1
|
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating psychiatric condition with a wide range of behavioral disturbances and serious consequences for both patient and society. One of the main reasons for unsuccessful therapies is insufficient knowledge about its underlying pathomechanism. In the search for centrally signaling molecules that might be relevant to the development of PTSD we focus here on arginine vasopressin (AVP). So far AVP has not been strongly implicated in PTSD, but different lines of evidence suggest a possible impact of its signaling in all clusters of PTSD symptomatology. More specifically, in laboratory rodents, AVP agonists affect behavior in a PTSD-like manner, while significant reduction of AVP signaling in the brain e.g. in AVP-deficient Brattleboro rats, ameliorated defined behavioral parameters that can be linked to PTSD symptoms. Different animal models of PTSD also show alterations in the AVP signaling in distinct brain areas. However, pharmacological treatment targeting central AVP receptors via systemic routes is hampered by possible side effects that are linked to the peripheral action of AVP as a hormone. Indeed, the V1a receptor, the most common receptor subtype in the brain, is implicated in vasoconstriction. Thus, systemic treatment with V1a receptor antagonists would be implicated in hypotonia. This implies that novel treatment concepts are needed to target AVP receptors not only at brain level but also in distinct brain areas, to offer alternative treatments for PTSD.
Collapse
Affiliation(s)
- Eszter Sipos
- Behavioral Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Bibiána Török
- Behavioral Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- Janos Szentagothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - István Barna
- Behavioral Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Mario Engelmann
- Institut für Biochemie und Zellbiologie, Otto-von-Guericke-Universität, Magdeburg, Germany
- Center for Behavioural Brain Sciences (CBBS), Magdeburg, Germany
| | - Dóra Zelena
- Behavioral Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
2
|
Koyuncuoğlu T, Sevim H, Çetrez N, Meral Z, Gönenç B, Kuntsal Dertsiz E, Akakın D, Yüksel M, Kasımay Çakır Ö. High intensity interval training protects from Post Traumatic Stress Disorder induced cognitive impairment. Behav Brain Res 2020; 397:112923. [PMID: 32976860 DOI: 10.1016/j.bbr.2020.112923] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022]
Abstract
This study aimed to show the possible protective effects of high intensity interval training (HIIT) in PTSD-induced rats and probable underlying mechanisms. Female rats (n = 44) were separated as; Sedentary (SED), moderate intensity continuous training (MICT), HIIT groups. Then the groups were divided into subgroups according to PTSD induction (n = 6-8/group). Exercise groups performed HIIT or MICT for 6 weeks. On the fifth week, PTSD was induced by single prolonged stress protocol. Cognitive functions were evaluated by object recognition, anxiety levels by hole-board and elevated plus maze, and fear conditioning by passive avoidance tests. Following decapitation, malondialdehyde (MDA), glutathione (GSH), luminol and lucigenin chemiluminescence levels, and myeloperoxidase (MPO), superoxide dismutase (SOD) and catalase (CAT) activities were measured, and histopathological damage was evaluated. The data was analyzed by one-way ANOVA. Cognitive decline and aggravated anxiety levels in SED + PTSD group were improved in both PTSD-induced exercise groups (p < 0.05-0.001). The increased chemiluminescence levels, MPO activity and histological damage were depressed in both PTSD-induced exercise groups (p < 0.05-0.001). The risen MDA levels in SED + PTSD group were suppressed only in HIIT + PTSD group (p < 0.01-0.001). The decreased GSH levels were increased by MICT (p < 0.05-0.001), and CAT and SOD activities were improved via HIIT (p < 0.05). Compared to SED group, latency was decreased in SED + PTSD (p < 0.05-0.01) group. Neuronal damage scores were alleviated in both PTSD-induced exercise groups (p < 0.001). PTSD-induced memory decline was protected by both of the exercise models however more effectively by HIIT via decreasing oxidative stress, anxiety levels and by improving antioxidant capacity as a protective system for neuronal damage.
