1
|
Do TH, Dao TK, Nguyen HD, Truong NH. Understanding the Role of Free-Living Bacteria in the Gut of the Lower Termite Coptotermes gestroi Based on Metagenomic DNA Analysis. INSECTS 2023; 14:832. [PMID: 37999031 PMCID: PMC10671698 DOI: 10.3390/insects14110832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 11/25/2023]
Abstract
Termites' digestive systems, particularly in lower termites with the presence of protozoa, are unique ecological niches that shelter a diverse microbiota with a variety of functions for the host and the environment. In 2012, the metagenomic DNA (5.4 Gb) of the prokaryotes that freely live in the gut of the lower termite Coptotermes gestroi were sequenced. A total of 125,431 genes were predicted and analyzed in order to mine lignocellulolytic genes. however, the overall picture of the structure, diversity, and function of the prokaryotic gut microbiota was not investigated. In the present study, these 125,431 genes were taxonomically classified by MEGAN and functionally annotated by the Kyoto Encyclopedia of Genes and Genomes (KEGG) and by the Carbohydrate-Active enZYmes (CAZy) and HMMER databases. As a result, 95,751 bacterial genes were classified into 35 phyla. The structure of the bacteria, typified by a high ratio of Firmicutes to Bacterioidetes, was distinct from the structure of the entirety of the bacteria in the lower or higher termites' guts. The archaea (533 genes) were distributed into 4 phyla, 10 classes, 15 orders, 21 families, 47 genera, and 61 species. Although freely living in the guts, the prokaryotic community was formed, developed, and adapted to exhibit unique interactions in order to perform mutual roles of benefit to their hosts. Methanobacteriales, accounting for 61% of the archaea symbionts, seem to play an important role in methanogenesis. Concomitantly, bacterial methanotrophs in the gut utilize methane and combine with other bacterial groups, including potential lignocellulolytic degraders, acetogens, sulfur bacteria, and nitrogen-recycling bacteria, to efficiently convert wood with little nitrogen into acetates via certain pathway modules specified by prokaryotes that freely live in the gut. This forms an important energy source for the termites. Furthermore, bacteria carry 2223 genes involved in the biosynthesis of 17 antibiotic groups. The gut bacteria also possess genes for the degradation of 18 toxic aromatic compounds, of which four are commercial pesticides against termites commonly used for the preservation of wooden constructions. Eight of the eighteen pathways were the first to be reported from the termite gut. Overall, this study sheds light on the roles of the freely living bacteria and archaea in the C. gestroi gut, providing evidence that the gut microbiome acts as the second host genome, contributing both nutrients and immunity to support the host's existence, growth, and development.
Collapse
Affiliation(s)
- Thi Huyen Do
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi 10000, Vietnam; (T.K.D.); (H.D.N.); (N.H.T.)
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi 10000, Vietnam
| | - Trong Khoa Dao
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi 10000, Vietnam; (T.K.D.); (H.D.N.); (N.H.T.)
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi 10000, Vietnam
| | - Hong Duong Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi 10000, Vietnam; (T.K.D.); (H.D.N.); (N.H.T.)
| | - Nam Hai Truong
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi 10000, Vietnam; (T.K.D.); (H.D.N.); (N.H.T.)
