1
|
Martin C, Capilla-Lasheras P, Monaghan P, Burraco P. The impact of chemical pollution across major life transitions: a meta-analysis on oxidative stress in amphibians. Proc Biol Sci 2024; 291:20241536. [PMID: 39191283 PMCID: PMC11349447 DOI: 10.1098/rspb.2024.1536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
Among human actions threatening biodiversity, the release of anthropogenic chemical pollutants which have become ubiquitous in the environment, is a major concern. Chemical pollution can induce damage to macromolecules by causing the overproduction of reactive oxygen species, affecting the redox balance of animals. In species undergoing metamorphosis (i.e. the vast majority of the extant animal species), antioxidant responses to chemical pollution may differ between pre- and post-metamorphic stages. Here, we meta-analysed (N = 104 studies, k = 2283 estimates) the impact of chemical pollution on redox balance across the three major amphibian life stages (embryo, tadpole, adult). Before metamorphosis, embryos did not experience any redox change while tadpoles activate their antioxidant pathways and do not show increased oxidative damage from pollutants. Tadpoles may have evolved stronger defences against pollutants to reach post-metamorphic life stages. In contrast, post-metamorphic individuals show only weak antioxidant responses and marked oxidative damage in lipids. The type of pollutant (i.e. organic versus inorganic) has contrasting effects across amphibian life stages. Our findings show a divergent evolution of the redox balance in response to pollutants across life transitions of metamorphosing amphibians, most probably a consequence of differences in the ecological and developmental processes of each life stage.
Collapse
Affiliation(s)
- Colette Martin
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
- Doñana Biological Station (CSIC), Seville41092, Spain
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, Braunschweig38106, Germany
| | - Pablo Capilla-Lasheras
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
- Swiss Ornithological Institute, Bird Migration Unit, Seerose 1, Sempach6204, Switzerland
| | - Pat Monaghan
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
| | - Pablo Burraco
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
- Doñana Biological Station (CSIC), Seville41092, Spain
| |
Collapse
|
2
|
Rahman ANA, Mohamed AAR, Dahran N, Farag MFM, Alqahtani LS, Nassan MA, AlThobaiti SA, El-Naseery NI. Appraisal of sub-chronic exposure to lambada-cyhalothrin and/or methomyl on the behavior and hepato-renal functioning in Oreochromis niloticus: Supportive role of taurine-supplemented feed. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106257. [PMID: 35933907 DOI: 10.1016/j.aquatox.2022.106257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/31/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The existing study was designed to inspect the toxicological consequences of two pesticides; lambda-cyhalothrin (LCT) and methomyl (MTM) and their combination on Nile tilapia (Oreochromis niloticus) behaviors, oxidative stress, hepato-renal function indices and microarchitectural alterations. In addition, the efficiency of taurine (TUR) to rescue their toxicity was also considered. Juvenile O. niloticus were assigned into eight groups. The control and TUR groups were fed on a basal diet and TUR-enriched (10 g kg1) diet, respectively. The other groups were fed on a basal diet, and exposed to LCT (0.079 µg L-1), MTM (20.39 µg L-1 and (LCT + MTM). The last three groups were (LCT + TUR), (MTM + TUR), and (LCT + MTM + TUR) and fed on a TUR-enriched diet during exposure to LCT and/or MTM for 60 days. The exposure to LCT and/or MTM resulted in several behavioral alterations and stress via enhanced cortisol and nor-epinephrine levels. A significant elevation of serum 8-hydroxy-2- deoxyguanosine, aspartate and alanine aminotransferases, lactate dehydrogenase, Alkaline phosphatase, urea, creatinine was also observed in these groups. Furthermore, reduced antioxidant enzymes activities, including (catlase, glutathione peroxidase, and superoxide dismutase) with marked histopathological lesions in both liver and kidney tissues were detected. The up-regulated Bax and down-regulated Bcl-2 proteins were expressed in the liver and kidney tissues of LCT and/or MTM -exposed groups. Interestingly, all the observed alterations in behaviors, biochemical indices, and histo-architecture of renal and hepatic tissues were mitigated by TUR supplementation. The findings suggest that feeding O. niloticus dietary TUR may help to reduce the negative effects of LCT and/or MTM, and can also support kidney and liver health in O. niloticus, making it a promising aquaculture feed supplement.
Collapse
Affiliation(s)
- Afaf N Abdel Rahman
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Sharkia, Zagazig, Egypt.
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Egypt.
