1
|
Jafari N, Zolfi Gol A, Shahabi Rabori V, Saberiyan M. Exploring the role of exosomal and non-exosomal non-coding RNAs in Kawasaki disease: Implications for diagnosis and therapeutic strategies against coronary artery aneurysms. Biochem Biophys Rep 2025; 42:101970. [PMID: 40124995 PMCID: PMC11930191 DOI: 10.1016/j.bbrep.2025.101970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
Kawasaki disease (KD) is an acute vasculitis primarily affecting children, with a potential risk of developing coronary artery aneurysms (CAAs) and cardiovascular complications. The emergence of non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), has provided insights into Kawasaki disease pathogenesis and opened new avenues for diagnosis and therapeutic intervention. Furthermore, polymorphism analysis of ncRNA genes offers significant insights into genetic predisposition to Kawasaki disease, facilitating tailored treatment approaches and risk assessment to improve patient outcomes. Exosomal ncRNAs, which are ncRNAs encapsulated within extracellular vesicles, have garnered significant attention as potential biomarkers for Kawasaki disease and CAA due to their stability and accessibility in biological fluids. This review comprehensively discusses the biogenesis, components, and potential of exosomal and non-exosomal ncRNAs in Kawasaki disease diagnosis and prognosis prediction. It also highlights the roles of non-exosomal ncRNAs, such as miRNAs, lncRNAs, and circRNAs, in Kawasaki disease pathogenesis and their implications as therapeutic targets. Additionally, the review explores the current diagnostic and therapeutic approaches for Kawasaki disease and emphasizes the need for further research to validate these ncRNA-based biomarkers in diverse populations and clinical settings.
Collapse
Affiliation(s)
- Negar Jafari
- Department of Cardiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Zolfi Gol
- Department of Cardiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Venus Shahabi Rabori
- Department of Cardiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammadreza Saberiyan
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
2
|
Hong L, Yin B, Duan C, Zhou L, Huang Y. Correlation between preoperative and postoperative miR-29c-3p level changes and immune response in paediatric acute septic appendicitis and its predictive significance for complications: a retrospective study. Ital J Pediatr 2025; 51:152. [PMID: 40399989 PMCID: PMC12096639 DOI: 10.1186/s13052-025-01986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 05/11/2025] [Indexed: 05/23/2025] Open
Abstract
BACKGROUND Postoperative complications in children with acute suppurative appendicitis (ASA) can lead to very serious consequences. In this study, we investigated the pre- and postoperative expression of miR-29c-3p in ASA and its value in predicting postoperative complications. METHODS Retrospectively, 128 children with ASA and 93 healthy children were included. The qRT-PCR technique was used to detect miR-29c-3p expression in children with ASA preoperatively and 24 h postoperatively. The levels of immune cells (WBC, NEU, LYM) were detected by routine blood test, and the levels of immune proteins CRP and inflammatory factors (TNF-α and IL-6) were detected by ELISA. RESULTS Before surgery, children with ASA had higher levels of miR-29c-3p than healthy controls. But after surgery, miR-29ac-3p levels dropped a lot in children with ASA. The serum levels of immune cells (WBC, NEU, LYM), immune protein CRP and inflammatory factors (TNF-α and IL-6) were significantly decreased in children with ASA. Postoperative miR-29c-3p levels were positively correlated with the levels of immune indicators. The patients with higher miR-29c-3p expression levels showed a greater incidence of postoperative complications. CONCLUSIONS The expression of miR-29c-3p was positively correlated to immune cells, immune proteins, and inflammatory factors. The expression levels of miR-29c-3p were related to the occurrence of postoperative complications and could, therefore, be utilized to predict the occurrence of postoperative complications in children with ASA.