Collapse
Affiliation(s)
- Türkan Koyuncuoğlu
- Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| | - Hacer Sevim
- Undergraduate Medical Students, Marmara University School of Medicine, Istanbul, Turkey
| | - Nurşen Çetrez
- Undergraduate Medical Students, Marmara University School of Medicine, Istanbul, Turkey
| | - Zeynep Meral
- Undergraduate Medical Students, Marmara University School of Medicine, Istanbul, Turkey
| | - Berfin Gönenç
- Undergraduate Medical Students, Marmara University School of Medicine, Istanbul, Turkey
| | - Ekin Kuntsal Dertsiz
- Department of Histology & Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Dilek Akakın
- Department of Histology & Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Meral Yüksel
- Department of Medical Laboratory Techniques, Marmara University Vocational School of Health Services, Istanbul, Turkey
| | - Özgür Kasımay Çakır
- Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
3
|
Loprinzi PD. Effects of Exercise on Long-Term Potentiation in Neuropsychiatric Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1228:439-451. [PMID: 32342476 DOI: 10.1007/978-981-15-1792-1_30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Various neuropsychiatric conditions, such as depression, Alzheimer's disease, and Parkinson's disease, demonstrate evidence of impaired long-term potentiation, a cellular correlate of episodic memory function. This chapter discusses the mechanistic effects of these neuropsychiatric conditions on long-term potentiation and how exercise may help to attenuate these detrimental effects.
Collapse
Affiliation(s)
- Paul D Loprinzi
- Department of Health, Exercise Science, and Recreation Management, Exercise and Memory Laboratory, The University of Mississippi, Oxford, MS, USA.
| |
Collapse
|
4
|
The ethanolic extract of Aralia continentalis ameliorates cognitive deficits via modifications of BDNF expression and anti-inflammatory effects in a rat model of post-traumatic stress disorder. Altern Ther Health Med 2019; 19:11. [PMID: 30621666 PMCID: PMC6323859 DOI: 10.1186/s12906-018-2417-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/19/2018] [Indexed: 01/16/2023]
Abstract
Abstract Background Post-traumatic stress disorder (PTSD) is a disease associated with that the experience of traumatic stress. The traumatic experience results in the development of a prolonged stress response that causes impaired memory function and increased inflammation in the hippocampus. Currently, antidepressants are the only approved therapy for PTSD. However, the efficacy of antidepressants in the treatment of PTSD is marginal. The ethanol extract of Aralia continentalis (AC) is traditionally used in oriental medicine, and has been showed to possess pharmacological properties, including anti-inflammatory, anti-cancer, anti-atherosclerotic, and anti-diabetic effects. Nevertheless, the effects of AC on cognitive memory and its mechanism of action in PTSD remain unclear. Given the necessity of further treatment options for PTSD, we investigated the effect of AC on the spatial cognitive impairment caused by single prolonged stress (SPS) in a rat model of PTSD. Methods Male rats were treated with various intraperitoneal (i.p.) doses of AC for 21 consecutive days after inducing chronic stress with the SPS procedure. Results Cognitive impairment caused by SPS were inhibited after treatment with 100 mg/kg AC, as measured by the Morris water maze test and an object recognition test. Additionally, AC treatment significantly alleviated memory-related decreases in brain-derived neurotrophic factor (BDNF) mRNA and protein levels in the hippocampus. Our results suggest that AC significantly inhibited the cognitive deficits caused by SPS via increased expression of pro-inflammatory cytokines, including tumor necrosis factor-α and interleukin-6, in the rat brain. Conclusions AC reversed the behavioral impairments and inflammation triggered by SPS-derived traumatic stress and should be further evaluated as a potential therapeutic drug for PTSD.
Collapse
|
5
|
Loprinzi PD, Frith E. Protective and therapeutic effects of exercise on stress-induced memory impairment. J Physiol Sci 2019; 69:1-12. [PMID: 30203315 PMCID: PMC10717705 DOI: 10.1007/s12576-018-0638-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/05/2018] [Indexed: 12/22/2022]
Abstract
The objective of this paper was to systematically evaluate the potential preventive and therapeutic effects of exercise in attenuating stress-induced memory impairment. A systematic review was employed, searching PubMed, PsychInfo, Sports Discus and Google Scholar databases. For eligibility, studies had to be published in English, employ an experimental design, have the acute or chronic bout of exercise occur prior to, during or after the stressor, implement a psychophysiological stressor, and have an assessment of memory function occurring after the stressor. In total, 23 studies were evaluated, all of which were conducted among animal models. All 23 studies employed a chronic exercise protocol and a chronic stress protocol. Eight studies evaluated a preventive model, three employed a concurrent model, ten studies employed a therapeutic model, and two studies evaluated both a preventive and therapeutic model within the same study. Among the eight studies employing a preventive model, all eight demonstrated that the stress regimen impaired memory function. In all eight of these studies, when exercise occurred prior to the stressor, exercise attenuated the stress-induced memory impairment effect. Among the ten studies employing a therapeutic model, one study showed that the stress protocol enhanced memory function, one showed that the stress protocol did not influence memory, and eight demonstrated that the stress regimen impaired memory function. Among the eight studies showing that the stress protocol impaired memory function, all eight studies demonstrated that exercise, after the stressor, attenuated stress-induced memory impairment. Within animal models, chronic stress is associated with memory impairment and chronic exercise has both a preventive and therapeutic effect in attenuating stress-induced memory impairment. Additional experimental work in human studies is needed. Such work should also examine acute exercise and stress protocols.