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohamed F M Farag
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Leena S Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 23445, Saudi Arabia
| | - Mohamed A Nassan
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Saed Ayidh AlThobaiti
- Biology Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia
| | - Nesma I El-Naseery
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Egypt
| |
Collapse
|
3
|
Laicher D, Benkendorff K, White S, Conrad S, Woodrow RL, Butcherine P, Sanders CJ. Pesticide occurrence in an agriculturally intensive and ecologically important coastal aquatic system in Australia. MARINE POLLUTION BULLETIN 2022; 180:113675. [PMID: 35642798 DOI: 10.1016/j.marpolbul.2022.113675] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 06/15/2023]
Abstract
Coastal agricultural practices are often located in catchments upstream of ecologically important aquatic systems. Here, we investigate the occurrence of pesticides in a coastal creek flowing into a habitat-protected area within the Solitary Islands Marine Park, Australia. Water samples were collected from six sites along a creek transect during three sampling periods. Samples were analysed for 171 pesticide analytes, including organochlorines, organophosphates, herbicides, and fungicides. Five insecticides, two herbicides, and two fungicides were detected. The neonicotinoid imidacloprid was detected at 5 out of 6 sites, with concentrations reaching 294 μg L-1, the highest yet detected in Australian waterways. The organophosphate insecticide dimethoate was detected at 4 sites, which occurred at the 2nd highest detected concentration in the study (12.8 μg L-1). The presence of these pesticides in the aquatic environment downstream of horticulture in this and other regions may have serious implications for stream biota and ecologically important marine ecosystems.
Collapse
Affiliation(s)
- Dylan Laicher
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia.
| | - Kirsten Benkendorff
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | - Shane White
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | - Steve Conrad
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | - Rebecca L Woodrow
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | - Peter Butcherine
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | - Christian J Sanders
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| |
Collapse
|
4
|
Dietary Parsley Seed Mitigates Methomyl-Induced Impaired Growth Performance, Hemato-Immune Suppression, Oxidative Stress, Hepato-Renal Damage, and Pseudomonas aeruginosa Susceptibility in Oreochromis niloticus. Antioxidants (Basel) 2022; 11:antiox11061185. [PMID: 35740080 PMCID: PMC9219678 DOI: 10.3390/antiox11061185] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/24/2023] Open
Abstract
The present experiment investigated the potential protective role of parsley (Petroselinum crispum) seed meal (PSM) in alleviating methomyl (MET)-adverse impacts on growth, whole-body composition, hematological indicators, hepatorenal function, immune response, oxidative status, and disease resistance to Pseudomonas aeruginosa. For this purpose, 225 healthy Nile tilapia (Oreochromis niloticus) were allotted into five groups (45 fish/group in triplicate). One group was reared in clean water and fed a non-supplemented basal diet, while the other groups were exposed to 20.39 μg L-1 MET and fed a non-fortified basal diet or basal diets supplemented with 0.5, 1.0, or 2.0% of PSM for 60 days. The obtained data revealed significantly lower weight gain, feed intake, and specific growth rate, but higher feed conversion ratio and decreases in crude protein, lipid, and ash contents in the MET-exposed fish. Anemia, leukopenia, lymphocytopenia, and esonipenia were also obvious. Furthermore, MET-exposed fish had significantly higher serum levels of hepatic enzymes and renal damage products. Nevertheless, there was a significant depletion of enzymatic and non-enzymatic antioxidants and increased malondialdehyde, myeloperoxidase, and tumor necrosis factor-α levels in MET-exposed fish. The MET exposure significantly depressed lysozyme activity, nitric oxide, complement3, acetylcholinesterase activity, total proteins, globulin, and albumin levels in O. niloticus serum. Furthermore, pathological alterations in the liver and kidney were noted. The relative percentage of survival rate in MET-exposed fish was dramatically reduced on day 14 post-challenge with P. aeruginosa. The inclusion of PSM, on the other hand, greatly alleviated most of the MET-related negative effects. Taken together, the dietary intervention with PSM has a promising role in alleviating MET-deleterious impacts, rendering parsley seeds a viable aqua feed additive for O. niloticus.