Collapse
Affiliation(s)
- Li Hong
- Department of Laboratory, Haikou Hospital of The Maternal and Child Health, Haikou, 570102, China
| | - Baohui Yin
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Binzhou, 264100, China
| | - Chunsheng Duan
- Department of Pediatric Surgery, Xingtai People's Hospital, Xingtai, 054000, China
| | - Lixia Zhou
- Department of Pediatric Surgery, Xingtai People's Hospital, Xingtai, 054000, China
| | - Yingxuan Huang
- Key Laboratory of Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases of Baise, Baise, 533000, Guangxi, China.
- Pediatric Intensive Care Unit, The Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18, Zhongshan 2nd Road, Youjiang District, 533000, Baise, China.
| |
Collapse
|
3
|
Mun H, Lee S, Choi S, Jeong JH, Ko S, Chun YL, Deaton B, Yeager CT, Boyette A, Palmera J, Newman L, Zhou P, Shin S, Kim DC, Sagum CA, Bedford MT, Kim YK, Kwon J, Jung J, Chang JH, Yoon JH. Targeting of CYP2E1 by miRNAs in alcohol-induced intestine injury. Mol Cells 2024; 47:100074. [PMID: 38901530 PMCID: PMC11267015 DOI: 10.1016/j.mocell.2024.100074] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
Although binge alcohol-induced gut leakage has been studied extensively in the context of reactive oxygen species-mediated signaling, it was recently revealed that post-transcriptional regulation plays an essential role as well. Ethanol (EtOH)-inducible cytochrome P450-2E1 (CYP2E1), a key enzyme in EtOH metabolism, promotes alcohol-induced hepatic steatosis and inflammatory liver disease, at least in part by mediating changes in intestinal permeability. For instance, gut leakage and elevated intestinal permeability to endotoxins have been shown to be regulated by enhancing CYP2E1 mRNA and CYP2E1 protein levels. Although it is understood that EtOH promotes CYP2E1 induction and activation, the mechanisms that regulate CYP2E1 expression in the context of intestinal damage remain poorly defined. Specific miRNAs, including miR-132, miR-212, miR-378, and miR-552, have been shown to repress the expression of CYP2E1, suggesting that these miRNAs contribute to EtOH-induced intestinal injury. Here, we have shown that CYP2E1 expression is regulated post-transcriptionally through miRNA-mediated degradation, as follows: (1) the RNA-binding protein AU-binding factor 1 (AUF1) binds mature miRNAs, including CYP2E1-targeting miRNAs, and this binding modulates the degradation of corresponding target mRNAs upon EtOH treatment; (2) the serine/threonine kinase mammalian Ste20-like kinase 1 (MST1) mediates oxidative stress-induced phosphorylation of AUF1. Those findings suggest that reactive oxygen species-mediated signaling modulates AUF1/miRNA interaction through MST1-mediated phosphorylation. Thus, our study demonstrates the critical functions of AUF1 phosphorylation by MST1 in the decay of miRNAs targeting CYP2E1, the stabilization of CYP2E1 mRNA in the presence of EtOH, and the relationship of this pathway to subsequent intestinal injury.
Collapse
Affiliation(s)
- Hyejin Mun
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Oncology Science, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Sungyul Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Suyoung Choi
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Ji-Hoon Jeong
- Department of Oncology Science, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Seungbeom Ko
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yoo Lim Chun
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Benjamin Deaton
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Clay T Yeager
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Audrey Boyette
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Juliana Palmera
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - London Newman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ping Zhou
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Soona Shin
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Dong-Chan Kim
- Division of Medical Device R&D Center, NQ-Lab, Inc.,Yongin-si, Gyeonggi-do 16827, Republic of Korea
| | - Cari A Sagum
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD, Anderson Cancer Center, Houston, TX 77030, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD, Anderson Cancer Center, Houston, TX 77030, USA
| | - Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Jaeyul Kwon
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Medical Education, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Translational Immunology Institute, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Oncology Science, University of Oklahoma, Oklahoma City, OK 73104, USA.
| |
Collapse
|
4
|
Rajasekaran K, Duraiyarasan S, Adefuye M, Manjunatha N, Ganduri V. Kawasaki Disease and Coronary Artery Involvement: A Narrative Review. