1
|
Yehya A, Ezzeddine Z, Chakkour M, Dhaini Z, Bou Saba MS, Bou Saba AS, Nohra L, Nassar NB, Yassine M, Bahmad HF, Ghssein G. The intricacies of Acinetobacter baumannii: a multifaceted comprehensive review of a multidrug-resistant pathogen and its clinical significance and implications. Front Microbiol 2025; 16:1565965. [PMID: 40444001 PMCID: PMC12121509 DOI: 10.3389/fmicb.2025.1565965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/07/2025] [Indexed: 06/02/2025] Open
Abstract
Acinetobacter baumannii, a highly adaptive and formidable nosocomial pathogen, has emerged as a symbol of modern medicine's struggle against multidrug resistance (MDR). As a Gram-negative dweller in moist hospital environments, A. baumannii has proven its ability to colonize the most vulnerable-critically ill patients-leaving behind a trail of infections highlighted by high morbidity and mortality and rendering nearly all antibiotics ineffective. This literature review aims to provide an in-depth, comprehensive overview of microbiological features, virulence factors, clinical manifestations, epidemiology, and antibiotic resistance mechanisms of A. baumannii. It also highlights the different diagnostic approaches, possible treatment strategies, and infection control, as well as the profound public health burden this pathogen imposes. The genus Acinetobacter has undergone a pivotal taxonomic journey and categorization. In addition, the intricate virulence mechanisms and factors of A. baumannii, including but not limited to outer membrane components and nutrient acquisition systems, have contributed to its pathogenicity and severe clinical manifestations ranging from respiratory tract infections and meningitis to urinary tract infections, skin infections, and bloodstream infections. This review also describes the epidemiological trend of A. baumannii established by its global prevalence and distribution, risk factors, hospital-acquired vs. community-acquired infections, and its geographical variations. In terms of antibiotic resistance, this pathogen has demonstrated resilience to a wide range of first-line and last-resort antibiotics due to its different evasion mechanisms. The current diagnostic approaches, treatment strategies, and infection control measures are further analyzed in detail, underscoring the need for prompt and precise identification of A. baumannii to guide appropriate therapy and reinforce the optimal approaches to limit its transmission and control outbreaks. Finally, the review addresses the substantial public health implications, reflecting on the hindrance that A. baumannii brings to healthcare systems, and the urgent need for global surveillance, effective infection control protocols, innovative research, and therapeutic approaches to mitigate its global threat.
Collapse
Affiliation(s)
- Amani Yehya
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Zeinab Ezzeddine
- High Council for Scientific Research and Publication (HCSRP), Islamic University of Lebanon (IUL), Khalde, Lebanon
| | - Mohamed Chakkour
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Zahraa Dhaini
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | | | | | - Lea Nohra
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Nagham B. Nassar
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Mahdi Yassine
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hisham F. Bahmad
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ghassan Ghssein
- High Council for Scientific Research and Publication (HCSRP), Islamic University of Lebanon (IUL), Khalde, Lebanon
| |
Collapse
|
2
|
Dong JF, Liu CW, Wang P, Li L, Zou QH. The type VI secretion system in Acinetobacter baumannii clinical isolates and its roles in antimicrobial resistance acquisition. Microb Pathog 2022; 169:105668. [PMID: 35811021 DOI: 10.1016/j.micpath.2022.105668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
Acinetobacter baumannii is a successful pathogen that can acquire various antibiotic resistance in a short time. However, little is known about how it can evolve from an antibiotic sensitive to a resistant phenotype. In this study, we investigated the roles of the type VI secretion system (T6SS) in the acquisition of antibiotic resistance of A. baumannii. T6SS gene cluster was found to be present in 51 of 77 A. baumannii clinical isolates, of which, it was found in 62% (8/13) of the multiple drug resistant (MDR) isolates, 90% (36/40) of the extensively drug-resistant (XDR) isolates and 26% (6/23) of the antibiotic sensitive isolates. There is a close relationship between the antimicrobial resistance and the presence of T6SS. Besides, T6SS + isolates showed lower biofilm formation activity and higher survival ability in the presence of normal human serum than T6SS- isolates. A. baumannii A152 with complete T6SS can outcompete E.coli effectively and can acquire the antibiotic resistance plasmids released by E.coli. In contrast, the T6SS core gene mutant A152Δhcp showed significantly decreased ability to acquire antimicrobial resistance plasmids from the prey bacteria. These results suggest that T6SS mediated bacterial competition plays important roles in the antimicrobial resistance of A. baumannii, which points out a new direction for us to study the antimicrobial resistance of A. baumannii.
