Cd-induced oxidative stress and autophagy in rabbit cerebrum. Forty rabbits were randomly divided into four groups and treated as follows: Control group, Cd (1 mg/kg⋅BW) group, Se (0.5 mg/kg⋅BW) group and Cd (1 mg/kg⋅BW)+Se (0.5 mg/kg⋅BW) group, with 30 days feeding management. Our results suggested that Se treatment significantly suppressed the Cd-induced degenerative changes including cell necrosis, vacuolization, and atrophic neurons. In addition, Se decreased the contents of MDA and H2O2 and increased the activities of CAT, SOD, GST, GSH and GSH-Px, alleviating the imbalance of the redox system induced by Cd. Furthermore, Cd caused the up-regulation of the mRNA levels of autophagy-related genes (ATG3, ATG5, ATG7, ATG12 and p62), AMPK (Prkaa1, Prkaa2, Prkab1, Prkab2, Prkag2, Prkag3) and Nrf2 (Nrf2, HO-1 and NQO1) signaling pathway, and the expression levels of LC3II/LC3I, p-AMPK/AMPK, Beclin-1, Nrf2 and HO-1 proteins, which were alleviated by Se, indicated that Se inhibited Cd-induced autophagy and Nrf2 signaling pathway activation. In conclusion, our study found that Se antagonized Cd-induced oxidative stress and autophagy in the brain by generating crosstalk between AMPK and Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Haotian Xue
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Jiapei Feng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Linwei Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China.
| |
Collapse
|
18
|
Alshammari GM, Al-Qahtani WH, AlFaris NA, Albekairi NA, Alqahtani S, Eid R, Yagoub AEA, Al-Harbi LN, Yahya MA. Quercetin alleviates cadmium chloride-induced renal damage in rats by suppressing endoplasmic reticulum stress through SIRT1-dependent deacetylation of Xbp-1s and eIF2α. Biomed Pharmacother 2021; 141:111862. [PMID: 34246189 DOI: 10.1016/j.biopha.2021.111862] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Endoplasmic reticulum (ER) stress plays a key role in cadmium chloride (CdCl2)-induced nephrotoxicity. Sirtuin-1 (SIRT1) is a potent inhibitor of ER stress. In this study, we examined whether the protective effect of quercetin (QUR) against CdCl2-induced nephrotoxicity in rats involved modulation of SIRT1 and/or ER stress. Adult male rats were divided into five groups (n = 8, each) and treated for eight weeks as follows: control, control + QUR, CdCl2, CdCl2 + QUR, and CdCl2 + QUR + EX-527 (a SIRT1 inhibitor). Treatment of rats with QUR preserved the glomerulus and tubule structure, attenuated interstitial fibrosis, increased creatinine excretion, and reduced urinary levels of albumin, N-acetyl-β-D-glucosaminidase, and β2-microglobulin in CdCl2-treated rats. Concomitantly, QUR increased renal levels of Bcl-2, reduced mRNA levels of CHOP, and protein levels of Bax, caspase-3, and cleaved caspase-3, but failed to reduce the mRNA levels of GRP78, PERK, eIf2α, ATF-6, and xbp-1. QUR also reduced the renal levels of reactive oxygen species, tumour necrosis factor, and interleukin-6 and the nuclear activity of NF-κB in the control and CdCl2-treated rats but increased the nuclear activity of Nrf2 and levels of glutathione and manganese superoxide dismutase. Additionally, QUR increased the total levels and nuclear activity of SIRT1 and reduced the acetylation of eIf2α and xbp-1. The nephroprotective effects of QUR were abrogated by treatment with EX-527. Thus, QUR ameliorated CdCl2-induced nephrotoxicity through antioxidant and anti-inflammatory effects and suppressed ER stress mediated by the upregulation or activation of SIRT1-induced deacetylation of Nrf2, NF-κB p65, eIF2α, and xbp-1.