Collapse
Affiliation(s)
- Paul D Loprinzi
- Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, 229 Turner Center, University, MS, 38677, USA.
| | - Emily Frith
- Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, 229 Turner Center, University, MS, 38677, USA
| |
Collapse
|
6
|
Lee B, Shim I, Lee H, Hahm DH. Effects of Epigallocatechin Gallate on Behavioral and Cognitive Impairments, Hypothalamic-Pituitary-Adrenal Axis Dysfunction, and Alternations in Hippocampal BDNF Expression Under Single Prolonged Stress. J Med Food 2018; 21:979-989. [PMID: 30273101 DOI: 10.1089/jmf.2017.4161] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a traumatic stress-related psychiatric disorder stimulated by experience. Green tea has potent antioxidative properties, due, in part, to the catechin (-) epigallocatechin-3-gallate (EGCG). EGCG is an important polyphenol with advantageous effects on anxiety and depression. Nevertheless, the mechanism about the inhibition of PTSD-like symptoms of EGCG is still unidentified. We examined whether EGCG improved learning and memory deficit stimulated in rats after single prolonged stress (SPS). Rats were administrated intraperitoneally (i.p.) with EGCG for 14 successive days after the SPS process. The SPS procedure stimulated cognitive deficit in the Morris water maze test and the object recognition task, and this impairment was improved by EGCG (25 mg/kg, i.p.). Daily EGCG administration significantly decreased the freezing response to contextual fear conditioning. The administration of EGCG also significantly moderated memory-related decreases in the alternation of cAMP-response element-binding protein and brain-derived neurotrophic factor in the hippocampus. Our results suggest that EGCG alleviated SPS-stimulated learning and memory deficit by inhibiting the increase of neuroinflammation in the rat brain. In addition, EGCG reversed the alternation of allopregnanolone and progesterone in the brain, and diminished simultaneously the hypothalamic-pituitary-adrenal axis dysfunction. Thus, EGCG reversed learning and memory-related behavioral dysfunction and molecular alternation accelerated by traumatic stress and may be a useful therapeutic material for PTSD.
Collapse
Affiliation(s)
- Bombi Lee
- 1 Center for Converging Humanities, Kyung Hee University , Seoul, Republic of Korea.,2 Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University , Seoul, Republic of Korea
| | - Insop Shim
- 3 Department of Physiology, College of Medicine, Kyung Hee University , Seoul, Republic of Korea
| | - Hyejung Lee
- 2 Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University , Seoul, Republic of Korea
| | - Dae-Hyun Hahm
- 3 Department of Physiology, College of Medicine, Kyung Hee University , Seoul, Republic of Korea
| |
Collapse
|
7
|
Lee B, Shim I, Lee H, Hahm DH. Melatonin ameliorates cognitive memory by regulation of cAMP-response element-binding protein expression and the anti-inflammatory response in a rat model of post-traumatic stress disorder. BMC Neurosci 2018; 19:38. [PMID: 29973144 PMCID: PMC6032787 DOI: 10.1186/s12868-018-0439-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 06/28/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) is an important psychological disease that can develop following the physical experience or witnessing of traumatic events. The psychopathological response to traumatic stressors increases inflammation in the hippocampus and induces memory deficits. Melatonin (MTG) plays critical roles in circadian rhythm disorders, Alzheimer's disease, and other neurological disorders. However, the cognitive efficiency of MTG and its mechanisms of action in the treatment of PTSD remain unclear. Thus, the present study investigated the effects of MTG on spatial cognitive impairments stimulated by single prolonged stress (SPS) in rats, an animal model of PTSD. Male rats received intraperitoneal (i.p.) administration of various doses of MTG for 21 consecutive days after the SPS procedure. RESULTS SPS-stimulated cognitive impairments in the object recognition task and Morris water maze were reversed by MTG treatment (25 mg/kg, i.p). Additionally, MTG significantly increased cognitive memory-related decreases in cAMP-response element-binding (CREB) protein and mRNA levels in the hippocampus. Our results also demonstrate that MTG significantly inhibited SPS-stimulated cognitive memory impairments by inhibiting the expression of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in the rat brain. CONCLUSION The present results indicate that MTG can be beneficial for SPS-stimulated memory impairments via changes in CREB expression and proinflammatory mediators. Thus, MTG may be a prophylactic strategy for the prevention or mitigation of the progression of some features of the PTSD pathology.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447 Republic of Korea