Collapse
|
5
|
Chen JY, Hu HL, Feng L, Ding GH. Ecotoxicity assessment of triphenyl phosphate (TPhP) exposure in Hoplobatrachus rugulosus tadpoles. CHEMOSPHERE 2022; 292:133480. [PMID: 34974044 DOI: 10.1016/j.chemosphere.2021.133480] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Triphenyl phosphate (TPhP), a widely used aromatic organophosphate flame retardant, is known to accumulate in organisms through water, air, and soil, consequently, causing toxicity. This study is the first to evaluate the acute and sub-chronic toxicities of TPhP to amphibians. In the acute toxicity analysis, the 96-h median lethal concentration (LC50) for GS35 Hoplobatrachus rugulosus tadpoles was 2.893 mg/L, and the 10% effect concentration (EC10) was 289 μg/L. After two weeks of exposure to low TPhP concentrations, the survival and metamorphosis rates of H. rugulosus tadpoles decreased, and the metamorphosis time was prolonged as the TPhP concentration increased. The threshold concentration that affected tadpole survival and metamorphosis time was 50 μg/L and 100 μg/L, respectively. No significant differences were observed in the condition factor and hepatic somatic index of the tadpole after metamorphosis; however, tadpole body mass and TPhP concentration were negatively correlated. Further, TPhP inhibited the expressions of Cu-Zn sod and cat, thereby reducing the activities of superoxide dismutase and catalase in the tadpole liver. The threshold for affecting gene expression and enzymatic activity was 100 μg/L. These findings provide significant insights on the stress ecology of aquatic organisms.
Collapse
Affiliation(s)
- Jing-Yi Chen
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui 323000, Zhejiang, China
| | - Hua-Li Hu
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui 323000, Zhejiang, China
| | - Lei Feng
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui 323000, Zhejiang, China
| | - Guo-Hua Ding
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui 323000, Zhejiang, China.
| |
Collapse
|
6
|
Jablonski CA, Pereira TCB, Teodoro LDS, Altenhofen S, Rübensam G, Bonan CD, Bogo MR. Acute toxicity of methomyl commercial formulation induces morphological and behavioral changes in larval zebrafish (Danio rerio). Neurotoxicol Teratol 2021; 89:107058. [PMID: 34942342 DOI: 10.1016/j.ntt.2021.107058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
Abstract
The use of pesticides has continue grown over recent years, leading to several environmental and health concerns, such as the contamination of surface and groundwater resources and associated biota, potentially affecting populations that are not primary targets of these complex chemical mixtures. In this work, we investigate lethal and sublethal effects of acute exposure of methomyl commercial formulation in zebrafish embryo and larvae. Methomyl is a broad-spectrum carbamate insecticide and acaricide that acts primarily in acetylcholinesterase inhibition (AChE). Methomyl formulation 96 h-LC50 was determined through the Fish Embryo Acute Toxicity Test (FET) and resulted in 1.2 g/L ± 0.04. Sublethal 6-day exposure was performed in six methomyl formulation concentrations (0.5; 1.0; 2.2; 4.8; 10.6; 23.3 mg/L) to evaluate developmental, physiological, morphological, behavioral, biochemical, and molecular endpoints of zebrafish early-development. Methomyl affected embryo hatching and larva morphology and behavior, especially in higher concentrations; resulting in smaller body and eyes size, failure in swimming bladder inflation, hypolocomotor activity, and concentration-dependent reduction of AChE activity; demonstrating methomyl strong acute toxicity and neurotoxic effect.
Collapse
Affiliation(s)
- Camilo Alexandre Jablonski
- Laboratory of Genomics and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), School of Health and Life Sciences, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil; Graduate Program in Cellular and Molecular Biology, PUCRS, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil.
| | - Talita Carneiro Brandão Pereira
- Laboratory of Genomics and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), School of Health and Life Sciences, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil; Graduate Program in Cellular and Molecular Biology, PUCRS, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil.
| | - Lilian De Souza Teodoro
- Laboratory of Genomics and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), School of Health and Life Sciences, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil; Graduate Program in Cellular and Molecular Biology, PUCRS, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil.
| | - Stefani Altenhofen
- Graduate Program in Medicine and Health Sciences, PUCRS, Av. Ipiranga, 6690, CEP: 90.610-000, Porto Alegre, RS, Brazil; Neurochemistry and Psychopharmacology Laboratory, School of Health and Life Sciences, PUCRS, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil.
| | - Gabriel Rübensam
- Graduate Program in Cellular and Molecular Biology, PUCRS, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil; Toxicology and Pharmacology Research Center, School of Health and Life Sciences, Av. Ipiranga, 6681, CEP: 90619-900, Porto Alegre, RS, Brazil.