Collapse
Affiliation(s)
- Ghedeir M Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia.
| | - Wahidah H Al-Qahtani
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nora A AlFaris
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sultan Alqahtani
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Refaat Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Abu ElGasim A Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Laila Naif Al-Harbi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Bhardwaj JK, Panchal H. Quercetin mediated attenuation of cadmium-induced oxidative toxicity and apoptosis of spermatogenic cells in caprine testes in vitro. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:374-384. [PMID: 34166547 DOI: 10.1002/em.22450] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/12/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd), an environmental toxic heavy metal, has been reported to cause testicular toxicity, which contributes to the recent decline in male fertility worldwide. Quercetin (Qcn), a major dietary antioxidant, has been shown to have protective effects under various pathological conditions. However, whether Qcn provides protection against Cd-stimulated testicular toxicity remains obscured. The present study was therefore aimed at investigating the ameliorative effect of Qcn supplementation on Cd-induced toxicity in the goat testis in vitro in a dose-(10, 50, and 100 μM) and time-dependent (4 and 8 h) manner. Different cytotoxicity, genotoxicity, and biochemical analyses have been carried out using appropriate methods. Cytotoxicity in testicular cells induced by Cd treatment was apparently mitigated by Qcn treatment, evidenced by decreased apoptotic attributes or frequency in Qcn plus Cd-treated groups compared to the only Cd-treated groups. Qcn treatment provides substantial protection to the Cd-triggered aggression in oxidative (increased MDA levels) and total antioxidant capacity (reduced FRAP activity) in testicular tissue, indicating the anti-oxidative function of Qcn against Cd exposure. Moreover, Cd-induced decline in antioxidant status (CAT, SOD, and GST activity) was markedly restored by Qcn supplementation in testicular tissue. In conclusion, this study shows that Qcn treatment significantly attenuated the Cd-evoked testicular damage, suggesting its beneficial potential in preventing or at least in managing the gonadotoxicity in males induced by steadily increasing Cd contamination in the environment.
Collapse
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Harish Panchal
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
20
|
Vakili S, Zal F, Mostafavi-Pour Z, Savardashtaki A, Koohpeyma F. Quercetin and vitamin E alleviate ovariectomy-induced osteoporosis by modulating autophagy and apoptosis in rat bone cells. J Cell Physiol 2021; 236:3495-3509. [PMID: 33030247 DOI: 10.1002/jcp.30087] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/05/2020] [Accepted: 09/18/2020] [Indexed: 12/23/2022]
Abstract
Osteoporosis is the most prevalent metabolic bone disease and one of the most important postmenopausal consequences. The aim of this study was to investigate the effects of quercetin (Q) and vitamin E (vitE) on ovariectomy-induced osteoporosis. Animals were ovariectomized and treated with Q (15 mg/kg/day), vitE (60 mg/kg/day), estradiol (10 µg/kg/day), and Q (7.5 mg/kg/day) + vitE (30 mg/kg/day) for 10 weeks by gavage, and osteoporosis markers and messenger RNA (mRNA) expression of autophagy and apoptosis-related genes were analyzed in serum and tibia of rats. Data indicated that ovariectomy resulted in development of osteoporosis as demonstrated by reduction in serum calcium, bone weight, bone volume, trabeculae volume, and the total number of osteocytes and osteoblasts, and increase in the total number of osteoclasts and serum osteocalcin. Total mRNA expressions of LC3, beclin1, and caspase 3 were also increased and bcl2 expression was decreased in the tibia. By reversing these changes, treatment with Q and vitE markedly improved osteoporosis. In conclusion, Q, and to a lesser extent, vitE, prevented osteoporosis by regulating the total number of bone cells, maybe through regulating autophagy and apoptosis.