- Center for Converging Humanities, Kyung Hee University, Seoul, 02447 Republic of Korea
| | - Insop Shim
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447 Republic of Korea
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, 02447 Republic of Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| | - Dae-Hyun Hahm
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447 Republic of Korea
- Center for Converging Humanities, Kyung Hee University, Seoul, 02447 Republic of Korea
| |
Collapse
|
8
|
Abstract
Accumulating research in rodents and humans indicates that exercise benefits brain function and may prevent or delay onset of neurodegenerative conditions. In particular, exercise modifies the structure and function of the hippocampus, a brain area important for learning and memory. This review addresses the central and peripheral mechanisms underlying the beneficial effects of exercise on the hippocampus. We focus on running-induced changes in adult hippocampal neurogenesis, neural circuitry, neurotrophins, synaptic plasticity, neurotransmitters, and vasculature. The role of peripheral factors in hippocampal plasticity is also highlighted. We discuss recent evidence that systemic factors released from peripheral organs such as muscle (myokines), liver (hepatokines), and adipose tissue (adipokines) during exercise contribute to hippocampal neurotrophin and neurogenesis levels, and memory function. A comprehensive understanding of the body-brain axis is needed to elucidate how exercise improves hippocampal plasticity and cognition.
Collapse
Affiliation(s)
- C'iana Cooper
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
| | - Hyo Youl Moon
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
- Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Henriette van Praag
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
| |
Collapse
|
9
|
Nishii A, Amemiya S, Kubota N, Nishijima T, Kita I. Adaptive Changes in the Sensitivity of the Dorsal Raphe and Hypothalamic Paraventricular Nuclei to Acute Exercise, and Hippocampal Neurogenesis May Contribute to the Antidepressant Effect of Regular Treadmill Running in Rats. Front Behav Neurosci 2017; 11:235. [PMID: 29225572 PMCID: PMC5705550 DOI: 10.3389/fnbeh.2017.00235] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/13/2017] [Indexed: 01/20/2023] Open
Abstract
Increasing clinical evidence suggests that regular physical exercise can prevent or reduce the incidence of stress-related psychiatric disorders including depressive symptoms. Antidepressant effect of regular exercise may be implicated in monoaminergic transmission including serotonergic transmission, activation of the hypothalamic-pituitary-adrenal (HPA) axis, and hippocampal neurogenesis, but few general concepts regarding the optimal exercise regimen for stimulating neural mechanisms involved in antidepressant properties have been developed. Here, we examined how 4 weeks of treadmill running at different intensities (0, 15, 25 m/min, 60 min/day, 5 times/week) alters neuronal activity in the dorsal raphe nucleus (DRN), which is the major source of serotonin (5-HT) neurons in the central nervous system, and the hypothalamic paraventricular nucleus (PVN), in which corticotropin-releasing factor (CRF) neurons initiate the activation of the HPA axis, during one session of acute treadmill running at different speeds (0, 15, 25 m/min, 30 min) in male Wistar rats, using c-Fos immunohistochemistry. We also examined neurogenesis in the hippocampus using immunohistochemistry for doublecortin (DCX) and assessed depressive-like behavior using the forced swim test after regular exercise for 4 weeks. In the pre-training period, acute treadmill running at low speed, but not at high speed, increased c-Fos positive nuclei in the DRN compared with the sedentary control. The number of c-Fos positive nuclei in the PVN during acute treadmill running was increased in a running speed-dependent manner. Regular exercise for 4 weeks, regardless of the training intensity, induced an enhancement of c-Fos expression in the DRN during not only low-speed but also high-speed acute running, and generally reduced c-Fos expression in the PVN during acute running compared with pre-training. Furthermore, regular treadmill running for 4 weeks enhanced DCX immunoreactivity in the hippocampal dentate gyrus (DG), and resulted in decreased depressive-like behavior, regardless of the training intensity. These results suggest that long-term repeated exercise, regardless of the training intensity, improves depressive-like behavior through adaptive changes in the sensitivity of DRN and PVN neurons to acute exercise, and hippocampal neurogenesis.