Collapse
Affiliation(s)
- Jun-Fang Dong
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Cun-Wei Liu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ping Wang
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Lei Li
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, 100730, China
| | - Qing-Hua Zou
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
3
|
Hennequin C, Forestier C, Traore O, Debroas D, Bricheux G. Plasmidome analysis of a hospital effluent biofilm: Status of antibiotic resistance. Plasmid 2022; 122:102638. [PMID: 35691511 DOI: 10.1016/j.plasmid.2022.102638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022]
Abstract
Plasmids are widely involved in the dissemination of characteristics within bacterial communities. Their genomic content can be assessed by high-throughput sequencing of the whole plasmid fraction of an environment, the plasmidome. In this study, we analyzed the plasmidome of a biofilm formed in the effluents of the teaching hospital of Clermont-Ferrand (France). Our analysis discovered >350 new complete plasmids, with a length ranging from 1219 to 40,193 bp. Forty-two plasmid incompatibility (Inc) groups were found among all the plasmid contigs. Ten large plasmids, described here in detail, were reconstructed from plasmid contigs, seven of which carried antibiotic resistance genes. Four plasmids potentially confer resistance to numerous families of antibiotics, including carbapenems, aminoglycosides, colistin, and chloramphenicol. Most of these plasmids were affiliated to Proteobacteria, a phylum of Gram-negative bacteria. This study therefore illustrates the composition of an environmental mixed biofilm in terms of plasmids and antibiotic resistance genes.
Collapse
Affiliation(s)
- Claire Hennequin
- CHU Clermont-Ferrand, Service de Bactériologie Clinique, 58 rue Montalembert, 63000 Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France; Laboratoire Microorganismes: Génome et Environnement, Campus Universitaire des Cézeaux, TSA 60026 - CS 60026, 1, impasse Amélie Murat, 63178 Aubière, France
| | - Christiane Forestier
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Ousmane Traore
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Didier Debroas
- Laboratoire Microorganismes: Génome et Environnement, Campus Universitaire des Cézeaux, TSA 60026 - CS 60026, 1, impasse Amélie Murat, 63178 Aubière, France
| | - Geneviève Bricheux
- Laboratoire Microorganismes: Génome et Environnement, Campus Universitaire des Cézeaux, TSA 60026 - CS 60026, 1, impasse Amélie Murat, 63178 Aubière, France.
| |
Collapse
|
4
|
Byun JH, Park SE, Seo M, Jang J, Hwang MS, Song JY, Chang CL, Kim YA. Controlling an Outbreak of Multidrug-resistant Acinetobacter baumannii in a Pediatric Intensive Care Unit: a Retrospective Analysis. J Korean Med Sci 2021; 36:e307. [PMID: 34845873 PMCID: PMC8629720 DOI: 10.3346/jkms.2021.36.e307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/13/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Multidrug-resistant Acinetobacter baumannii (MDRAB) is widespread among intensive care units worldwide, posing a threat to patients and the health system. We describe the successful management of a MDRAB outbreak by implementing an infection-control strategy in a pediatric intensive care unit (PICU). METHODS This retrospective study investigated the patients admitted to the PICU in periods 1 (8 months) and 2 (7 months), from the index MDRAB case to intervention implementation, and from intervention implementation to cessation of MDRAB spread. An infection-control strategy was designed following six concepts: 1) cohort isolation of colonized patients, 2) enforcement of hand hygiene, 3) universal contact precautions, 4) environmental management, 5) periodic surveillance culture study, and 6) monitoring and feedback. RESULTS Of the 427 patients, 29 were confirmed to have MDRAB colonization, of which 18 had MDRAB infections. Overall incidence per 1,000 patient days decreased from 7.8 (period 1) to 5.8 (period 2). The MDRAB outbreak was declared terminated after the 6-month follow-up following period 2. MDRAB was detected on the computer keyboard and in condensed water inside the ventilator circuits. The rate of hand hygiene performance was the lowest in the three months before and after index case admission and increased from 84% (period 1) to 95% (period 2). Patients with higher severity, indicated by a higher Pediatric Risk of Mortality III score, were more likely to develop colonization (P = 0.030), because they had invasive devices and required more contact with healthcare workers. MDRAB colonization contributed to an increase in the duration of mechanical ventilation and PICU stay (P < 0.001), but did not affect mortality (P = 0.273). CONCLUSION The MDRAB outbreak was successfully terminated by the implementation of a comprehensive infection-control strategy focused on the promotion of hand hygiene, universal contact precautions, and environmental management through multidisciplinary teamwork.