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Ha Noi 10000, Vietnam
| |
Collapse
|
2
|
Jung EH, Brauner CJ, Wood CM. Do extreme postprandial levels of oxygen, carbon dioxide, and ammonia in the digestive tract equilibrate with the bloodstream in the freshwater rainbow trout (Oncorhynchus mykiss)? J Comp Physiol B 2023; 193:193-205. [PMID: 36656334 DOI: 10.1007/s00360-023-01475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 12/20/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023]
Abstract
The gastrointestinal tract (GIT) lumen of teleosts harbors extreme conditions, especially after feeding: high PCO2 (20-115 Torr), total ammonia (415-3710 μM), PNH3 (79-1760 μTorr in the intestine), and virtual anoxia (PO2 < 1 Torr). These levels could be dangerous if they were to equilibrate with the bloodstream. Thus, we investigated the potential equilibration of O2, CO2, and ammonia across the GIT epithelia in freshwater rainbow trout by monitoring postprandial arterial and venous blood gases in vivo and in situ. In vivo blood was sampled from the indwelling catheters in the dorsal aorta (DA) and subintestinal vein (SIV) draining the posterior intestine in the fasting state and at 4 to 48 h following catheter-feeding. To investigate possible ammonia absorption in the anterior part of the GIT, blood was sampled from the DA, SIV and hepatic portal vein (HPV) from anaesthetized fish in situ following voluntary feeding. We found minimal equilibration of all three gases between the GIT lumen and the SIV blood, with the latter maintaining pre-feeding levels (PO2 = 25-49 Torr, PCO2 = 6-8 Torr, and total ammonia = 117-134 μM and PNH3 = 13-30 μTorr at 48 h post-feeding). In contrast to the SIV, we found that the HPV total ammonia more than doubled 24 h after feeding (128 to 297 μM), indicative of absorption in the anterior GIT. Overall, the GIT epithelia of trout, although specialized for absorption, prevent dangerous levels of PO2, PCO2 and ammonia from equilibrating with the blood circulation.
Collapse
Affiliation(s)
- Ellen H Jung
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
3
|
Singh A, Schnürer A. AcetoBase Version 2: a database update and re-analysis of formyltetrahydrofolate synthetase amplicon sequencing data from anaerobic digesters. Database (Oxford) 2022; 2022:6609150. [PMID: 35708586 PMCID: PMC9216588 DOI: 10.1093/database/baac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/14/2022]
Abstract
AcetoBase is a public repository and database of formyltetrahydrofolate synthetase (FTHFS) sequences. It is the first systematic collection of bacterial FTHFS nucleotide and protein sequences from genomes and metagenome-assembled genomes and of sequences generated by clone library sequencing. At its publication in 2019, AcetoBase (Version 1) was also the first database to establish connections between the FTHFS gene, the Wood–Ljungdahl pathway and 16S ribosomal RNA genes. Since the publication of AcetoBase, there have been significant improvements in the taxonomy of many bacterial lineages and accessibility/availability of public genomics and metagenomics data. The update to the AcetoBase reference database described here (Version 2) provides new sequence data and taxonomy, along with improvements in web functionality and user interface. The evaluation of this latest update by re-analysis of publicly accessible FTHFS amplicon sequencing data previously analysed with AcetoBase Version 1 revealed significant improvements in the taxonomic assignment of FTHFS sequences. Database URL: https://acetobase.molbio.slu.se
Collapse
Affiliation(s)
- Abhijeet Singh
- Department of Molecular Sciences, BioCenter, Anaerobic Microbiology and Biotechnology Group, Swedish University of Agricultural Sciences , Almas Allé 5, Uppsala SE-750 07, Sweden
| | - Anna Schnürer
- Department of Molecular Sciences, BioCenter, Anaerobic Microbiology and Biotechnology Group, Swedish University of Agricultural Sciences , Almas Allé 5, Uppsala SE-750 07, Sweden
| |
Collapse
|
4
|
Singh A, Moestedt J, Berg A, Schnürer A. Microbiological Surveillance of Biogas Plants: Targeting Acetogenic Community. Front Microbiol 2021; 12:700256. [PMID: 34484143 PMCID: PMC8415747 DOI: 10.3389/fmicb.2021.700256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/21/2021] [Indexed: 11/15/2022] Open
Abstract
Acetogens play a very important role in anaerobic digestion and are essential in ensuring process stability. Despite this, targeted studies of the acetogenic community in biogas processes remain limited. Some efforts have been made to identify and understand this community, but the lack of a reliable molecular analysis strategy makes the detection of acetogenic bacteria tedious. Recent studies suggest that screening of bacterial genetic material for formyltetrahydrofolate synthetase (FTHFS), a key marker enzyme in the Wood-Ljungdahl pathway, can give a strong indication of the presence of putative acetogens in biogas environments. In this study, we applied an acetogen-targeted analyses strategy developed previously by our research group for microbiological surveillance of commercial biogas plants. The surveillance comprised high-throughput sequencing of FTHFS gene amplicons and unsupervised data analysis with the AcetoScan pipeline. The results showed differences in the acetogenic community structure related to feed substrate and operating parameters. They also indicated that our surveillance method can be helpful in the detection of community changes before observed changes in physico-chemical profiles, and that frequent high-throughput surveillance can assist in management towards stable process operation, thus improving the economic viability of biogas plants. To our knowledge, this is the first study to apply a high-throughput microbiological surveillance approach to visualise the potential acetogenic population in commercial biogas digesters.