Collapse
Affiliation(s)
- Ayu Nishii
- Laboratory of Behavioral Neuroscience, Department of Human Health Science, Tokyo Metropolitan University, Hachioji, Japan
| | - Seiichiro Amemiya
- Laboratory of Behavioral Neuroscience, Department of Human Health Science, Tokyo Metropolitan University, Hachioji, Japan
| | - Natsuko Kubota
- Laboratory of Behavioral Neuroscience, Department of Human Health Science, Tokyo Metropolitan University, Hachioji, Japan
| | - Takeshi Nishijima
- Laboratory of Behavioral Neuroscience, Department of Human Health Science, Tokyo Metropolitan University, Hachioji, Japan
| | - Ichiro Kita
- Laboratory of Behavioral Neuroscience, Department of Human Health Science, Tokyo Metropolitan University, Hachioji, Japan
| |
Collapse
|
10
|
Motaghinejad O, Motaghinejad M, Motevalian M, Rahimi-Sharbaf F, Beiranvand T. The effect of maternal forced exercise on offspring pain perception, motor activity and anxiety disorder: the role of 5-HT2 and D2 receptors and CREB gene expression. J Exerc Rehabil 2017; 13:514-525. [PMID: 29114525 PMCID: PMC5667597 DOI: 10.12965/jer.1734992.496] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 09/13/2017] [Indexed: 12/16/2022] Open
Abstract
The effect of maternal forced exercise on central disorders in offsprings has been shown but the mechanism is still unclear. In this study, the role of 5-HT2 and D2 receptors in neuroprotective effects of maternal forced exercise on offspring neurodevelopment and neurobehavioral symptoms is evaluated. Sixty pregnant rats were trained by forced exercise and some behavioral and molecular aspects in their offspring were evaluated in presence of 5-HT2 and D2 receptors agonists and antagonists. The results showed that maternal forced exercise causes increase of pain tolerability and increase latency of pain perception in offspring in hot plate test, writhing test and tail flick test. Also maternal forced exercise causes decrease of depression and anxiety like behavior in offsprings. On the other hand, treatment of mothers by forced exercise in combination with 5-HT2 and D2 receptor antagonists inhibited the protective effects of forced exercise and cause disturbance in pain perception and tolerability and increase depression and anxiety in offsprings. Also expression of cyclic AMP response element binding protein (CREB) was changed in all experimental groups. In conclusion, our data suggested that maternal forced exercise causes neurobehavioral protective effect on offsprings and this effect might probably be mediated by 5-HT2 and D2 receptors and activation of CREB gene expression.
Collapse
Affiliation(s)
- Ozra Motaghinejad
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Motaghinejad
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Manijeh Motevalian
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Tabassom Beiranvand
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Lee B, Shim I, Lee H, Hahm DH. Effect of oleuropein on cognitive deficits and changes in hippocampal brain-derived neurotrophic factor and cytokine expression in a rat model of post-traumatic stress disorder. J Nat Med 2017; 72:44-56. [PMID: 28884427 DOI: 10.1007/s11418-017-1103-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/05/2017] [Indexed: 11/24/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a condition that develops after an individual has experienced a major trauma. This psychopathological response to traumatic stressors induces learning and memory deficits in rats. Oleuropein (OLE), a major compound in olive leaves, has been reported to possess several pharmacological properties, including anti-cancer, anti-diabetic, anti-atherosclerotic and neuroprotective activities. However, the cognitive effects of OLE and its mechanism of action have remained unclear in PTSD. In this study, we examined whether OLE improved spatial cognitive impairment induced in rats following single prolonged stress (SPS), an animal model of PTSD. Male rats were treated intraperitoneally (i.p.) with vehicle or various doses of OLE for 14 consecutive days after the SPS procedure. The SPS procedure resulted in cognitive impairment in the object recognition task and the Morris water maze test, which was reversed by OLE (100 mg/kg, i.p). Additionally, as assessed by immunohistochemistry and reverse transcription-polymerase chain reaction analysis, the administration of OLE significantly alleviated memory-associated decreases in the levels of brain-derived neurotrophic factor and cAMP response element-binding protein and mRNA in the hippocampus. Together, these findings suggest that OLE attenuated SPS-induced cognitive impairment significantly by inhibiting the expression of pro-inflammatory mediators in the rat brain. Thus, OLE reversed several behavioral impairments triggered by the traumatic stress of SPS and might be a potential useful therapeutic intervention for PTSD.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Insop Shim
