1
|
Sanchez-Ruiz JA, Treviño-Alvarez AM, Zambrano-Lucio M, Lozano Díaz ST, Wang N, Biernacka JM, Tye SJ, Cuellar-Barboza AB. The Wnt signaling pathway in major depressive disorder: A systematic review of human studies. Psychiatry Res 2024; 339:115983. [PMID: 38870775 DOI: 10.1016/j.psychres.2024.115983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024]
Abstract
Despite uncertainty about the specific molecular mechanisms driving major depressive disorder (MDD), the Wnt signaling pathway stands out as a potentially influential factor in the pathogenesis of MDD. Known for its role in intercellular communication, cell proliferation, and fate, Wnt signaling has been implicated in diverse biological phenomena associated with MDD, spanning neurodevelopmental to neurodegenerative processes. In this systematic review, we summarize the functional differences in protein and gene expression of the Wnt signaling pathway, and targeted genetic association studies, to provide an integrated synthesis of available human data examining Wnt signaling in MDD. Thirty-three studies evaluating protein expression (n = 15), gene expression (n = 9), or genetic associations (n = 9) were included. Only fifteen demonstrated a consistently low overall risk of bias in selection, comparability, and exposure. We found conflicting observations of limited and distinct Wnt signaling components across diverse tissue sources. These data do not demonstrate involvement of Wnt signaling dysregulation in MDD. Given the well-established role of Wnt signaling in antidepressant response, we propose that a more targeted and functional assessment of Wnt signaling is needed to understand its role in depression pathophysiology. Future studies should include more components, assess multiple tissues concurrently, and follow a standardized approach.
Collapse
Affiliation(s)
- Jorge A Sanchez-Ruiz
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA; Department of Psychiatry, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | | | | | - Sofía T Lozano Díaz
- Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, San Pedro Garza Garcia, Nuevo Leon, Mexico
| | - Ning Wang
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Joanna M Biernacka
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA; Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Susannah J Tye
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA; Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia; Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA; Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Alfredo B Cuellar-Barboza
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA; Department of Psychiatry, Universidad Autónoma de Nuevo León, Monterrey, Mexico.
| |
Collapse
|
2
|
Yin C, Luo K, Zhu X, Zheng R, Wang Y, Yu G, Wang X, She F, Chen X, Li T, Chen J, Bian B, Su Y, Niu J, Wang Y. Fluoxetine Rescues Excessive Myelin Formation and Psychological Behaviors in a Murine PTSD Model. Neurosci Bull 2024; 40:1037-1052. [PMID: 39014176 PMCID: PMC11306862 DOI: 10.1007/s12264-024-01249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/04/2024] [Indexed: 07/18/2024] Open
Abstract
Posttraumatic stress disorder (PTSD) is a complex mental disorder notable for traumatic experience memory. Although current first-line treatments are linked with clinically important symptom reduction, a large proportion of patients retained to experience considerable residual symptoms, indicating pathogenic mechanism should be illustrated further. Recent studies reported that newly formed myelin could shape neural circuit function and be implicated in fear memory preservation. However, its role in PTSD remains to be elucidated. In this study, we adopted a restraint stress-induced PTSD mouse model and found that PTSD-related neuropsychiatric symptoms were accompanied by increased myelination in the posterior parietal cortex and hippocampus. Fluoxetine, but not risperidone or sertraline, has a more profound rescue effect on neuropsychological behaviors and myelin abnormalities. Further mechanistic experiments revealed that fluoxetine could directly interfere with oligodendroglial differentiation by upregulating Wnt signaling. Our data demonstrated the correlation between PTSD and abnormal myelination, suggesting that the oligodendroglial lineage could be a target for PTSD treatment.