Collapse
Affiliation(s)
- Abhijeet Singh
- Anaerobic Microbiology and Biotechnology Group, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jan Moestedt
- Tekniska Verken i Linköping AB, Department R&D, Linköping, Sweden
| | | | - Anna Schnürer
- Anaerobic Microbiology and Biotechnology Group, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
5
|
Singh A, Müller B, Schnürer A. Profiling temporal dynamics of acetogenic communities in anaerobic digesters using next-generation sequencing and T-RFLP. Sci Rep 2021; 11:13298. [PMID: 34168213 PMCID: PMC8225771 DOI: 10.1038/s41598-021-92658-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Acetogens play a key role in anaerobic degradation of organic material and in maintaining biogas process efficiency. Profiling this community and its temporal changes can help evaluate process stability and function, especially under disturbance/stress conditions, and avoid complete process failure. The formyltetrahydrofolate synthetase (FTHFS) gene can be used as a marker for acetogenic community profiling in diverse environments. In this study, we developed a new high-throughput FTHFS gene sequencing method for acetogenic community profiling and compared it with conventional terminal restriction fragment length polymorphism of the FTHFS gene, 16S rRNA gene-based profiling of the whole bacterial community, and indirect analysis via 16S rRNA profiling of the FTHFS gene-harbouring community. Analyses and method comparisons were made using samples from two laboratory-scale biogas processes, one operated under stable control and one exposed to controlled overloading disturbance. Comparative analysis revealed satisfactory detection of the bacterial community and its changes for all methods, but with some differences in resolution and taxonomic identification. FTHFS gene sequencing was found to be the most suitable and reliable method to study acetogenic communities. These results pave the way for community profiling in various biogas processes and in other environments where the dynamics of acetogenic bacteria have not been well studied.
Collapse
Affiliation(s)
- Abhijeet Singh
- grid.6341.00000 0000 8578 2742Anaerobic Microbiology and Biotechnology Group, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Almas Allé 5, Box 7025, 750 07 Uppsala, Sweden
| | - Bettina Müller
- grid.6341.00000 0000 8578 2742Anaerobic Microbiology and Biotechnology Group, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Almas Allé 5, Box 7025, 750 07 Uppsala, Sweden
| | - Anna Schnürer
- grid.6341.00000 0000 8578 2742Anaerobic Microbiology and Biotechnology Group, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Almas Allé 5, Box 7025, 750 07 Uppsala, Sweden
| |
Collapse
|
6
|
Singh A, Nylander JAA, Schnürer A, Bongcam-Rudloff E, Müller B. High-Throughput Sequencing and Unsupervised Analysis of Formyltetrahydrofolate Synthetase (FTHFS) Gene Amplicons to Estimate Acetogenic Community Structure. Front Microbiol 2020; 11:2066. [PMID: 32983047 PMCID: PMC7481360 DOI: 10.3389/fmicb.2020.02066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/05/2020] [Indexed: 11/17/2022] Open
Abstract
The formyltetrahydrofolate synthetase (FTHFS) gene is a molecular marker of choice to study the diversity of acetogenic communities. However, current analyses are limited due to lack of a high-throughput sequencing approach for FTHFS gene amplicons and a dedicated bioinformatics pipeline for data analysis, including taxonomic annotation and visualization of the sequence data. In the present study, we combined the barcode approach for multiplexed sequencing with unsupervised data analysis to visualize acetogenic community structure. We used samples from a biogas digester to develop proof-of-principle for our combined approach. We successfully generated high-throughput sequence data for the partial FTHFS gene and performed unsupervised data analysis using the novel bioinformatics pipeline “AcetoScan” presented in this study, which resulted in taxonomically annotated OTUs, phylogenetic tree, abundance plots and diversity indices. The results demonstrated that high-throughput sequencing can be used to sequence the FTHFS amplicons from a pool of samples, while the analysis pipeline AcetoScan can be reliably used to process the raw sequence data and visualize acetogenic community structure. The method and analysis pipeline described in this paper can assist in the identification and quantification of known or potentially new acetogens. The AcetoScan pipeline is freely available at https://github.com/abhijeetsingh1704/AcetoScan.