| | - Carla Denise Bonan
- Laboratory of Genomics and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), School of Health and Life Sciences, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil; Graduate Program in Cellular and Molecular Biology, PUCRS, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil; Graduate Program in Medicine and Health Sciences, PUCRS, Av. Ipiranga, 6690, CEP: 90.610-000, Porto Alegre, RS, Brazil; Neurochemistry and Psychopharmacology Laboratory, School of Health and Life Sciences, PUCRS, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil.
| | - Maurício Reis Bogo
- Laboratory of Genomics and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), School of Health and Life Sciences, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil; Graduate Program in Cellular and Molecular Biology, PUCRS, Av. Ipiranga, 6681, CEP: 90.619-900, Porto Alegre, RS, Brazil; Graduate Program in Medicine and Health Sciences, PUCRS, Av. Ipiranga, 6690, CEP: 90.610-000, Porto Alegre, RS, Brazil; Toxicology and Pharmacology Research Center, School of Health and Life Sciences, Av. Ipiranga, 6681, CEP: 90619-900, Porto Alegre, RS, Brazil.
| |
Collapse
|
7
|
Abdel-Rahman Mohamed A, Abdel Rahman AN, Salem GA, Deib MM, Nassan MA, Rhouma NR, Khater SI. The Antioxidant Role of a Taurine-Enriched Diet in Combating the Immunotoxic and Inflammatory Effects of Pyrethroids and/or Carbamates in Oreochromis niloticus. Animals (Basel) 2021; 11:ani11051318. [PMID: 34062969 PMCID: PMC8148011 DOI: 10.3390/ani11051318] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Insecticidal pollution of surface waters is known to hurt the growth, survival, and breeding of aquatic animals. Different types of insecticides are known to be toxic to different aquatic organisms, particularly to fish species. In different types of wastewater, the fishes get exposed to different mixtures of insecticides. The current study hypothesized that co-exposure to lambda-cyhalothrin (LCT) and methomyl (MTM) insecticides might be more harmful due to duplicated effects than exposure to either one of them at a time. Oreochromis niloticus was the target fish in this study. The combative roles of taurine (TUR) against LCT and MTM exposures were evaluated. In the present work, exposure of O. niloticus to LCT and/or MTM exhibited adverse effects on immunological parameters, including leukocyte count, complement 3 concentration, antioxidant enzyme concentrations, and mRNA expression for cytokines (TNF-α and IL-1β) and chemokines (CC and CXC). This study also elucidated the more severe toxic effect of LCT than exposure to MTM in O. niloticus fish. The immune response and growth performance of O. niloticus showed marked improvements when provided a 1% TUR-enriched supplement. Abstract Indiscriminate use of insecticides is a major concern due to its ubiquitous occurrence and potential toxicity to aquatic animals. This study investigated the adverse effects of lambda-cyhalothrin (LCT; C23H19ClF3NO3) and methomyl (MTM; C5H10N2O2S) on immune system modulations and growth performance of juvenile fishes. The supportive role of a taurine (TUR; C2H7NO3S)-supplemented diet was also evaluated. Juvenile O. niloticus fishes were exposed to LCT (0.079 µg/L), MTM (20.39 µg/L), or both in water and were fed on a basal diet only or taurine-supplemented basal diet. Exposure to LCT and MTM retarded growth and increased mortality rate. LCT and MTM reduced antioxidant enzyme activities (superoxide dismutase and glutathione peroxidase) and innate and humoral immunity but upregulated interleukin and chemokine expressions. Moreover, exposure to LCT and MTM elevated 8-OHdG levels and increased the mortality of Oreochromis niloticus after the experimental bacterial challenge. The TUR-enriched diet enhanced antioxidant enzymes and acted as a growth promoter and anti-inflammatory agent. TUR can modify innate and adaptive immune responses. Furthermore, TUR supplementation is a beneficial additive candidate for mitigating LCT and MTM toxicities mixed with O. niloticus aquafeed.