Collapse
Affiliation(s)
- Sina Vakili
- Department of Biochemistry, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Zal
- Department of Biochemistry, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
- Traditional Medicine and Medical History Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zohreh Mostafavi-Pour
- Department of Biochemistry, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Koohpeyma
- Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
21
|
Zhao Y, Li ZF, Zhang D, Wang ZY, Wang L. Quercetin alleviates Cadmium-induced autophagy inhibition via TFEB-dependent lysosomal restoration in primary proximal tubular cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111743. [PMID: 33396069 DOI: 10.1016/j.ecoenv.2020.111743] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Autophagy dysregulation plays a pivotal role in cadmium (Cd)-induced nephrotoxicity. Quercetin (Qu), a flavonoid antioxidant with autophagy-enhancing effect, has protective effect on Cd-induced toxicity, but whether it can prevent Cd-induced nephrotoxicity via restoration of autophagy remains unknown. Here, primary rat proximal tubular (rPT) cells were exposed to Cd and/or Qu in vitro to clarify this issue. Data first showed that Cd-impaired autophagic flux was markedly alleviated by Qu, including decreased levels of autophagy marker proteins and recovery of autophagosome-lysosome fusion targeted for lysosomes. Meanwhile, Cd-induced lysosomal alkalization due to v-ATPases inhibition was prominently recovered by Qu. Accordingly, Qu enhanced Cd-diminished lysosomal degradation capacity and lysosome-related gene transcription levels. Notably, Qu improved Cd-inhibited TFEB nuclear translocation and its gene transcription level. Furthermore, data showed that the restoration of Cd-impaired autophagy-lysosome pathway and resultant alleviation of cytotoxicity by Qu are TFEB-dependent using TFEB gene silencing and overexpression technologies. In summary, these data provide novel evidences that the protective action of Qu against Cd-induced autophagy inhibition is attributed to its restoration of lysosomal dysfunction, which is dependent on TFEB.
Collapse
Affiliation(s)
- Yuan Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Zi-Fa Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Dong Zhang
- Shandong Provincial Center for Animal Disease Control and Prevention, Ji'nan City, Shandong Province 250022, China
| | - Zhen-Yong Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China.
| |
Collapse
|
22
|
Li JR, Ou YC, Wu CC, Wang JD, Lin SY, Wang YY, Chen WY, Liao SL, Chen CJ. Endoplasmic reticulum stress and autophagy contributed to cadmium nephrotoxicity in HK-2 cells and Sprague-Dawley rats. Food Chem Toxicol 2020; 146:111828. [PMID: 33127495 DOI: 10.1016/j.fct.2020.111828] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 01/05/2023]
Abstract
Excessive accumulation of cadmium is known to cause nephrotoxicity by targeting renal proximal tubular epithelial cells. Studies showed an essential role of autophagy in cadmium-induced nephrotoxicity; however, its underlying mechanisms accompanied by autophagy are incompletely understood. Using an HK-2 human renal proximal tubular epithelial cell line as a study model, sustained exposure of cadmium chloride (CdCl2) was shown to cause cell viability loss, which was alleviated by inhibitors of autophagy but not apoptosis. Data from molecular and biochemical studies revealed an induction of autophagy proteins, intracellular acidic vesicles, and autophagic flux in CdCl2-treated cells. However, there was little sign of apoptosis-related changes. Pharmacological and genetic studies indicated an elevation of Endoplasmic Reticulum (ER) stress, Forkhead Box Class O (FoxO3a), Bcl-2 Interacting Protein 3 (Bnip3), and Beclin1, as well as their involvement in cadmium-induced autophagy and autophagic cell death. Renal injury, histological changes, and molecular marker of ER stress, FoxO3a, Bnip3, and autophagy were observed in the kidney cortex of CdCl2-exposed Sprague-Dawley rats. These observations indicate that ER stress, FoxO3a, Bnip3, and autophagy signaling were actively involved in cadmium-induced nephrotoxicity. Additionally, FoxO3a may act as a linking molecule to convey ER stress signals to Bnip3 and autophagy machinery upon cadmium exposure.