Collapse
Affiliation(s)
- Abhijeet Singh
- Anaerobic Microbiology and Biotechnology Group, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johan A A Nylander
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,National Bioinformatics Infrastructure Sweden, SciLifeLab, Uppsala, Sweden
| | - Anna Schnürer
- Anaerobic Microbiology and Biotechnology Group, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Erik Bongcam-Rudloff
- SLU-Global Bioinformatics Centre, Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bettina Müller
- Anaerobic Microbiology and Biotechnology Group, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
7
|
Matsui H, Mimura A, Maekawa S, Ban-Tokuda T. Effects of feed intake on the diversity and population density of homoacetogens in the large intestine of pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:1907-1913. [PMID: 31010997 PMCID: PMC6819677 DOI: 10.5713/ajas.18.0512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/12/2019] [Indexed: 11/27/2022]
Abstract
Objective Homoacetogens play important roles in the production of acetate in the large intestine of monogastric mammals. However, their diversity in the porcine large intestine is still unknown. Marker gene analysis was performed to assess the effects of energy level on the diversity and population densities of homoacetogens in porcine feces. Methods Crossbred pigs were fed high or low energy-level diets. The high-intake (HI) diet was sufficient to allow a daily gain of 1.2 kg. The low-intake (LI) diet provided 0.6 times the amount of energy as the HI diet. Genetic diversity was analyzed using formyltetrahydrofolate synthetase gene (FHS) clone libraries derived from fecal DNA samples. FHS DNA copy numbers were quantified using real-time polymerase chain reaction. Results A wide variety of FHS sequences was recovered from animals in both treatments. No differences in FHS clone libraries between the HI and LI groups were found. During the experimental period, no significant differences in the proportion of FHS copy numbers were observed between the two treatment groups. Conclusion This is the first reported molecular diversity analysis using specific homoacetogen marker genes from the large intestines of pigs. There was no observable effect of feed intake on acetogen diversity.
Collapse
Affiliation(s)
- Hiroki Matsui
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Ayumi Mimura
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan.,Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Sakiko Maekawa
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Tomomi Ban-Tokuda
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| |
Collapse
|
8
|
Singh A, Müller B, Fuxelius HH, Schnürer A. AcetoBase: a functional gene repository and database for formyltetrahydrofolate synthetase sequences. Database (Oxford) 2019; 2019:baz142. [PMID: 31832668 PMCID: PMC6908459 DOI: 10.1093/database/baz142] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/01/2019] [Accepted: 11/14/2019] [Indexed: 01/01/2023]
Abstract
Acetogenic bacteria are imperative to environmental carbon cycling and diverse biotechnological applications, but their extensive physiological and taxonomical diversity is an impediment to systematic taxonomic studies. Acetogens are chemolithoautotrophic bacteria that perform reductive carbon fixation under anaerobic conditions through the Wood-Ljungdahl pathway (WLP)/acetyl-coenzyme A pathway. The gene-encoding formyltetrahydrofolate synthetase (FTHFS), a key enzyme of this pathway, is highly conserved and can be used as a molecular marker to probe acetogenic communities. However, there is a lack of systematic collection of FTHFS sequence data at nucleotide and protein levels. In an attempt to streamline investigations on acetogens, we developed AcetoBase - a repository and database for systematically collecting and organizing information related to FTHFS sequences. AcetoBase also provides an opportunity to submit data and obtain accession numbers, perform homology searches for sequence identification and access a customized blast database of submitted sequences. AcetoBase provides the prospect to identify potential acetogenic bacteria, based on metadata information related to genome content and the WLP, supplemented with FTHFS sequence accessions, and can be an important tool in the study of acetogenic communities. AcetoBase can be publicly accessed at https://acetobase.molbio.slu.se.