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.,The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.,The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Dae-Hyun Hahm
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.,The Graduate School of Basic Science of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
12
|
Effects of Traumatic Stress Induced in the Juvenile Period on the Expression of Gamma-Aminobutyric Acid Receptor Type A Subunits in Adult Rat Brain. Neural Plast 2017; 2017:5715816. [PMID: 28352479 PMCID: PMC5352903 DOI: 10.1155/2017/5715816] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/18/2017] [Accepted: 02/15/2017] [Indexed: 12/04/2022] Open
Abstract
Studies have found that early traumatic experience significantly increases the risk of posttraumatic stress disorder (PTSD). Gamma-aminobutyric acid (GABA) deficits were proposed to be implicated in development of PTSD, but the alterations of GABA receptor A (GABAAR) subunits induced by early traumatic stress have not been fully elucidated. Furthermore, previous studies suggested that exercise could be more effective than medications in reducing severity of anxiety and depression but the mechanism is unclear. This study used inescapable foot-shock to induce PTSD in juvenile rats and examined their emotional changes using open-field test and elevated plus maze, memory changes using Morris water maze, and the expression of GABAAR subunits (γ2, α2, and α5) in subregions of the brain in the adulthood using western blotting and immunohistochemistry. We aimed to observe the role of GABAAR subunits changes induced by juvenile trauma in the pathogenesis of subsequent PTSD in adulthood. In addition, we investigated the protective effects of exercise for 6 weeks and benzodiazepine (clonazepam) for 2 weeks. This study found that juvenile traumatic stress induced chronic anxiety and spatial memory loss and reduced expression of GABAAR subunits in the adult rat brains. Furthermore, exercise led to significant improvement as compared to short-term BZ treatment.
Collapse
|
13
|
Effects of moderate treadmill exercise and fluoxetine on behavioural and cognitive deficits, hypothalamic-pituitary-adrenal axis dysfunction and alternations in hippocampal BDNF and mRNA expression of apoptosis – related proteins in a rat model of post-traumatic stress disorder. Neurobiol Learn Mem 2017; 139:165-178. [DOI: 10.1016/j.nlm.2017.01.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 12/14/2016] [Accepted: 01/21/2017] [Indexed: 12/15/2022]
|
14
|
HOFFMAN JAYR, COHEN HADAS, OSTFELD ISHAY, KAPLAN ZEEV, ZOHAR JOSEPH, COHEN HAGIT. Exercise Maintains Dendritic Complexity in an Animal Model of Posttraumatic Stress Disorder. Med Sci Sports Exerc 2016; 48:2487-2494. [DOI: 10.1249/mss.0000000000001038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Kim TW, Choi HH, Chung YR. Treadmill exercise alleviates impairment of cognitive function by enhancing hippocampal neuroplasticity in the high-fat diet-induced obese mice. J Exerc Rehabil 2016; 12:156-62. [PMID: 27419109 PMCID: PMC4934958 DOI: 10.12965/jer.1632644.322] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 05/30/2016] [Indexed: 12/23/2022] Open
Abstract
Physical exercise is one of the most effective methods for managing obesity, and exercise exerts positive effects on various brain functions. Excessive weight gain is known to be related to the impairment of cognitive function. High-fat diet-induced obesity impairs hippocampal neuroplasticity, which impedes cognitive function, such as learning ability and memory function. In this study, we investigated the effect of treadmill exercise on impairment of cognitive function in relation with hippocampal neuroplasticity using high-fat diet-induced obese mice. After obesity was induced by a 20-week high-fat (60%) diet, treadmill exercise was performed for 12 weeks. In the present results, cognitive function was impaired in the high-fat diet-induced obese mice. Brain-derived neurotrophic factor (BDNF) and tyrosin kinase B (TrkB) expression and cell proliferation were decreased in the high-fat diet-induced obese mice. Treadmill exercise improved cognitive function through enhancing neuroplasticity, including increased expression of BDNF and TrkB and enhanced cell proliferation. The present results suggest that treadmill exercise enhances hippocampal neuroplasticity, and then potentially plays a protective role against obesity-induced cognitive impairment.