Collapse
Affiliation(s)
- Jian-Ri Li
- Division of Urology, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Nursing, HungKuang University, Taichung, Taiwan
| | - Yen-Chuan Ou
- Department of Urology, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Financial Engineering, Providence University, Taichung, Taiwan; Department of Data Science and Big Data Analytics, Providence University, Taichung, Taiwan
| | - Jiaan-Der Wang
- Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, Taiwan
| | - Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ya-Yu Wang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Family Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan; Ph.D. Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
23
|
Wang J, Zhu H, Wang K, Yang Z, Liu Z. Protective effect of quercetin on rat testes against cadmium toxicity by alleviating oxidative stress and autophagy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25278-25286. [PMID: 32347499 DOI: 10.1007/s11356-020-08947-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd), a highly toxic heavy metal, adversely affects human and animal health. Quercetin (Que) is a kind of flavonoid that can protect many tissues from the toxic effect of heavy metals. Although many studies have explored the adverse effects of cadmium on rats and other animals, the mechanism of Cd-induced testicular autophagy and the antagonistic effect of Que on cadmium remain unclear. In this study, Sprague-Dawley rats were treated with Cd, Que or Cd, and Que supplements to explore the mechanisms of Que-alleviated testis injury caused by Cd exposure. The rat body weight and relative testicular weight were measured. Morphological changes in testes and indices of oxidative stress were also examined. The expression levels of autophagy-related genes were detected as well. Results showed that Cd decreased the rat body weight and relative testicular weight and induced pathological changes in testes. Conversely, Que alleviated these changes. We also found that Cd increased the malondialdehyde content and decreased the contents of total superoxide dismutase, glutathione peroxidase, catalase, and glutathione. Moreover, the protein expression levels of P62 and LC3-II increased under Cd exposure conditions. Conversely, Que obviously alleviated these toxic activities induced by Cd. Overall, this study showed that Cd accumulated in rat testes, leading to oxidative stress and autophagy. Que can reduce cadmium toxicity by reducing oxidative stress and inhibiting autophagy. The specific mechanism of Que antagonizing Cd toxicity can provide new insights into countering cadmium toxicity.
Collapse
Affiliation(s)
- Jicang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, Luoyang, 471023, People's Republic of China.
| | - Huali Zhu
- Law hospital, Henan University of Science and Technology, No.263, Kaiyuan Avenue, Luoyang, 471023, People's Republic of China
| | - Ke Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, Luoyang, 471023, People's Republic of China
| | - Zijun Yang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, Luoyang, 471023, People's Republic of China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, No.12, East Wenhui Road, Yangzhou, 225009, People's Republic of China
| |
Collapse
|
24
|
Yu D, Zhang L, Yu G, Nong C, Lei M, Tang J, Chen Q, Cai J, Chen S, Wei Y, Xu X, Tang X, Zou Y, Qin J. Association of liver and kidney functions with Klotho gene methylation in a population environment exposed to cadmium in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2020; 30:38-48. [PMID: 30714826 DOI: 10.1080/09603123.2019.1572106] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Exposure to the heavy metal cadmium has adverse effects on human health, including DNA methylation. This study aimed to investigate the effects of cadmium on liver and kidney functions and Klotho gene methylation and to explore the relationship of methylation level with indicators of liver and kidney functions. Graphite furnace atomic absorption spectrometry was conducted to determine urinary cadmium, and an automatic biochemical analyzer was used to detect indices of liver and kidney functions. PCR pyrosequencing was performed to detect the methylation rate of Klotho. One-way ANOVA was adopted to compare the differences between groups, and the linear correlation to variables was analyzed. Cadmium exposure was negatively correlated with albumin level (r=-0.143, p=0.021) and positively correlated with urinary β2-microglobulin level (r=0.229, p<0.001). However, the methylation levels of Klotho gene was decreased and increased by low and high doses of cadmium exposure, respectively. And Klothomethylation levels were negatively correlated with albumin levels and positively correlated with β2-microglobulin levels.In this study, cadmium exposure affects liver and kidney functions as well as Klotho methylation levels, but the effect on Klotho methylation levels is not linear. Klotho methylation levels also influence liver and kidney functions.