Collapse
Affiliation(s)
- Abhijeet Singh
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala BioCenter, Box 7025, SE-750 07 Uppsala, Sweden
| | - Bettina Müller
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala BioCenter, Box 7025, SE-750 07 Uppsala, Sweden
| | - Hans-Henrik Fuxelius
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala BioCenter, Box 7025, SE-750 07 Uppsala, Sweden
| | - Anna Schnürer
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala BioCenter, Box 7025, SE-750 07 Uppsala, Sweden
| |
Collapse
|
9
|
Bengelsdorf FR, Straub M, Dürre P. Bacterial synthesis gas (syngas) fermentation. ENVIRONMENTAL TECHNOLOGY 2013; 34:1639-51. [PMID: 24350425 DOI: 10.1080/09593330.2013.827747] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Acetogenic bacteria employing the Wood-Ljungdahl pathway can be used as biocatalysts in syngas fermentation for the production ofbiofuels such as ethanol or butanol as well as biocommodities such as acetate, lactate, butyrate, 2,3 butanediol, and acetone. The potential of such processes can be projected by the global syngas output, which was 70,817 megawatts thermal in 2010 and is expected to increase up to 72% in 2016. To date, different acetogens are used as commercial production strains for industrial syngas fermentations in pilot or demonstration plants (Coskata, INEOS Bio, LanzaTech) and first commercial units are expected to launch operation in the near future (INEOS Bio, LanzaTech). Considerations on potential yields are quite promising for fermentative production. New methods for metabolic engineering were established to construct novel recombinant acetogenic biocatalysts. Synthetic biology will certainly play a major role in constructing strains for commercial operations. This way, a cheap and abundant carbon source most probably replace, processes based on crude oil or sugar in the near future.
Collapse
Affiliation(s)
- Frank R Bengelsdorf
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, Ulm D-89081, Germany.
| | - Melanie Straub
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, Ulm D-89081, Germany
| | - Peter Dürre
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, Ulm D-89081, Germany
| |
Collapse
|
10
|
Abstract
Colonic gases are among the most tangible features of digestion, yet physicians are typically unable to offer long-term relief from clinical complaints of excessive gas. Studies characterizing colonic gases have linked changes in volume or composition with bowel disorders and shown hydrogen gas (H(2)), methane, hydrogen sulphide, and carbon dioxide to be by-products of the interplay between H(2)-producing fermentative bacteria and H(2) consumers (reductive acetogens, methanogenic archaea and sulphate-reducing bacteria [SRB]). Clinically, H(2) and methane measured in breath can indicate lactose and glucose intolerance, small intestinal bacterial overgrowth and IBS. Methane levels are increased in patients with constipation or IBS. Hydrogen sulphide is a by-product of H(2) metabolism by SRB, which are ubiquitous in the colonic mucosa. Although higher hydrogen sulphide and SRB levels have been detected in patients with IBD, and to a lesser extent in colorectal cancer, this colonic gas might have beneficial effects. Moreover, H(2) has been shown to have antioxidant properties and, in the healthy colon, physiological H(2) concentrations might protect the mucosa from oxidative insults, whereas an impaired H(2) economy might facilitate inflammation or carcinogenesis. Therefore, standardized breath gas measurements combined with ever-improving molecular methodologies could provide novel strategies to prevent, diagnose or manage numerous colonic disorders.
Collapse
|
11
|
Nakamura N, Lin HC, McSweeney CS, Mackie RI, Gaskins HR. Mechanisms of microbial hydrogen disposal in the human colon and implications for health and disease. Annu Rev Food Sci Technol 2012; 1:363-95. [PMID: 22129341 DOI: 10.1146/annurev.food.102308.124101] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the human gastrointestinal tract, dietary components, including fiber, that reach the colon are fermented principally to short-chain fatty acids, hydrogen, and carbon dioxide. Microbial disposal of the hydrogen generated during anaerobic fermentation in the human colon is critical to optimal functioning of this ecosystem. However, our understanding of microbial hydrogenotrophy is fragmented and, at least as it occurs in the colon, is mostly theoretical in nature. Thorough investigation and integration of knowledge on the diversity of hydrogenotrophic microbes, their metabolic variation and activities as a functional group, as well as the nature of their interactions with fermentative bacteria, are necessary to understand hydrogen metabolism in the human colon. Here, we review the limited data available on the three major groups of H(2)-consuming microorganisms found in the human colon [methanogens, sulfate-reducing bacteria (SRB), and acetogens] as well as evidence that end products of their metabolism have an important impact on colonic health.