Collapse
Affiliation(s)
- Chenrui Yin
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Kefei Luo
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Xinyue Zhu
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Ronghang Zheng
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Yu Wang
- Department of Respiratory Diseases, Central Medical Branch of PLA General Hospital, Beijing, 100853, China
| | - Guangdan Yu
- China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xiaorui Wang
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Fei She
- Department of Emergency, the Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100142, China
| | - Xiaoying Chen
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Tao Li
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Jingfei Chen
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China
| | - Baduojie Bian
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University (Army Medical University), Shigatse, 857000, China
| | - Yixun Su
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jianqin Niu
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China.
| | - Yuxin Wang
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, China.
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University (Army Medical University), Shigatse, 857000, China.
| |
Collapse
|
3
|
Fawzi SF, Michel HE, Menze ET, Tadros MG, George MY. Clotrimazole ameliorates chronic mild stress-induced depressive-like behavior in rats; crosstalk between the HPA, NLRP3 inflammasome, and Wnt/β-catenin pathways. Int Immunopharmacol 2024; 127:111354. [PMID: 38103406 DOI: 10.1016/j.intimp.2023.111354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
Depression is a major emotional disorder that has a detrimental effect on quality of life. The chronic mild stress (CMS)-depression model was adopted in rats to evaluate the neurotherapeutic effect of Clotrimazole (CLO) and investigate the possible mechanisms of its antidepressant action via its impact on the hypothalamic pituitary adrenal (HPA) axis and the stress hormone, cortisol. It was found that azole antifungals affect steroidogenesis and the HPA axis. Behavioral, histopathological, inflammatory, and apoptotic pathways were assessed. Serum cortisol, inflammasome biomarkers, hippocampal NLRP3, caspase-1, and IL-18, and the canonical Wnt/β-catenin neurogenesis biomarkers, Wnt3a, and non-phosphorylated β-catenin levels were also determined. Different stressors were applied for 28 days to produce depressive-like symptoms, and CLO was administered at a daily dose of 30 mg/kg body weight. Subsequently, behavioral and biochemical tests were carried out to assess the depressive-like phenotype in rats. Stressed rats showed increased immobility time in the forced swimming test (FST), decreased grooming time in the splash test (ST), increased serum cortisol levels, increased inflammasome biomarkers, and decreased neurogenesis. However, administration of CLO produced significant antidepressant-like effects in rats, which were accompanied by a significant decrease in immobility time in FST, an increase in grooming time in ST, a decrease in serum cortisol level, a decrease in inflammasome biomarkers, and an increase in neurogenesis biomarkers. The antidepressant mechanism of CLO involves the HPA axis and the anti-inflammatory effect, followed by neurogenesis pathway activation. Therefore, CLO may have the potential to be a novel antidepressant candidate.
Collapse
Affiliation(s)
- Sylvia F Fawzi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Haidy E Michel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - Esther T Menze
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - Mariane G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt.
| |
Collapse
|
4
|
Ren J, Xiao H. Exercise for Mental Well-Being: Exploring Neurobiological Advances and Intervention Effects in Depression. Life (Basel) 2023; 13:1505. [PMID: 37511879 PMCID: PMC10381534 DOI: 10.3390/life13071505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Depression is a common mental disorder in which patients often experience feelings of sadness, fatigue, loss of interest, and pleasure. Exercise is a widely used intervention for managing depression, but the specific molecular mechanisms underlying its antidepressant effect are unclear. In this narrative review, we aim to synthesize current knowledge on the molecular, neural, and physiological mechanisms through which exercise exerts its antidepressant effect and discuss the various exercise interventions used for managing depression. We conducted a narrative review of the literature on the topic of exercise and depression. Our review suggests that exercise impacts peripheral tryptophan metabolism, central inflammation, and brain-derived neurotrophic factors through the peroxisome proliferator-activated receptor γ activating factor 1α (PGC-1α) in skeletal muscles. The uncarboxylated osteocalcin facilitates "bone-brain crosstalk", and exercise corrects atypical expression of brain-gut peptides, modulates cytokine production and neurotransmitter release, and regulates inflammatory pathways and microRNA expression. Aerobic exercise is recommended at frequencies of 3 to 5 times per week with medium to high intensity. Here we highlight the significant potential of exercise therapy in managing depression, supported by the molecular, neural, and physiological mechanisms underlying its antidepressant effect. Understanding the molecular pathways and neural mechanisms involved in exercise's antidepressant effect opens new avenues for developing novel therapies for managing depression.