Collapse
Affiliation(s)
- Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Zagazig University, Zagazig 4511, Egypt
- Correspondence: (A.A.-R.M.); (A.N.A.R.)
| | - Afaf N. Abdel Rahman
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
- Correspondence: (A.A.-R.M.); (A.N.A.R.)
| | - Gamal A. Salem
- Department of pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
- Department of Drug Technology, Faculty of Medical Technology, Al-Jufra University, Houn 61602, Libya
| | - Maha M.El Deib
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 4511, Egypt; (M.M.E.D.); (S.I.K.)
| | - Mohamed A. Nassan
- Department of clinical laboratory sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Nasreddin R. Rhouma
- Department of Biology, Faculty of Science, Misurata University, Misurata 2478, Libya;
| | - Safaa I. Khater
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 4511, Egypt; (M.M.E.D.); (S.I.K.)
| |
Collapse
|
8
|
Queirós L, Martins AC, Krum BN, Ke T, Aschner M, Pereira JL, Gonçalves FJM, Milne GL, Pereira P. Assessing the neurotoxicity of the carbamate methomyl in Caenorhabditis elegans with a multi-level approach. Toxicology 2021; 451:152684. [PMID: 33508380 DOI: 10.1016/j.tox.2021.152684] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/04/2020] [Accepted: 01/13/2021] [Indexed: 01/19/2023]
Abstract
The neurotoxicity and developmental effects of a widely applied insecticide (methomyl) was investigated by a multi-level approach (behavior and biometry, biochemical alterations and neurodegeneration) in Caenorhabditis elegans upon a short-term exposure (1 h) and a post-exposure period (48 h). The 1-h exposure to sub-lethal concentrations of methomyl (lower than 0.320 g L-1; i.e. below the estimated LC10) triggered significant changes on motor behavior and development impairment. The type of movement was significantly altered in methomyl-exposed worms, as well as biometric parameters (worms frequently idle and moving more backwards than controls; small body area, length and wavelength). These effects were followed by an increase of acetylcholine levels. Interestingly, after the 48-h recovery period, movement of previously exposed worms was similar to controls, and a concentration-dependent reversion of biometric endpoints was recorded, pointing out the transient action of the carbamate in line with an apparent absence of cholinergic neurons damage. This study provided new insight on the neurotoxicity of methomyl by showing that effects on movement and development were transient, and apparently did not result in neurodegeneration in cholinergic neurons. Moreover, these findings reinforced the advantages of using C. elegans in a multi-level approach for pesticide effects assessment.
Collapse
Affiliation(s)
- L Queirós
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193, Aveiro, Portugal; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - A C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - B N Krum
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Physiology and Pharmacology, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - T Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - M Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - J L Pereira
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193, Aveiro, Portugal
| | - F J M Gonçalves
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193, Aveiro, Portugal
| | - G L Milne
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240, USA
| | - P Pereira
- Department of Biology & CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
9
|
Trudeau VL, Thomson P, Zhang WS, Reynaud S, Navarro-Martin L, Langlois VS. Agrochemicals disrupt multiple endocrine axes in amphibians. Mol Cell Endocrinol 2020; 513:110861. [PMID: 32450283 DOI: 10.1016/j.mce.2020.110861] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/17/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
Abstract
Concern over global amphibian declines and possible links to agrochemical use has led to research on the endocrine disrupting actions of agrochemicals, such as fertilizers, fungicides, insecticides, acaricides, herbicides, metals, and mixtures. Amphibians, like other species, have to partition resources for body maintenance, growth, and reproduction. Recent studies suggest that metabolic impairments induced by endocrine disrupting chemicals, and more particularly agrichemicals, may disrupt physiological constraints associated with these limited resources and could cause deleterious effects on growth and reproduction. Metabolic disruption has hardly been considered for amphibian species following agrichemical exposure. As for metamorphosis, the key thyroid hormone-dependent developmental phase for amphibians, it can either be advanced or delayed by agrichemicals with consequences for juvenile and adult health and survival. While numerous agrichemicals affect anuran sexual development, including sex reversal and intersex in several species, little is known about the mechanisms involved in dysregulation of the sex differentiation processes. Adult anurans display stereotypical male mating calls and female phonotaxis responses leading to successful amplexus and spawning. These are hormone-dependent behaviours at the foundation of reproductive success. Therefore, male vocalizations are highly ecologically-relevant and may be a non-invasive low-cost method for the assessment of endocrine disruption at the population level. While it is clear that agrochemicals disrupt multiple endocrine systems in frogs, very little has been uncovered regarding the molecular and cellular mechanisms at the basis of these actions. This is surprising, given the importance of the frog models to our deep understanding of developmental biology and thyroid hormone action to understand human health. Several agrochemicals were found to have multiple endocrine effects at once (e.g., targeting both the thyroid and gonadal axes); therefore, the assessment of agrochemicals that alter cross-talk between hormonal systems must be further addressed. Given the diversity of life-history traits in Anura, Caudata, and the Gymnophiona, it is essential that studies on endocrine disruption expand to include the lesser known taxa. Research under ecologically-relevant conditions will also be paramount. Closer collaboration between molecular and cellular endocrinologists and ecotoxicologists and ecologists is thus recommended.