Collapse
Affiliation(s)
- Noriko Nakamura
- Department of Animal Sciences and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
12
|
Westerholm M, Müller B, Arthurson V, Schnürer A. Changes in the acetogenic population in a mesophilic anaerobic digester in response to increasing ammonia concentration. Microbes Environ 2011; 26:347-53. [PMID: 21869569 DOI: 10.1264/jsme2.me11123] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Changes in the acetogenic population were investigated in an experimental laboratory-scale biogas reactor (37°C) subjected to gradually elevated ammonia levels (0.8 to 6.9 g NH(4)(+)-N L(-1)). A shift from aceticlastic acetate degradation to syntrophic acetate oxidation had previously been confirmed in this reactor. In a parallel control reactor, operating at constant ammonia levels (0.65-0.90 g NH(4)(+)-N L(-1)), acetate degradation proceeded via the aceticlastic pathway throughout the operating period (660 d). The acetogenic populations in the reactors were analysed using degenerated primers designed to target the functional gene encoding a key enzyme of the acetyl-CoA pathway, 10-formyltetrahydrofolate synthetase (FTHFS). The analysis consisted of terminal restriction fragment length polymorphism (T-RFLP) analysis coupled with the construction of clone libraries, and quantitative PCR (qPCR) analysis. The T-RFLP data obtained were statistically analysed by non-metric multidimensional scaling. The most abundant FTHFS genes recovered in the clone libraries were assigned to terminal restriction fragments of the T-RFLP profile. The results of the investigation clearly indicated that increased ammonia concentration substantially influenced the putative acetogenic population structure and caused two distinct shifts of the most abundant members; however, the identity of the dominating species remains unknown, as none of the genes had been identified previously. Despite the shifts in the population, the qPCR analysis revealed a relatively stable abundance of the acetogenic population throughout the operation.
Collapse
Affiliation(s)
- Maria Westerholm
- Department of Microbiology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | |
Collapse
|
13
|
Ottesen EA, Leadbetter JR. Formyltetrahydrofolate synthetase gene diversity in the guts of higher termites with different diets and lifestyles. Appl Environ Microbiol 2011; 77:3461-7. [PMID: 21441328 PMCID: PMC3126463 DOI: 10.1128/aem.02657-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 03/17/2011] [Indexed: 11/20/2022] Open
Abstract
In this study, we examine gene diversity for formyl-tetrahydrofolate synthetase (FTHFS), a key enzyme in homoacetogenesis, recovered from the gut microbiota of six species of higher termites. The "higher" termites (family Termitidae), which represent the majority of extant termite species and genera, engage in a broader diversity of feeding and nesting styles than the "lower" termites. Previous studies of termite gut homoacetogenesis have focused on wood-feeding lower termites, from which the preponderance of FTHFS sequences recovered were related to those from acetogenic treponemes. While sequences belonging to this group were present in the guts of all six higher termites examined, treponeme-like FTHFS sequences represented the majority of recovered sequences in only two species (a wood-feeding Nasutitermes sp. and a palm-feeding Microcerotermes sp.). The remaining four termite species analyzed (a Gnathamitermes sp. and two Amitermes spp. that were recovered from subterranean nests with indeterminate feeding strategies and a litter-feeding Rhynchotermes sp.) yielded novel FTHFS clades not observed in lower termites. These termites yielded two distinct clusters of probable purinolytic Firmicutes and a large group of potential homoacetogens related to sequences previously recovered from the guts of omnivorous cockroaches. These findings suggest that the gut environments of different higher termite species may select for different groups of homoacetogens, with some species hosting treponeme-dominated homoacetogen populations similar to those of wood-feeding, lower termites while others host Firmicutes-dominated communities more similar to those of omnivorous cockroaches.