Collapse
Affiliation(s)
- Jianchang Ren
- Institute of Sport and Health, Guangdong Provincial Kay Laboratory of Development and Education for Special Needs Children, Lingnan Normal University, Zhanjiang 524037, China;
| | | |
Collapse
|
5
|
Arredondo SB, Valenzuela-Bezanilla D, Santibanez SH, Varela-Nallar L. Wnt signaling in the adult hippocampal neurogenic niche. Stem Cells 2022; 40:630-640. [PMID: 35446432 DOI: 10.1093/stmcls/sxac027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/29/2022] [Indexed: 11/14/2022]
Abstract
The subgranular zone (SGZ) of the hippocampal dentate gyrus (DG) is a neurogenic niche of the adult brain that contains neural stem cells (NSCs) able to generate excitatory glutamatergic granule neurons, which integrate into the DG circuit and contribute to hippocampal plasticity, learning, and memory. Thus, endogenous NSCs could be harnessed for therapeutic purposes. In this context, it is critical to characterize the molecular mechanisms controlling the generation and functional integration of adult-born neurons. Adult hippocampal neurogenesis is tightly controlled by both cell-autonomous mechanisms and the interaction with the complex niche microenvironment, which harbors the NSCs and provides the signals to support their maintenance, activation, and differentiation. Among niche-derived factors, Wnt ligands play diverse roles. Wnts are secreted glycoproteins that bind to Frizzled receptors and co-receptors to trigger the Wnt signaling pathway. Here, we summarize the current knowledge about the roles of Wnts in the regulation of adult hippocampal neurogenesis. We discuss the possible contribution of the different niche cells to the regulation of local Wnt signaling activity, and how Wnts derived from different cell types could induce differential effects. Finally, we discuss how the effects of Wnt signaling on hippocampal network activity might contribute to neurogenesis regulation. Although the evidence supports relevant roles for Wnt signaling in adult hippocampal neurogenesis, defining the cellular source and the mechanisms controlling secretion and diffusion of Wnts will be crucial to further understand Wnt signaling regulation of adult NSCs, and eventually, to propose this pathway as a therapeutic target to promote neurogenesis.
Collapse
Affiliation(s)
- Sebastian B Arredondo
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Echaurren 183, 8370071, Santiago, Chile
| | - Daniela Valenzuela-Bezanilla
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Echaurren 183, 8370071, Santiago, Chile
| | - Sebastian H Santibanez
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Echaurren 183, 8370071, Santiago, Chile
| | - Lorena Varela-Nallar
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Echaurren 183, 8370071, Santiago, Chile
| |
Collapse
|
6
|
Tan X, Zhang L, Wang D, Guan S, Lu P, Xu X, Xu H. Influence of early life stress on depression: from the perspective of neuroendocrine to the participation of gut microbiota. Aging (Albany NY) 2021; 13:25588-25601. [PMID: 34890365 PMCID: PMC8714134 DOI: 10.18632/aging.203746] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022]
Abstract
Depression is the most common mental disorder and has become a heavy burden in modern society. Clinical studies have identified early life stress as one of the high-risk factors for increased susceptibility to depression. Alteration of the hypothalamic-pituitary-adrenal (HPA) axis in response to stress is one of the key risk factors for depression susceptibility related to early life stress. Laboratory animal studies have demonstrated that maternal separation (MS) for extended periods elicits HPA axis changes. These changes persist into adulthood and resemble those present in depressed adult individuals, including hyperactivity of the HPA axis. In addition, there is growing evidence that inflammation plays an important role in depression susceptibility concerned with early life stress. Individuals that have experienced MS have higher levels of pro-inflammatory cytokines and are susceptible to depression. Recently, it has been found that the gut microbiota plays an important role in regulating behavior and is also associated with depression. The translocation of gut microbiota and the change of gut microbiota composition caused by early stress may be a reason. In this review, we discussed the mechanisms by which early life stress contributes to the development of depression in terms of these factors. These studies have facilitated a systematic understanding of the pathogenesis of depression related to early life stress and will provide new ideas for the prevention and treatment of depression.