Collapse
Affiliation(s)
- Vance L Trudeau
- Department of Biology, University of Ottawa, 30 Marie Curie Private, Ottawa, ON, K1N 6N5, Canada.
| | - Paisley Thomson
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec (Québec), G1K 9A9, Canada.
| | - Wo Su Zhang
- Department of Biology, University of Ottawa, 30 Marie Curie Private, Ottawa, ON, K1N 6N5, Canada.
| | - Stéphane Reynaud
- Laboratoire d'Ecologie Alpine, UMR UGA-USMB-CNRS 5553, Université Grenoble Alpes, CS 40700, 38058, Grenoble cedex 9, France.
| | - Laia Navarro-Martin
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain.
| | - Valérie S Langlois
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec (Québec), G1K 9A9, Canada.
| |
Collapse
|
10
|
Lin Z, Zhang W, Pang S, Huang Y, Mishra S, Bhatt P, Chen S. Current Approaches to and Future Perspectives on Methomyl Degradation in Contaminated Soil/Water Environments. Molecules 2020; 25:E738. [PMID: 32046287 PMCID: PMC7036768 DOI: 10.3390/molecules25030738] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 01/10/2023] Open
Abstract
Methomyl is a broad-spectrum oxime carbamate commonly used to control arthropods, nematodes, flies, and crop pests. However, extensive use of this pesticide in agricultural practices has led to environmental toxicity and human health issues. Oxidation, incineration, adsorption, and microbial degradation methods have been developed to remove insecticidal residues from soil/water environments. Compared with physicochemical methods, biodegradation is considered to be a cost-effective and ecofriendly approach to the removal of pesticide residues. Therefore, micro-organisms have become a key component of the degradation and detoxification of methomyl through catabolic pathways and genetic determinants. Several species of methomyl-degrading bacteria have been isolated and characterized, including Paracoccus, Pseudomonas, Aminobacter, Flavobacterium, Alcaligenes, Bacillus, Serratia, Novosphingobium, and Trametes. The degradation pathways of methomyl and the fate of several metabolites have been investigated. Further in-depth studies based on molecular biology and genetics are needed to elaborate their role in the evolution of novel catabolic pathways and the microbial degradation of methomyl. In this review, we highlight the mechanism of microbial degradation of methomyl along with metabolic pathways and genes/enzymes of different genera.
Collapse
Affiliation(s)
- Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.Z.); (S.P.); (Y.H.); (S.M.); (P.B.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.Z.); (S.P.); (Y.H.); (S.M.); (P.B.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.Z.); (S.P.); (Y.H.); (S.M.); (P.B.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.Z.); (S.P.); (Y.H.); (S.M.); (P.B.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.Z.); (S.P.); (Y.H.); (S.M.); (P.B.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.Z.); (S.P.); (Y.H.); (S.M.); (P.B.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.Z.); (S.P.); (Y.H.); (S.M.); (P.B.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
11
|
Seleem AA. Induction of hyperpigmentation and heat shock protein 70 response to the toxicity of methomyl insecticide during the organ development of the Arabian toad, Bufo arabicus (Heyden,1827). J Histotechnol 2019; 42:104-115. [PMID: 31492089 DOI: 10.1080/01478885.2019.1619653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Methomyl (MET) is a carbamate insecticide which is used as a substitute for organophosphorus compounds to protect crops against insects. The present study aims to evaluate the cytoprotection response of pigment cells and heat shock protein 70 (HSP70) after exposure to MET during the tadpole developmental stages of the Arabian toad, Bufo arabicus. Three developmental larval stages of the toad were selected and divided into two groups; Control and MET-exposed (MET-EX) tadpoles (10ppm). MET-EX tadpoles showed an increased number of pigment cells in the liver, kidney, anterior eye chamber, and skin tissues as compared to the control. The glycogen content in the developing liver and muscles (myotomes) of MET-EX tadpoles was decreased as compared to the control. In the MET-EX tadpoles, immunohistochemical staining showed an increase of HSP70 expression in the liver hepatocytes, the nucleated red blood cells (nRBC) in kidney glomeruli, the iridocorneal angle of anterior eye chamber, and the skin as compared to the control. The current study concluded that pigment cells and HSP70 represented a cytoprotecting response against MET insecticide during the organ development of B. arabicas tadpoles. Therefore, MET use should be regularly monitored in the environment to protect animals and human from exposure to this insecticide.