Collapse
Affiliation(s)
- Dongmei Yu
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Li'e Zhang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Guoqi Yu
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Chuntao Nong
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Mingzhi Lei
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiexia Tang
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Quanhui Chen
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiangsheng Cai
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | | | - Yi Wei
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xia Xu
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xu Tang
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jian Qin
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
25
|
Liu Y, Zhang X, Guan T, Jia S, Liu Y, Zhao X. Effects of quercetin on cadmium-induced toxicity in rat urine using metabonomics techniques. Hum Exp Toxicol 2019; 39:524-536. [PMID: 31876187 DOI: 10.1177/0960327119895811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study aimed to analyse the protective effects of quercetin on the toxicity of cadmium (Cd) using metabonomics techniques. Sixty male Sprague-Dawley rats were randomly divided into six groups (n = 10): control group (C), low-dose quercetin-treated group (Q1; 10 mg/kg bw/day), high-dose quercetin-treated group (Q2; 50 mg/kg bw/day), Cd-treated group (D; 4.89 mg/kg bw/day), low-dose quercetin plus Cd-treated group (DQ1) and high-dose quercetin plus Cd-treated group (DQ2). The rats continuously received quercetin and Cd via gavage and drinking water for 12 weeks, respectively. The rat urine samples were collected for metabonomics analysis. Finally, 10 metabolites were identified via the metabonomics profiles of the rat urine samples. Compared with the control group, the intensities of taurine, phosphocreatine, l-carnitine and uric acid were significantly decreased (p < 0.01) and those of LysoPC (18: 2 (9Z, 12Z)), guanidinosuccinic acid, dopamine, 2,5,7,8-tetramethyl-2(2'-carboxyethyl)-6-hydroxychroman and allantoic acid were significantly increased (p < 0.01) in the Cd-treated group. However, the intensities of the aforementioned metabolites had restorative changes in the high-dose quercetin plus Cd-treated groups unlike those in Cd-treated group (p < 0.01 or p < 0.05). Results indicated that quercetin exerts protective effects on Cd-induced toxicity by regulating energy and lipid metabolism, enhancing the antioxidant defence system and protecting liver and kidney function and so on.
Collapse
Affiliation(s)
- Y Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - X Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - T Guan
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - S Jia
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Y Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - X Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| |
Collapse
|
26
|
Papagiannis I, Vezyraki P, Simos YV, Kontargiris E, Giannakopoulos X, Peschos D, Sofikitis N, Evangelou A, Kalfakakou V. Effects of secondary biological treatment plant effluent administration, as drinking water, to rats' urogenital system in relation to cadmium and lead accumulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:36434-36440. [PMID: 31724128 DOI: 10.1007/s11356-019-06737-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to examine the effect of the secondary biological treatment plant effluent administration on the kidneys, urinary bladder, and testis of Wistar rats in relation to lead (Pb) and cadmium (Cd) accumulation, since such an effluent is used for irrigation of edible plants. Male Wistar rats, randomly assigned into 5 groups, were treated with domestic sewage effluent (DSE) for 24 months. Cadmium and lead concentrations in the DSE, rats' tissues, and urine were estimated by means of atomic spectroscopy. Lead was rapidly accumulated in high amounts in rats' kidney and to a lesser extent in the testis whereas Cd concentration was raised in all tissues examined. Deposition of Cd and Pd in the kidney of the rats resulted in profound damage over time. The results showed that long-term administration to DSE as drinking water exposes living organisms to urogenital stress related to heavy metal concentration and pH of the effluent.
Collapse
Affiliation(s)
- Ioannis Papagiannis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
- Department of Technical Service, Region of Epirus, Ioannina, 45444, Greece
| | - Patra Vezyraki
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Yannis V Simos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece.
| | - Evangelos Kontargiris
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
- Department of Nursing, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
| | - Xenophon Giannakopoulos
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Dimitrios Peschos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Nikolaos Sofikitis
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Angelos Evangelou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Vasiliki Kalfakakou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece.