Collapse
Affiliation(s)
- Tae-Woon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Hyun-Hee Choi
- Division of Leisure & Sports Science, Department of Exercise Prescription, Dongseo University, Busan, Korea
| | - Yong-Rak Chung
- Department of Golf Mapping, College of Arts Physical Education, Joongbu University, Geumsan, Korea
| |
Collapse
|
16
|
Kim TW, Kim CS, Kim JY, Kim CJ, Seo JH. Combined exercise ameliorates ovariectomy-induced cognitive impairment by enhancing cell proliferation and suppressing apoptosis. Menopause 2016; 23:18-26. [DOI: 10.1097/gme.0000000000000486] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Lee TH, Kim K, Shin MS, Kim CJ, Lim BV. Treadmill exercise alleviates chronic mild stress-induced depression in rats. J Exerc Rehabil 2015; 11:303-10. [PMID: 26730380 PMCID: PMC4697778 DOI: 10.12965/jer.150265] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/13/2015] [Indexed: 11/22/2022] Open
Abstract
Depression is a major cause of disability and one of the most common public health problems. In the present study, antidepressive effect of treadmill exercise on chronic mild stress (CMS)-induced depression in rats was investigated. For this, sucrose intake test, immunohistochemistry for 5-bromo-2'-deoxyuridine, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining, and Western blot analysis for brain-derived neurotrophic factor, cyclic adenosine monophosphate response element binding protein, and endothelial nitric oxide synthase were conducted. Following adaptation to the animal vivarium and two baseline fluid intake tests, the animals were divided into four groups: the control group, the CMS-induced depression group, the CMS-induced depression and exercise group, and the CMS-induced depression and fluoxetine-treated group. The animals in the CMS groups were exposed to the CMS conditions for 8 weeks and those in the control group were exposed to the control conditions for 8 weeks. After 4 weeks of CMS, the rats in the CMS-induced depression and exercise group were made to run on a motorized treadmill for 30 min once a day for 4 weeks. In the present results, treadmill exercise alleviated CMS-induced depressive symptoms. Treadmill exercise restored sucrose consumption, increased cell proliferation, and decreased apoptotic cell death. The present results suggest the possibility that exercise may improve symptoms of depression.
Collapse
Affiliation(s)
- Taeck-Hyun Lee
- Department of Family Medicine, Dae Dong Hospital, Busan, Korea
| | - Kijeong Kim
- School of Exercise & Sport Science, College of Natural Sciences, University of Ulsan, Ulsan, Korea
| | - Mal-Soon Shin
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Baek-Vin Lim
- Division of Leisure & Sports Science, Department of Exercise Prescription, Dongseo University, Busan, Korea
| |
Collapse
|
18
|
Li C, Liu Y, Yin S, Lu C, Liu D, Jiang H, Pan F. Long-term effects of early adolescent stress: dysregulation of hypothalamic-pituitary-adrenal axis and central corticotropin releasing factor receptor 1 expression in adult male rats. Behav Brain Res 2015; 288:39-49. [PMID: 25882722 DOI: 10.1016/j.bbr.2015.04.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 03/31/2015] [Accepted: 04/04/2015] [Indexed: 12/26/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a stress-related mental disorder caused by traumatic experiences. Studies have found that exposure to early stressful events is a risk factor for developing PTSD. However, a limited number of studies have explored the effects of traumatic stress in early adolescence on behavior, hypothalamic-pituitary-adrenal (HPA) axis function, central corticotropin releasing factor receptor 1 (CRFR1) expression and the relative vulnerability of PTSD in adulthood. The current study aims to explore these issues using inescapable electric foot shock to induce a PTSD model in early adolescent rats. Meanwhile, running on a treadmill for six weeks and administration of the antagonist with 3.2mg/kg/day of CP-154, 526 for 14 consecutive days were used as therapeutic measures. Presently, the stress (S) group showed more anxiety and depression in the open field (OF) test and elevated plus maze (EPM) test, memory damage in the Y maze test, decreased basal CORT level, increased DEX negative feedback inhibition and exacerbated and longer-lasting reaction to CRH challenge in the DEX/CRH test compared with the control group. Central CRFR1 expression was also changed in the S group, as evidenced by the increased CRFR1 expression in the hypothalamus, amygdala and the prefrontal cortex (PFC). However, treadmill exercise alleviated early adolescent stress-induced behavior abnormalities and improved the functional state of the HPA axis, performing a more powerful effect than the CRFR1 antagonist CP-154, 526. Additionally, this study revealed that the alteration of central CRFR1 expression might play an important role in etiology of PTSD in adulthood.