Collapse
Affiliation(s)
- Joung-Hee Byun
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Su Eun Park
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
- Infection Prevention and Control Department, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Minhae Seo
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
| | - Jeungmi Jang
- Department of Nursing, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Mi Sun Hwang
- Department of Nursing, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Ju Yeoun Song
- Infection Prevention and Control Department, Pusan National University Yangsan Hospital, Yangsan, Korea
- Department of Nursing, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Chulhun L Chang
- Department of Laboratory Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Young A Kim
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea.
| |
Collapse
|
5
|
Kumar S, Anwer R, Azzi A. Virulence Potential and Treatment Options of Multidrug-Resistant (MDR) Acinetobacter baumannii. Microorganisms 2021; 9:microorganisms9102104. [PMID: 34683425 PMCID: PMC8541637 DOI: 10.3390/microorganisms9102104] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen which is undoubtedly known for a high rate of morbidity and mortality in hospital-acquired infections. A. baumannii causes life-threatening infections, including; ventilator-associated pneumonia (VAP), meningitis, bacteremia, and wound and urinary tract infections (UTI). In 2017, the World Health Organization listed A. baumannii as a priority-1 pathogen. The prevalence of A. baumannii infections and outbreaks emphasizes the direct need for the use of effective therapeutic agents for treating such infections. Available antimicrobials, such as; carbapenems, tigecycline, and colistins have insufficient effectiveness due to the appearance of multidrug-resistant strains, accentuating the need for alternative and novel therapeutic remedies. To understand and overcome this menace, the knowledge of recent discoveries on the virulence factors of A. baumannii is needed. Herein, we summarized the role of various virulence factors, including; outer membrane proteins, efflux pumps, biofilm, penicillin-binding proteins, and siderophores/iron acquisition systems. We reviewed the recent scientific literature on different A. baumannii virulence factors and the effective antimicrobial agents for the treatment and management of bacterial infections.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India;
| | - Razique Anwer
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317-4233, Saudi Arabia;
| | - Arezki Azzi
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317-4233, Saudi Arabia
- Correspondence:
| |
Collapse
|
6
|
Cabral BG, Brasiliense DM, Furlaneto IP, Rodrigues YC, Lima KVB. Surgical Site Infection Following Caesarean Section by Acinetobacter Species: A Report from a Hyperendemic Setting in the Brazilian Amazon Region. Microorganisms 2021; 9:microorganisms9040743. [PMID: 33918140 PMCID: PMC8067217 DOI: 10.3390/microorganisms9040743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/31/2022] Open
Abstract
Surgical site infection (SSI) following caesarean section is associated with increased morbidity, mortality, and significant health care costs. This study evaluated the epidemiological, clinical, and microbiological features of Acinetobacter spp. in women with SSIs who have undergone caesarean section at a referral hospital in the Brazilian Amazon region. This study included 69 women with post-caesarean SSI by Acinetobacter spp. admitted to the hospital between January 2012 and May 2015. The 69 Acinetobacter isolates were subjected to molecular species identification, antimicrobial susceptibility testing, detection of carbapenemase-encoding genes, and genotyping. The main complications of post-caesarean SSI by Acinetobacter were inadequate and prolonged antibiotic therapy, sepsis, prolonged hospitalization, and re-suture procedures. A. baumannii, A. nosocomialis and A. colistiniresistens species were identified among the isolates. Carbapenem resistance was associated with OXA-23-producing A. baumannii isolates and IMP-1-producing A. nosocomialis isolate. Patients with multidrug-resistant A. baumannii infection showed worse clinical courses. Dissemination of persistent epidemic clones was observed, and the main clonal complexes (CC) for A. baumannii were CC231 and CC236 (Oxford scheme) and CC1 and CC15 (Pasteur scheme). This is the first report of a long-term Acinetobacter spp. outbreak in women who underwent caesarean section at a Brazilian hospital. This study demonstrates the impact of multidrug resistance on the clinical course of post-caesarean infections.
