1
|
Abstract
Following a fingertip amputation, if vessels are present and of adequate condition, microsurgical replantation is the preferred technique for management. Composite grafting has a limited role in the management of fingertip amputations due to its unreliable nature but can be an option when an amputated fingertip is not replantable and the patient desires restoration of fingertip length and aesthetics. When composite grafting is selected as the treatment of choice for a particular patient, there are methods of optimizing the chances of graft revascularization and survival, including early grafting, graft cooling, and a moist wound healing environment.
Collapse
Affiliation(s)
- Kate Elzinga
- Section of Plastic Surgery, University of Calgary, South Health Campus, 4448 Front Street Southeast, Calgary, Alberta T3M 1M4, Canada.
| | - Kevin C Chung
- Section of Plastic Surgery, The University of Michigan Medical School, The University of Michigan Health System, 1500 East Medical Center Drive, 2130 Taubman Center, SPC 5340, Ann Arbor, MI 48109-0340, USA
| |
Collapse
|
2
|
Xie X, Lu W, Chen Y, Tsang CK, Liang J, Li W, Jing Z, Liao Y, Huang L. Prostaglandin E1 Alleviates Cognitive Dysfunction in Chronic Cerebral Hypoperfusion Rats by Improving Hemodynamics. Front Neurosci 2019; 13:549. [PMID: 31191236 PMCID: PMC6549528 DOI: 10.3389/fnins.2019.00549] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/13/2019] [Indexed: 12/18/2022] Open
Abstract
Compensatory vascular mechanisms can restore cerebral blood flow (CBF) but fail to protect against chronic cerebral hypoperfusion (CCH)-mediated neuronal damage and cognitive impairment. Prostaglandin E1 (PGE1) is known as a vasodilator to protect against ischemic injury in animal models, but its protective role in CCH remains unclear. To determine the effect of PGE1 on cerebral hemodynamics and cognitive functions in CCH, bilateral common carotid artery occlusion (BCCAO) was used to mimic CCH in rats, which were subsequently intravenously injected with PGE1 daily for 2 weeks. Magnetic resonance imaging, immunofluorescence staining and Morris water maze (MWM) were used to evaluate CBF, angiogenesis, and cognitive functions, respectively. We found that PGE1 treatment significantly restored CBF by enhancing vertebral artery dilation. In addition, PGE1 treatment increased the number of microvascular endothelial cells and neuronal cells in the hippocampus, and decreased the numbers of astrocyte and apoptotic cells. In the MWM test, we further showed that the escape latency of CCH rats was significantly reduced after PGE1 treatment. Our results suggest that PGE1 ameliorates cognitive dysfunction in CCH rats by enhancing CBF recovery, sustaining angiogenesis, and reducing astrocyte activation and neuronal loss.
Collapse
Affiliation(s)
- Xiaomei Xie
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Weibiao Lu
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yuanfang Chen
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Chi Kwan Tsang
- Clinical Neuroscience Institute, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jianye Liang
- Department of Radiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Wenxian Li
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhen Jing
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yu Liao
- Department of Pathology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Li'an Huang
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Yan X, Li Y, Choi YH, Wang C, Piao Y, Ye J, Jiang J, Li L, Xu H, Cui Q, Yan G, Jin M. Protective Effect and Mechanism of Alprostadil in Acute Respiratory Distress Syndrome Induced by Oleic Acid in Rats. Med Sci Monit 2018; 24:7186-7198. [PMID: 30296789 PMCID: PMC6190919 DOI: 10.12659/msm.909678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND This study investigated the role and mechanism of alprostadil in acute respiratory distress syndrome (ARDS) induced by oleic acid (OA) in rats. MATERIAL AND METHODS Sprague-Dawley rats were randomly divided into control, OA model, and OA + Alprostadil (2.5, 5, and 10 μg/kg, respectively) groups. The ARDS model was induced by femoral vein injection of OA, and alprostadil was administrated immediately. Lung injury was evaluated by lung wet-dry weight ratio (W/D) and histological analyses. Expressions of ACE, inflammatory mediators, apoptotic-related proteins, and proteins in the MAPKs and NF-κB signaling pathways were determined by Western blot or immunohistochemical staining. RESULTS Compared with the control group, the OA model group had significantly increased W/D, lung injury score, and collagen deposition at 3 h after OA injection. However, alprostadil (10 μg/kg) treatment significantly reduced OA-induced elevation of these indicators. Additionally, OA-induced expression of TNF-α and IL-1β were suppressed by alprostadil. The OA-induced activation of nuclear factor (NF) κB p65 was also reduced by alprostadil. Furthermore, we found that Alprostadil had an inhibitory effect on the phosphorylation of JNK, ERK1/2, and p38 MAPKs. Alprostadil inhibited Bax but increased Bcl-2, indicating a suppressive role in apoptosis. Remarkably increased expression of ACE in the OA model group was observed, which was decreased by alprostadil. CONCLUSIONS Alprostadil has a protective effect on ARDS induced by OA in rats, possibly through inhibiting apoptosis, suppressing the activation of MAPKs and NF-κB signaling pathways, and decreasing ACE protein expression. Therefore, the use of alprostadil in clinical ARDS treatment is promising.