Collapse
Affiliation(s)
- Chuting Li
- Department of Medical Psychology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong 250012, P.R. China
| | - Yuan Liu
- Department of Medical Psychology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong 250012, P.R. China
| | - Shiping Yin
- Department of Medical Psychology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong 250012, P.R. China
| | - Cuiyan Lu
- Department of Medical Psychology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong 250012, P.R. China
| | - Dexiang Liu
- Department of Medical Psychology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong 250012, P.R. China
| | - Hong Jiang
- Department of Medical Psychology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong 250012, P.R. China
| | - Fang Pan
- Department of Medical Psychology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong 250012, P.R. China.
| |
Collapse
|
19
|
Aerobic exercise alleviates ischemia-induced memory impairment by enhancing cell proliferation and suppressing neuronal apoptosis in hippocampus. Int Neurourol J 2014; 18:187-97. [PMID: 25562035 PMCID: PMC4280438 DOI: 10.5213/inj.2014.18.4.187] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/09/2014] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Neurogenic lower urinary tract dysfunction (NLUTD) is a possible consequence of several neurological disorders. NLUTD may produce debilitating symptoms and serious complications, such as chronic renal failure, and recurrent urinary tract infections. Many animal studies of NLUTD symptoms have focused on animal models of cerebral ischemia. In the present study, we investigated the effects of treadmill exercise on memory function and its relation to cell proliferation and apoptosis in the hippocampus, following transient global ischemia in gerbils. METHODS To induce transient global ischemia in gerbil, both common carotid arteries were occluded for 5 minutes. Gerbils in the exercise groups were forced to run on a treadmill exercise for 30 minutes once a day for 2 weeks. Step-down avoidance task and Y maze task were performed. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-staining, immunohistochemistry for 5-bromo-2'-deoxyridine, doublecortin, caspase-3, and Western blot for brain-derived neurotrophic factor (BDNF), Bax, Bcl-2, cytochrome c, caspase-3 were conducted. RESULTS Ischemia caused memory impairment with an increase of cell proliferation, BDNF expression, and apoptosis in the hippocampus. Treadmill exercise improved memory function with further increase of cell proliferation and BDNF expression and a decrease of apoptosis. CONCLUSIONS The animal model that we have developed and our assessment of the relation between exercise and brain function can be useful tools for future investigations of NLUTD symptoms associated with stroke, particularly ischemic stroke. The present study suggests that treadmill exercise promoted the recovery of brain function after cerebral ischemia.
Collapse
|
20
|
Bali A, Jaggi AS. Preclinical experimental stress studies: protocols, assessment and comparison. Eur J Pharmacol 2014; 746:282-92. [PMID: 25446911 DOI: 10.1016/j.ejphar.2014.10.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/08/2014] [Accepted: 10/09/2014] [Indexed: 01/05/2023]
Abstract
Stress is a state of threatened homeostasis during which a variety of adaptive processes are activated to produce physiological and behavioral changes. Preclinical models are pivotal for understanding these physiological or pathophysiological changes in the body in response to stress. Furthermore, these models are also important for the development of novel pharmacological agents for stress management. The well described preclinical stress models include immobilization, restraint, electric foot shock and social isolation stress. Stress assessment in animals is done at the behavioral level using open field, social interaction, hole board test; at the biochemical level by measuring plasma corticosterone and ACTH; at the physiological level by measuring food intake, body weight, adrenal gland weight and gastric ulceration. Furthermore the comparison between different stressors including electric foot shock, immobilization and cold stressor is described in terms of intensity, hormonal release, protein changes in brain, adaptation and sleep pattern. This present review describes these preclinical stress protocols, and stress assessment at different levels.
Collapse
Affiliation(s)
- Anjana Bali
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India.
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India.
| |
Collapse
|