Collapse
Affiliation(s)
- Blenda Gonçalves Cabral
- Parasitic Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66087-662, PA, Brazil; (B.G.C.); (Y.C.R.); (K.V.B.L.)
| | - Danielle Murici Brasiliense
- Bacteriology and Mycology Section, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil
- Correspondence: ; Tel.: +55-9132-1421-16
| | | | - Yan Corrêa Rodrigues
- Parasitic Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66087-662, PA, Brazil; (B.G.C.); (Y.C.R.); (K.V.B.L.)
| | - Karla Valéria Batista Lima
- Parasitic Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66087-662, PA, Brazil; (B.G.C.); (Y.C.R.); (K.V.B.L.)
- Bacteriology and Mycology Section, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil
| |
Collapse
|
7
|
Abstract
OBJECTIVE Environmental surfaces may serve as potential reservoirs for nosocomial pathogens and facilitate transmissions via contact depending on its tenacity. This study provides data on survival kinetics of the most important nosocomial bacteria on a panel of commonly used surfaces. Type strains of S. aureus, K. pneumoniae, P. aeruginosa, A. baumannii, S. marcescens, E. faecium, E. coli, and E. cloacae were suspended in 0.9% NaCl solution at a McFarland of 1 and got then plated via cotton swabs either on glass, polyvinyl chloride, stainless steel, or aluminum. Surfaces were stored at regular ambient temperature and humidity to simulate routine daycare conditions. Sampling was performed by contact plates for a time period of four weeks. RESULTS The longest survival was observed for A. baumannii and E. faecium on all materials (at least four weeks). S. aureus remained viable for at least one week. Gram negative species other than A. baumannii were usually inactivated in less than two days. Nosocomial transmission of the above mentioned bacteria may easily occur if no appropriate infection control measures are applied on a regular daily basis. This might be of particular importance when dealing with outbreaks of A. baumannii and E. faecium.
Collapse
|
8
|
Liu B, Liu L. Molecular Epidemiology and Mechanisms of Carbapenem-Resistant Acinetobacter baumannii Isolates from ICU and Respiratory Department Patients of a Chinese University Hospital. Infect Drug Resist 2021; 14:743-755. [PMID: 33658811 PMCID: PMC7920613 DOI: 10.2147/idr.s299540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/06/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The objective of our study is to estimate the differences in molecular epidemiology and resistance mechanisms in carbapenem-resistant Acinetobacter baumannii (CRAB) isolates from the ICU and respiratory department(RD) in Fourth Affiliated Hospital of Harbin Medical University. METHODS Carbapenemase genes associated with carbapenem resistance were studied by polymerase chain reaction(PCR). Genotyping was analyzed using multi-locus sequence typing (MLST) and pulsed field gel electrophoresis (PFGE). RESULTS Sixty non-duplicate CRAB isolates from the ICU and RD (n=30, respectively) were collected. All of CRAB strains were not resistant to colistin (0%). The CRAB strains from the ICU were significantly more resistant to tigecycline and cefoperazone/sulbactam compared with the RD (23.3% vs 0%, P=0.03; 53.3% % vs 23.3%, P=0.01, respectively). PCR detection of genes associated with CRAB revealed that the ratio in both the ICU and the RD of blaVIM-2, blaIMP-4, blaNDM-1, blaOXA-23, ampC, and mutation of CarO were present in 23.3% vs 0% (P=0.01), 40% vs 10% (P=0.02), 20% vs 0% (P=0.02), 80% vs 56.7%, 16.7% vs 13.3% and 86.7% vs 60% (P=0.04), respectively. Seven genotypes were detected by the PFGE in the RD and the ICU, respectively. Genotype I was significantly more frequent in the ICU compared with the RD (63.3% vs 36.6%, P=0.03). MLST showed that there were 10 ST genotypes in the RD and four in the ICU, but ST92 in both groups was 33.3% vs 63.3% (P=0.03), respectively. CONCLUSION There are differences in molecular epidemiology and resistance mechanisms in the CRAB isolates between the ICU and RD.