Collapse
Affiliation(s)
- Xiujuan Yan
- Intensive Care Unit, Yanbian University Hospital, Yanji, Jilin, China (mainland)
| | - Yingxiu Li
- College of Marine Science, Shandong University (Weihai), Weihai, Shandong, China (mainland)
| | - Yun Ho Choi
- Department of Anatomy, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju, Jeonbuk, South Korea
| | - Chongyang Wang
- Department of Anatomy, Histology, and Embryology, Yanbian University Medical College, Yanji, Jilin, China (mainland)
| | - Yihua Piao
- Intensive Care Unit, Yanbian University Hospital, Yanji, Jilin, China (mainland)
| | - Jing Ye
- Department of Anatomy, Histology, and Embryology, Yanbian University Medical College, Yanji, Jilin, China (mainland)
| | - Jingzhi Jiang
- Department of Anatomy, Histology, and Embryology, Yanbian University Medical College, Yanji, Jilin, China (mainland)
| | - Liangchang Li
- Department of Anatomy, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju, Jeonbuk, South Korea
| | - Huixian Xu
- Intensive Care Unit, Yanbian University Hospital, Yanji, Jilin, China (mainland)
| | - Qingsong Cui
- Intensive Care Unit, Yanbian University Hospital, Yanji, Jilin, China (mainland)
| | - Guanghai Yan
- Department of Anatomy, Histology, and Embryology, Yanbian University Medical College, Yanji, Jilin, China (mainland)
| | - Minggen Jin
- Intensive Care Unit, Yanbian University Hospital, Yanji, Jilin, China (mainland)
| |
Collapse
|
4
|
Fatty acids and related lipid mediators in the regulation of cutaneous inflammation. Biochem Soc Trans 2018; 46:119-129. [PMID: 29330355 DOI: 10.1042/bst20160469] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/11/2017] [Accepted: 12/15/2017] [Indexed: 12/13/2022]
Abstract
Human skin has a distinct profile of fatty acids and related bioactive lipid mediators that regulate many aspects of epidermal and dermal homeostasis, including immune and inflammatory reactions. Sebum lipids act as effective antimicrobial agents, shape immune cell communications and contribute to the epidermal lipidome. The essential fatty acid linoleic acid is crucial for the structure of the epidermal barrier, while polyunsaturated fatty acids act as precursors to eicosanoids, octadecanoids and docosanoids through cyclooxygenase, lipoxygenase and cytochrome P450 monooxygenase-mediated reactions, and endocannabinoids and N-acyl ethanolamines. Cross-communication between these families of bioactive lipids suggests that their cutaneous activities should be considered as part of a wider metabolic network that can be targeted to maintain skin health, control inflammation and improve skin pathologies.