Collapse
Affiliation(s)
| | - Jared R. Leadbetter
- Environmental Science & Engineering, W. M. Keck Laboratories, M/C 138-78, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
14
|
Diversity of formyltetrahydrofolate synthetases in the guts of the wood-feeding cockroach Cryptocercus punctulatus and the omnivorous cockroach Periplaneta americana. Appl Environ Microbiol 2010; 76:4909-13. [PMID: 20495046 DOI: 10.1128/aem.00299-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the diversity of a marker gene for homoacetogens in two cockroach gut microbial communities. Formyltetrahydrofolate synthetase (FTHFS or fhs) libraries prepared from a wood-feeding cockroach, Cryptocercus punctulatus, were dominated by sequences that affiliated with termite gut treponemes. No spirochete-like sequences were recovered from the omnivorous roach Periplaneta americana, which was dominated by Firmicutes-like sequences.
Collapse
|
15
|
Diversity of the Formyltetrahydrofolate Synthetase (FTHFS) Gene in the Proximal and Mid Ostrich Colon. Curr Microbiol 2010; 62:1-6. [DOI: 10.1007/s00284-010-9661-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 04/26/2010] [Indexed: 11/30/2022]
|
16
|
Presence of novel, potentially homoacetogenic bacteria in the rumen as determined by analysis of formyltetrahydrofolate synthetase sequences from ruminants. Appl Environ Microbiol 2010; 76:2058-66. [PMID: 20118378 DOI: 10.1128/aem.02580-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homoacetogens produce acetate from H(2) and CO(2) via the Wood-Ljungdahl pathway. Some homoacetogens have been isolated from the rumen, but these organisms are expected to be only part of the full diversity present. To survey the presence of rumen homoacetogens, we analyzed sequences of formyltetrahydrofolate synthetase (FTHFS), a key enzyme of the Wood-Ljungdahl pathway. A total of 275 partial sequences of genes encoding FTHFS were PCR amplified from rumen contents of a cow, two sheep, and a deer. Phylogenetic trees were constructed using these FTHFS gene sequences and the translated amino acid sequences, together with other sequences from public databases and from novel nonhomoacetogenic bacteria isolated from the rumen. Over 90% of the FTHFS sequences fell into 34 clusters defined with good bootstrap support. Few rumen-derived FTHFS sequences clustered with sequences of known homoacetogens. Conserved residues were identified in the deduced FTHFS amino acid sequences from known homoacetogens, and their presence in the other sequences was used to determine a "homoacetogen similarity" (HS) score. A homoacetogen FTHFS profile hidden Markov model (HoF-HMM) was used to assess the homology of rumen and homoacetogen FTHFS sequences. Many clusters had low HS scores and HoF-HMM matches, raising doubts about whether the sequences originated from homoacetogens. In keeping with these findings, FTHFS sequences from nonhomoacetogenic bacterial isolates grouped in these clusters with low scores. However, sequences that formed 10 clusters containing no known isolates but representing 15% of our FTHFS sequences from rumen samples had high HS scores and HoF-HMM matches and so could represent novel homoacetogens.
Collapse
|
17
|
Ohashi Y, Andou A, Kanaya M, Harada K, Fujisawa T. Acetogenic Bacteria Mainly Contribute to the Disposal of Hydrogen in the Colon of Healthy Japanese. Biosci Microflora 2009. [DOI: 10.12938/bifidus.28.17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yuji Ohashi
- Laboratory of Food Hygiene, Department of Food Science and Technology, Nippon Veterinary and Life Science University
| | - Ayako Andou
- Laboratory of Food Hygiene, Department of Food Science and Technology, Nippon Veterinary and Life Science University
| | - Miho Kanaya
- Laboratory of Food Hygiene, Department of Food Science and Technology, Nippon Veterinary and Life Science University
| | - Keisuke Harada
- Laboratory of Food Hygiene, Department of Food Science and Technology, Nippon Veterinary and Life Science University
| | - Tomohiko Fujisawa
- Laboratory of Food Hygiene, Department of Food Science and Technology, Nippon Veterinary and Life Science University
| |
Collapse
|
18
|
Hattori S. Syntrophic Acetate-Oxidizing Microbes in Methanogenic Environments. Microbes Environ 2008; 23:118-27. [DOI: 10.1264/jsme2.23.118] [Citation(s) in RCA: 326] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Satoshi Hattori
- Department of Bioresource Engineering, Faculty of Agriculture, Yamagata University
| |
Collapse
|