Collapse
Affiliation(s)
- Amin Abdou Seleem
- Zoology Department, Faculty of Science, Sohag University , Sohag , Egypt.,Biology Department, Faculty of Science and Arts, Al-Ula, Taibah University , Medina , Kingdom of Saudi Arabia
| |
Collapse
|
12
|
Seleem AA. Teratogenicity and neurotoxicity effects induced by methomyl insecticide on the developmental stages of Bufo arabicus. Neurotoxicol Teratol 2019; 72:1-9. [DOI: 10.1016/j.ntt.2018.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/22/2018] [Accepted: 12/30/2018] [Indexed: 01/01/2023]
|
13
|
Mladenović M, Arsić BB, Stanković N, Mihović N, Ragno R, Regan A, Milićević JS, Trtić-Petrović TM, Micić R. The Targeted Pesticides as Acetylcholinesterase Inhibitors: Comprehensive Cross-Organism Molecular Modelling Studies Performed to Anticipate the Pharmacology of Harmfulness to Humans In Vitro. Molecules 2018; 23:molecules23092192. [PMID: 30200244 PMCID: PMC6225315 DOI: 10.3390/molecules23092192] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 12/26/2022] Open
Abstract
Commercially available pesticides were examined as Mus musculus and Homo sapiens acetylcholinesterase (mAChE and hAChE) inhibitors by means of ligand-based (LB) and structure-based (SB) in silico approaches. Initially, the crystal structures of simazine, monocrotophos, dimethoate, and acetamiprid were reproduced using various force fields. Subsequently, LB alignment rules were assessed and applied to determine the inter synaptic conformations of atrazine, propazine, carbofuran, carbaryl, tebufenozide, imidacloprid, diuron, monuron, and linuron. Afterwards, molecular docking and dynamics SB studies were performed on either mAChE or hAChE, to predict the listed pesticides' binding modes. Calculated energies of global minima (Eglob_min) and free energies of binding (∆Gbinding) were correlated with the pesticides' acute toxicities (i.e., the LD50 values) against mice, as well to generate the model that could predict the LD50s against humans. Although for most of the pesticides the low Eglob_min correlates with the high acute toxicity, it is the ∆Gbinding that conditions the LD50 values for all the evaluated pesticides. Derived pLD50 = f(∆Gbinding) mAChE model may predict the pLD50 against hAChE, too. The hAChE inhibition by atrazine, propazine, and simazine (the most toxic pesticides) was elucidated by SB quantum mechanics (QM) DFT mechanistic and concentration-dependent kinetic studies, enriching the knowledge for design of less toxic pesticides.
Collapse
Affiliation(s)
- Milan Mladenović
- Kragujevac Center for Computational Biochemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia.
| | - Biljana B Arsić
- Department of Mathematics, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia.
- Division of Pharmacy and Optometry, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| | - Nevena Stanković
- Kragujevac Center for Computational Biochemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia.
| | - Nezrina Mihović
- Kragujevac Center for Computational Biochemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia.
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technologies, Faculty of Pharmacy and Medicine, Sapienza Rome University, P.le A. Moro 5, 00185 Rome, Italy.
- Alchemical Dynamics srl, 00125 Rome, Italy.
| | - Andrew Regan
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Jelena S Milićević
- Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia.
| | - Tatjana M Trtić-Petrović
- Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia.
| | - Ružica Micić
- Faculty of Sciences and Mathematics, University of Priština, Lole Ribara 29, 38220 Kosovska Mitrovica, Serbia.