Collapse
|
5
|
Berry E, Liu Y, Chen L, Guo AM. Eicosanoids: Emerging contributors in stem cell-mediated wound healing. Prostaglandins Other Lipid Mediat 2016; 132:17-24. [PMID: 27825971 DOI: 10.1016/j.prostaglandins.2016.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/29/2016] [Accepted: 11/03/2016] [Indexed: 12/16/2022]
Abstract
Eicosanoids are bioactive lipid products primarily derived from the oxidation of arachidonic acid (AA). The individual contributions of eicosanoids and stem cells to wound healing have been of great interest. This review focuses on how stem cells work in concert with eicosanoids to create a beneficial environment in the wound bed and in the promotion of wound healing. Stem cells contribute to wound healing through modulating inflammation, differentiating into skin cells or endothelial cells, and exerting paracrine effects by releasing various potent growth factors. Eicosanoids have been shown to stimulate proliferation, migration, homing, and differentiation of stem cells, all of which contribute to the process of wound healing. Increasing evidence has shown that eicosanoids improve wound healing through increasing stem cell densities, stimulating differentiation, and enhancing the angiogenic properties of stem cells. Chronic wounds have become a major problem in health care. Therefore, research regarding the effects of stem cells and eicosanoids in the promotion wound healing is of great importance.
Collapse
Affiliation(s)
- Elizabeth Berry
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, NY 10595 United States
| | - Yanzhou Liu
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, NY 10595 United States; Department of Pharmacology, School of Medicine, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Li Chen
- State Key Lab of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Austin M Guo
- Department of Pharmacology, School of Medicine, New York Medical College, Valhalla, NY 10595 United States; Department of Pharmacology, School of Medicine, Wuhan University, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
6
|
Lee HY, Kim DK, Park YH, Cha WW, Kim GJ, Lee SH. Prognostic factors for profound sudden idiopathic sensorineural hearing loss: a multicenter retrospective study. Eur Arch Otorhinolaryngol 2016; 274:143-149. [PMID: 27544193 DOI: 10.1007/s00405-016-4276-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 08/18/2016] [Indexed: 10/21/2022]
Abstract
The aim of this study was to assess the outcomes of various treatment modalities for profound idiopathic sudden sensorineural hearing loss (ISSNHL) and confirm the prognostic factors. In total, 191 patients were enrolled after a thorough medical chart review of patients diagnosed with unilateral, profound ISSNHL (≥90 dB). Epidemiological profiles, therapeutic regimens, and the results of pure tone audiometry tests were recorded for all patients. Final recovery was assessed according to Siegel's criteria and by comparing the final hearing level of the affected ear with that of the unaffected ear. The mean follow-up duration and the final hearing level were 75 ± 54 days and 77 ± 24 dB, respectively. None of the evaluated prognostic factors were significantly associated with complete recovery (<25 dB). However, improved hearing in both ears, the absence of dizziness, the use of lipo-prostaglandin E1 (lipo-PGE1), and the use of plasma volume expanders were independently associated with a final hearing level of up to 45 dB (p < 0.05). Steroid dose reduction, worse initial hearing, and non-use of lipo-PGE1 increased the possibility of no recovery. Although the efficacy of oral steroid treatment for profound ISSNHL has been questioned, steroid dose reduction was significantly associated with no recovery. Therefore, adequate oral corticosteroid doses should be considered in the absence of contraindications. In addition, the use of lipo-PGE1 and/or a plasma volume expander seems preferable for better recovery, and their use for the management of profound ISSNHL should be considered.
Collapse
Affiliation(s)
- Ho Yun Lee
- Department of Otolaryngology-Head and Neck Surgery, Eulji University College of Medicine, Daejeon, South Korea
| | - Dong-Kee Kim
- Department of Otolaryngology-Head and Neck Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daeheung-dong, Jung-gu, Daejeon, South Korea.
| | - Yong-Ho Park
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, 282 Munwha-ro, Jung-gu, Daejeon, South Korea. .,Brain Research Institute, College of Medicine, Chungnam National University, Daejeon, South Korea.
| | - Wang Woon Cha
- Department of Otolaryngology-Head and Neck Surgery, Eulji University College of Medicine, Daejeon, South Korea
| | - Geun Jeon Kim
- Department of Otolaryngology-Head and Neck Surgery, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daeheung-dong, Jung-gu, Daejeon, South Korea
| | - Seung Hun Lee
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, 282 Munwha-ro, Jung-gu, Daejeon, South Korea.,Brain Research Institute, College of Medicine, Chungnam National University, Daejeon, South Korea
| |
Collapse
|