Collapse
Affiliation(s)
- Xi Tan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Longqing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Danning Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shaodi Guan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pei Lu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaolin Xu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Xu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
7
|
Maternal Swimming Exercise During Pregnancy Improves Memory Through Enhancing Neurogenesis and Suppressing Apoptosis via Wnt/β-Catenin Pathway in Autistic Mice. Int Neurourol J 2021; 25:S63-71. [PMID: 34844388 PMCID: PMC8654312 DOI: 10.5213/inj.2142338.169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/21/2021] [Indexed: 11/08/2022] Open
Abstract
Purpose Wnt pathway is closely related to neurodevelopmental process associated with cognitive function. After administration of valproic acid to the pregnant mice, the effect of swimming exercise of pregnant mice on the memory, neuronal production, and apoptosis of pups was studied in relation with Wnt/β-catenin signaling pathway. Methods On day 12 of pregnancy, mice were injected subcutaneously with 400-mg/kg valproic acid. The pregnant mice in the control with swimming exercise group and in the valproic acid injection with swimming exercise group were allowed for swimming for 30 minutes one time per a day, repeated 5 days per a week, during 3 weeks. Step-through avoidance task and Morris water maze task for memory function, immunohistochemistry for 5-bromo-2’-deoxyuridine (BrdU)-positive cells and western blot for brain-derived neurotrophic factor (BDNF), Wnt, β-catenin, Bcl-2 related X protein (Bax), B-cell lymphoma 2 (Bcl-2), cleaved caspase-3 were carried out. Results Maternal swimming exercise during pregnancy improved memory function, increased BDNF expression, and neuronal proliferation in the valproic acid injected pups. Maternal swimming exercise during pregnancy suppressed Wnt expression and phosphorylation of β-catenin in the valproic acid injected pups. Maternal swimming exercise inhibited Bax and cleaved caspase-3 expression and increased Bcl-2 expression in the valproic acid injected pups. Conclusions Maternal swimming exercise during pregnancy improved memory function by increasing cell proliferation and inhibiting apoptosis through Wnt/β-catenin signaling cascade activation in the valproic acid injected pups. Maternal swimming exercise during pregnancy may have a protective effect on factors that induce autism in the fetus.
Collapse
|
8
|
Bu T, Qiao Z, Wang W, Yang X, Zhou J, Chen L, Yang J, Xu J, Ji Y, Wang Y, Zhang W, Yang Y, Qiu X, Yu Y. Diagnostic Biomarker Hsa_circ_0126218 and Functioning Prediction in Peripheral Blood Monocular Cells of Female Patients With Major Depressive Disorder. Front Cell Dev Biol 2021; 9:651803. [PMID: 34095115 PMCID: PMC8174117 DOI: 10.3389/fcell.2021.651803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/22/2021] [Indexed: 12/22/2022] Open
Abstract
Introduction Although major depressive diroder (MDD) has brought huge burden and challenges to society globally, effective and accurate diagnoses and treatments remain inadequate. The pathogenesis that for women are more likely to suffer from depression than men needs to be excavated as well. The function of circRNAs in pathological process of depression has not been widely investigated. This study aims to explore potential diagnostic biomarker circRNA of female patients with MDD and to investigate its role in pathogenesis. Methods First, an expression profile of circRNAs in the peripheral blood monocular cells of MDD patients and healthy peripherals were established based on high-throughput sequencing analysis. In addition, the top 10 differentially expressed circRNAs were quantified by quantitative real-time PCR to explore diagnostic biomarkers. To further investigate the function of biomarkers in the pathogenesis of MDD, bioinformatics analysis on downstream target genes of the biomarkers was carried out. Results There is a mass of dysregulated circRNAs in PBMCs between female MDD patients and healthy controls. Among the top 10 differentially expressed circRNAs, hsa_circ_0126218 is more feasible as a diagnostic biomarker. The expression level of hsa_circ_0126218 displayed upregulation in patients with MDD and the area under the operating characteristic curve of hsa_circ_0126218 was 0.801 (95% CI 0.7226–0.8791, p < 0.0001). To explain the competing endogenous RNA role of hsa_circ_0126218 in the pathogenesis of female MDD, a hsa_circ_0126218-miRNA-mRNA network was established. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses stated that some of the enriched pathways downstream of hsa_circ_0126218 are closely related to MDD. Moreover, we established a protein-protein network to further screen out the hub genes (PIK3CA, PTEN, MAPK1, CDC42, Lyn, YES1, EPHB2, SMAD2, STAT1, and ILK). The function of hsa_circ_0126218 was refined by constructing a verified circRNA-predicted miRNA-hub gene subnetwork. Conclusion hsa_circ_0126218 can be considered as a new female MDD biomarker, and the pathogenesis of female MDD by the downstream regulation of hsa_circ_0126218 has been predicted. These findings may help further improve the early detection, effective diagnosis, convenient monitoring of complications, precise treatment, and timely recurrence prevention of depression.
Collapse
Affiliation(s)
- Tianyi Bu
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Zhengxue Qiao
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Wenbo Wang
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Xiuxian Yang
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Jiawei Zhou
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Lu Chen
- Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
| | - Jiarun Yang
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Jia Xu
- Psychotherapy Department, The First Psychiatric Hospital of Harbin, Harbin, China
| | - Yanping Ji
- Department of Nursing, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yini Wang
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Wenxin Zhang
- Medical Department, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanjie Yang
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Xiaohui Qiu
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Yunmiao Yu
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| |
Collapse
|
9
|
Gawlińska K, Gawliński D, Korostyński M, Borczyk M, Frankowska M, Piechota M, Filip M, Przegaliński E. Maternal dietary patterns are associated with susceptibility to a depressive-like phenotype in rat offspring. Dev Cogn Neurosci 2020; 47:100879. [PMID: 33232913 PMCID: PMC7691544 DOI: 10.1016/j.dcn.2020.100879] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/21/2020] [Accepted: 11/06/2020] [Indexed: 01/03/2023] Open
Abstract
Modified maternal diet influences offspring behavior and the brain transcriptome. Maternal HFD provokes depressive-like behavior in male and female offspring. In utero exposure to HFD leads to transcriptomics alterations within the offspring’s frontal cortex. Maternal HFD changes expression of markers specific to excitatory and inhibitory cortical neurons.
Environmental factors such as maternal diet, determine the pathologies that appear early in life and can persist in adulthood. Maternally modified diets provided through pregnancy and lactation increase the predisposition of offspring to the development of many diseases, including obesity, diabetes, and neurodevelopmental and mental disorders such as depression. Fetal and early postnatal development are sensitive periods in the offspring’s life in which maternal nutrition influences epigenetic modifications, which results in changes in gene expression and affects molecular phenotype. This study aimed to evaluate the impact of maternal modified types of diet, including a high-fat diet (HFD), high-carbohydrate diet (HCD) and mixed diet (MD) during pregnancy and lactation on phenotypic changes in rat offspring with respect to anhedonia, depressive- and anxiety-like behavior, memory impairment, and gene expression profile in the frontal cortex. Behavioral results indicate that maternal HFD provokes depressive-like behavior and molecular findings showed that HFD leads to persistent transcriptomics alterations. Moreover, a HFD significantly influences the expression of neuronal markers specific to excitatory and inhibitory cortical neurons. Collectively, these experiments highlight the complexity of the impact of maternal modified diet during fetal programming. Undoubtedly, maternal HFD affects brain development and our findings suggest that nutrition exerts significant changes in brain function that may be associated with depression.