| |
Collapse
|
14
|
Sakr S, Hassanien H, Bester MJ, Arbi S, Sobhy A, El Negris H, Steenkamp V. Beneficial effects of folic acid on the kidneys and testes of adult albino rats after exposure to methomyl. Toxicol Res (Camb) 2018; 7:480-491. [PMID: 30090598 PMCID: PMC6062218 DOI: 10.1039/c7tx00309a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 03/13/2018] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to evaluate the protective effect of folate against methomyl-induced toxicity on the kidneys and testes of male rats. Adult male albino rats were divided into four groups; Group I served as the control (vehicle), Group II received folic acid (1.1 mg per kg b.wt.), Group III methomyl (1 mg per kg b.wt.) and Group IV folic acid and methomyl. Treatments were administered via oral gavage on a daily basis for 14 weeks. Thereafter blood samples were collected and serum creatinine, testosterone and total antioxidant capacity (TAC) were determined. Animals were sacrificed and semen analysis was conducted. The kidneys and testes were excised and malondialdehyde (MDA) levels were determined. Histopathological and immunohistochemical analyses for caspase-3 were also undertaken. Methomyl treatment resulted in a significant (p < 0.001) elevation of creatinine and MDA levels and significant (p < 0.001) reduction in testosterone and TAC levels. Furthermore, methomyl caused a significant (p < 0.001) reduction in sperm quality. Histopathological examination indicated testicular and renal damage with strong immunoreactivity for caspase-3. Functional and tissue damage was prevented in rats treated with a combination of methomyl and folic acid. This is ascribed to the ability of folate to directly scavenge reactive oxygen species and indirectly enhance cellular redox homeostasis. This study identified that folic acid supplementation may have a beneficial effect in preventing or reducing the deleterious effects of methomyl exposure on kidney as well as testis structure and function. Future studies should focus on the fertility outcome/pregnancy index in rats.
Collapse
Affiliation(s)
- Samar Sakr
- Department of Forensic Medicine and Clinical Toxicology , Faculty of Medicine , University of Zagazig , Egypt . ; Tel: +201121114276
| | - Hanan Hassanien
- Department of Forensic Medicine and Clinical Toxicology , Faculty of Medicine , University of Zagazig , Egypt . ; Tel: +201121114276
| | - Megan Jean Bester
- Department of Anatomy , Faculty of Health Sciences , University of Pretoria , South Africa
| | - Sandra Arbi
- Department of Anatomy , Faculty of Health Sciences , University of Pretoria , South Africa
| | - Azza Sobhy
- Department of Forensic Medicine and Clinical Toxicology , Faculty of Medicine , University of Zagazig , Egypt . ; Tel: +201121114276
| | - Heba El Negris
- Department of Histology , Faculty of Medicine , University of Zagazig , Egypt
- Department of Basic Medical Science , School of Dentistry , University of Badr , Egypt
| | - Vanessa Steenkamp
- Department of Pharmacology , Faculty of Health Sciences , University of Pretoria , South Africa
| |
Collapse
|
15
|
Triana Velásquez TM, Henao Muñoz LM, Bernal Bautista MH. TOXICIDAD AGUDA DEL INSECTICIDA CIPERMETRINA (CYPERMON® 20 EC) EN CUATRO ESPECIES DE ANUROS COLOMBIANOS. ACTA BIOLÓGICA COLOMBIANA 2017. [DOI: 10.15446/abc.v22n3.62631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
El insecticida cipermetrina (CY) es usado en la agricultura para el control de plagas; sin embargo, por su acción neurotóxica puede afectar organismos no blanco como los anuros. El objetivo del trabajo fue determinar la toxicidad (concentración letal media: CL50, y algunos efectos subletales: retrasos en el desarrollo, capacidad de natación y longitud total de las larvas) del insecticida CY (Cypermon® 20EC) expuesto durante 96 horas en embriones y renacuajos de cuatro especies de anuros bajo pruebas de laboratorio y microcosmos. Los embriones de Rhinella humboldti fueron los más sensibles en condiciones de laboratorio (CL50= 6,27 mg/L) y Boana xerophylla en microcosmos (CL50= 88,32 mg/ha), mientras que los de Engystomops pustulosus fueron los más resistentes (laboratorio: CL50= 11,80 mg/L; microcosmos: CL50= 112,37 mg/ha). Rhinella marina mostró una sensibilidad intermedia. En los renacuajos no fue posible calcular los valores CL50 debido a la alta mortalidad registrada en las concentraciones experimentales en laboratorio y microcosmos, las cuales fueron 40 y 122 veces menores al valor de aplicación del insecticida (500 mg/L y 1,52 mg/ha, respectivamente). Por otra parte, se encontró una reducción significante en la longitud total y la capacidad de natación de las larvas obtenidas de los embriones expuestos a la CY, pero no en el tiempo de desarrollo. En conclusión, la exposición a la cipermetrina provocó una letalidad alta en los renacuajos y efectos subletales en estadíos tempranos del desarrollo, por lo que a las concentraciones recomendadas de aplicación, este insecticida es tóxico para las especies de estudio.
Collapse
|