Collapse
Affiliation(s)
- Bin Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Lei Liu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|
9
|
Antigen Epitope Developed Based on Acinetobacter baumannii MacB Protein Can Provide Partial Immune Protection in Mice. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1975875. [PMID: 33134372 PMCID: PMC7593726 DOI: 10.1155/2020/1975875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/30/2020] [Accepted: 08/11/2020] [Indexed: 12/03/2022]
Abstract
Acinetobacter baumannii (A. baumannii) is an important opportunistic pathogen widely present in medical environment. Given its complex drug resistance, A. baumannii poses a serious threat to the safety of critically ill patients. Given the limited alternative antibiotics, nonantibiotic-based functional anti-A. baumannii infection proteins must be developed. In this study, we firstly used a series of biological software to predict potential epitopes in the MacB protein sequence and verified them by antibody recognition and lymphocyte proliferation tests. We finally screened out B cell epitope 2, CD8+ T cell epitope 7, and CD4+ T cell epitope 11 and connected them to construct a recombinant antigen epitope (RAE). The determination of IgG in the serum of immunised mice and cytokines in the supernatant of lymphocytes showed that the constructed epitope induced an immune response mediated by Th-1 cells. Finally, the challenge experiment of A. baumannii infection in mice confirmed that the epitope developed based on MacB, especially RAE, provided incomplete immune protection for mice.
Collapse
|
10
|
Liu L, Liu B, Li W. Successful Incidences of Controlling Multidrug-Resistant, Extensively Drug-Resistant, and Nosocomial Infection Acinetobacter baumannii Using Antibiotic Stewardship, Infection Control Programs, and Environmental Cleaning at a Chinese University Hospital. Infect Drug Resist 2020; 13:2557-2570. [PMID: 32801793 PMCID: PMC7396956 DOI: 10.2147/idr.s260525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/05/2020] [Indexed: 01/22/2023] Open
Abstract
Objective We estimated the efficacy of antimicrobial stewardship (AMS), infection control programs (ICP), and environmental cleaning (ENC) for controlling the resistance of Acinetobacter baumannii (AB) and controlling the incidence of multidrug-resistant AB (MDRAB), extensively drug-resistant AB (XDRAB), and nosocomial infection AB in the ICU (NIAB-ICU) at a university hospital. Methods The intervention included 4-year AMS+ICP and 3-year AMS+ICP+ENC between January 2012 and December 2019. Results A total of 2636 AB isolates were collected totally, and 64.98% of AB isolates were MDR and 29.97% were XDR. Preintervention and postintervention incidences of MDRAB, XDRAB, and NIAB-ICU by AMS+ICP measures ranged from 84.96% to 71.98%, 41.96% to 33.13%, and 45.6% to 38%, respectively. However, all of them were not statistically changed (P=0.085, 0.072, 0.061, separately). The preintervention and postintervention incidences of MDRAB, XDRAB, and NIAB-ICU by AMS+ICP+ENC measures ranged from 71.98% to 36.55%, 33.13% to 19.88%, and 38% to 22.5%, respectively. Statistically significant declines were observed (P=0.016, 0.041, 0.032, separately). The defined daily doses (DDD) per 1000 patient-days (PD) decreased from 45±3.3 to 30.81±1.5 per 1000 PD across from 2012 to 2019, and a statistical decline was seen (P=0.01). Concurrently, the alcohol-based hand gel (ABHG) consumption per 1000 PD increased from 0.6±0.05 L to 12.5±2.3 L per 1000 PD, and a statistical increase was observed (P=0.0001). A statistically positive correlation was revealed between the DDD and incidence of MDRAB, XDRAB, and NIAB-ICU (r=0.905 and p=0.002; r=0.939 and p=0.001; r=0.956 and p=0.0002; respectively). Simultaneously, a statistically negative correlation was showed between the ABHG and incidence of MDRAB, XDRAB, and NIAB-ICU (r=-0.858 and p=0.006; r=-0.888 and p=0.003; r=-0.882 and p=0.004, separately). Conclusion The AMS, ICP, and ENC may be one of the most effective and best measures to address the increasing incidence of MDRAB, XDRAB, and NIAB-ICU currently.
Collapse
Affiliation(s)
- Lei Liu
- Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China.,Department of Respiratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Bin Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Wei Li
- Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|