| |
Collapse
|
27
|
Role of Autophagy on Heavy Metal-Induced Renal Damage and the Protective Effects of Curcumin in Autophagy and Kidney Preservation. ACTA ACUST UNITED AC 2019; 55:medicina55070360. [PMID: 31295875 PMCID: PMC6681384 DOI: 10.3390/medicina55070360] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/28/2019] [Accepted: 07/08/2019] [Indexed: 12/16/2022]
Abstract
Curcumin is a hydrophobic polyphenol compound extracted from the rhizome of turmeric. The protective effect of curcumin on kidney damage in multiple experimental models has been widely described. Its protective effect is mainly associated with its antioxidant and anti-inflammatory properties, as well as with mitochondrial function maintenance. On the other hand, occupational or environmental exposure to heavy metals is a serious public health problem. For a long time, heavy metals-induced nephrotoxicity was mainly associated with reactive oxygen species overproduction and loss of endogenous antioxidant activity. However, recent studies have shown that in addition to oxidative stress, heavy metals also suppress the autophagy flux, enhancing cell damage. Thus, natural compounds with the ability to modulate and restore autophagy flux represent a promising new therapeutic strategy. Furthermore, it has been reported in other renal damage models that curcumin’s nephroprotective effects are related to its ability to regulate autophagic flow. The data indicate that curcumin modulates autophagy by classic signaling pathways (suppression of protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and/or by stimulation of adenosine monophosphate-activated protein kinase (AMPK) and extracellular signal-dependent kinase (ERK) pathways). Moreover, it allows lysosomal function preservation, which is crucial for the later stage of autophagy. However, future studies of autophagy modulation by curcumin in heavy metals-induced autophagy flux impairment are still needed.
Collapse
|
28
|
Zhou XL, Wan XM, Fu XX, Xie CG. Puerarin prevents cadmium-induced hepatic cell damage by suppressing apoptosis and restoring autophagic flux. Biomed Pharmacother 2019; 115:108929. [PMID: 31060001 DOI: 10.1016/j.biopha.2019.108929] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/22/2019] [Accepted: 04/26/2019] [Indexed: 01/05/2023] Open
Abstract
Cadmium (Cd) is a common heavy metal contamination that is highly toxic to liver. Puerarin (PU), a potent free radical scavenger, has been shown to exert cytoprotective effect in numerous pathological processes. However, whether PU affords protection against Cd-induced hepatotoxicity remains unclear to be known. Here, we aimed to investigate the protective effect of PU on Cd-induced hepatotoxicity in an immortalized mouse hepatocyte line, AML-12. First, Cd-induced cytotoxicity in AML-12 cells was obviously ameliorated by PU treatment. Also, Cd-induced apoptotic cell death was markedly alleviated by PU treatment, evidenced by two methods. Simultaneously, Cd-elevated malondialdehyde and reactive oxygen species levels were significantly reduced by PU administration, demonstrating the antioxidant effect of PU against Cd exposure. Moreover, Cd-induced blockage of autophagic flux in AML-12 cells was obviously restored by PU treatment, evidenced by immunoblot analysis of autophagy marker proteins and tandem fluorescent-tagged LC3 method. Resultantly, Cd-induced autophagosome accumulation was significantly alleviated by PU treatment. In conclusion, these observations demonstrate that PU treatment alleviates Cd-induced hepatic cell damage by inhibiting apoptosis and restoring autophagy activity, which is intimately related with its antioxidant activity.
Collapse
Affiliation(s)
- Xue-Lei Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, PR China; Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611130, PR China
| | - Xue-Mei Wan
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, PR China; Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611130, PR China
| | - Xiao-Xu Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, PR China; Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611130, PR China
| | - Chun-Guang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, PR China; Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
29
|
Winiarska-Mieczan A. Protective effect of tea against lead and cadmium-induced oxidative stress-a review. Biometals 2018; 31:909-926. [PMID: 30317404 PMCID: PMC6245044 DOI: 10.1007/s10534-018-0153-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 09/28/2018] [Indexed: 11/17/2022]
Abstract
Exposure to Cd and Pb reduces the activity of antioxidant enzymes, which points to a decrease in the antioxidant potential of the body as a result of supplying factors which enhance cellular oxidation processes. Man is exposed to the effects of toxic metals because they are present in the environment, including in food. Since no effective ways to reduce the concentrations of Cd an Pb in food exist, studies are undertaken to develop methods of reducing their toxic effect on the body through chelating these metals using nutrients (which reduces their absorption by tissues) or increasing the oxidative capacity of the body (which decreases the possibility of inducing oxidative damage to internal organs). Studies performed on laboratory animals have shown that the use of tea infusions fulfil both functions.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Department of Bromatology and Food Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland.