Collapse
Affiliation(s)
- Kinga Gawlińska
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Dawid Gawliński
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Michał Korostyński
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Molecular Neuropharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Małgorzata Borczyk
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Molecular Neuropharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Małgorzata Frankowska
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Marcin Piechota
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Molecular Neuropharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Małgorzata Filip
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, 31-343, Kraków, Smętna Street 12, Poland.
| | - Edmund Przegaliński
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, 31-343, Kraków, Smętna Street 12, Poland
| |
Collapse
|
10
|
Park HS, Kim TW, Park SS, Lee SJ. Swimming exercise ameliorates mood disorder and memory impairment by enhancing neurogenesis, serotonin expression, and inhibiting apoptosis in social isolation rats during adolescence. J Exerc Rehabil 2020; 16:132-140. [PMID: 32509697 PMCID: PMC7248435 DOI: 10.12965/jer.2040216.108] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/27/2020] [Indexed: 12/20/2022] Open
Abstract
Social isolation during adolescence is associated with anxiety, depres-sion, and memory impairment. Exercise has been reported as a positive effect on brain function, especially hippocampus. The present study ex-amined the effect of swimming exercise on apoptosis, cell proliferation, and serotonin expression in social isolation rats during adolescence stage. Social isolation started at postnatal day 21 and continued for 6 weeks. The rats in the swimming group were forced to swim for 60 min once daily during 6 days per week for 6 consecutive weeks. The rats in the social isolation during adolescence showed anxiety, depression, short-term memory impairment. Social isolation facilitated apoptosis and inhibited cell proliferation and differentiation. Social isolation sup-pressed expression of serotonin, brain-derived neurotrophic factor, and tyrosine kinase B. Swimming exercise alleviated anxiety, depression, short-term impairment. Swimming exercise suppressed apoptosis, en-hanced neurogenesis, and increased serotonin expression. In our study, swimming exercise ameliorates mood disorder and memory impairment by enhancing neurogenesis and serotonin expression and inhibiting apoptosis in social isolation.
Collapse
Affiliation(s)
- Hye-Sang Park
- Department of Kinesiology, College of Public Health and Cardiovascular Research Center, Lewis Katz school of Medicine, Temple University, Philadelphia, PA, USA
| | - Tae-Woon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea.,Exercise Rehabilitation Research Institute, Department of Exercise & Health Science, Sangmyung University, Seoul, Korea
| | - Sang-Seo Park
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sam-Jun Lee
- Department of Sport Rehabiliation, Tongmyong University, Busan, Korea
| |
Collapse
|
11
|
Gao J, Liao Y, Qiu M, Shen W. Wnt/β-Catenin Signaling in Neural Stem Cell Homeostasis and Neurological Diseases. Neuroscientist 2020; 27:58-72. [PMID: 32242761 DOI: 10.1177/1073858420914509] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neural stem/progenitor cells (NSCs) maintain the ability of self-renewal and differentiation and compose the complex nervous system. Wnt signaling is thought to control the balance of NSC proliferation and differentiation via the transcriptional coactivator β-catenin during brain development and adult tissue homeostasis. Disruption of Wnt signaling may result in developmental defects and neurological diseases. Here, we summarize recent findings of the roles of Wnt/β-catenin signaling components in NSC homeostasis for the regulation of functional brain circuits. We also suggest that the potential role of Wnt/β-catenin signaling might lead to new therapeutic strategies for neurological diseases, including, but not limited to, spinal cord injury, Alzheimer's disease, Parkinson's disease, and depression.
Collapse
Affiliation(s)
- Juanmei Gao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China.,College of Life and Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuan Liao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China.,College of Life and Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wanhua Shen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|