| |
Collapse
|
30
|
The In Vitro Anti-Proliferative Interaction of Flavonoid Quercetin and Toxic Metal Cadmium in the 1321N1 Human Astrocytoma Cell Line. Sci Pharm 2018; 86:scipharm86030036. [PMID: 30201909 DOI: 10.3390/scipharm86030036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 01/08/2023] Open
Abstract
Cadmium (Cd) is a toxic heavy metal occurring in the environment as an industrial pollutant. The systematic accumulation of Cd in the human body may lead to major health problems. Quercetin (QE) is a natural flavonoid widely distributed in plants and is a part of human diet. Many studies have demonstrated the multiple benefits of QE to humans in protecting cells of our bodies. The aim of this study was to investigate the effect of QE and Cd on the proliferation of astrocytoma 1321N1 cells. Results indicated that the simultaneous exposure of the cells to 200 µM QE and 16 μM Cd significantly reduced cell viability to 6.9 ± 1.6% with respect to vehicle-treated cells. Other experiments of QE pre-treatment followed by the exposure to Cd alone or with QE indicated significant but decreased ability of QE or Cd to reduce proliferation of the cells compared to their co-incubation. Our study suggested a synergetic anti-proliferative interaction of Cd and QE in malignantly transformed cells. This adds new information regarding the biological effects of QE.
Collapse
|
31
|
Kim JK, Park SU. Quercetin and its role in biological functions: an updated review. EXCLI JOURNAL 2018; 17:856-863. [PMID: 30233284 PMCID: PMC6141818 DOI: 10.17179/excli2018-1538] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 08/18/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Jae Kwang Kim
- Division of Life Sciences and Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| |
Collapse
|
32
|
Qi L, Xin Q, Wenjun J. Inhibition of iNOS protects cardiomyocytes against coxsackievirus B3-induced cell injury by suppressing autophagy. Biomed Pharmacother 2017; 91:673-679. [PMID: 28499238 DOI: 10.1016/j.biopha.2017.04.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/17/2017] [Accepted: 04/27/2017] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Coxsackievirus B3 (CVB3), a member of the picornavirus family, is one of the major causative enteroviruses of viral myocarditis. The aim of the current study was to investigate the role and underlying mechanism of iNOS and autophagy in CVB3 infected cardiomyocytes. METHODS Myocardial cell H9c2 were randomly divided into four groups: control group, CVB3 group, CVB3+L-NAME group and the CVB3+iNOS siRNA group. Cell proliferation was detected by MTT method and cell apoptosis was determined by flow cytometric. The protein expression levels were determined by Western blot. Anisomycin was used to activate JNK pathway in CVB3 infected H9c2 cells. RESULTS The results demonstrated that the inhibition of iNOS significantly elevated cell proliferation and suppressed cell apoptosis of CVB3-induced H9c2 cells. The production of MDA was obviously decreased, while the activity of SOD was increased by the addition of L-NAME or iNOS siRNA compared with the CVB3 group. Expression of the autophagy marker proteins LC3 II and Beclin 1 was significantly decreased, and the autophagy substrate p62 was dramatically increased in iNOS inhibition groups compared with the CVB3 group. Moreover, iNOS inhibition suppressed the JNK pathway in CVB3-infected H9c2 cells. Furthermore, administration of the JNK pathway stimulator, anisomycin, counteracted the effect of iNOS inhibition in CVB3-infected H9c2 cells. CONCLUSION The inhibition of iNOS protects cardiomyocytes against CVB3-induced cell injury by regulating autophagy and the JNK pathway, which may provide a novel therapeutic strategy for treating CVB3-induced myocarditis.
Collapse
Affiliation(s)
- Li Qi
- Department of Cardiology, Tianjin Union Medical Center, Tianjin 300121, China
| | - Qi Xin
- Department of Cardiology, Tianjin Union Medical Center, Tianjin 300121, China.
| | - Jia Wenjun
- Department of Cardiology, Tianjin Union Medical Center, Tianjin 300121, China
| |
Collapse
|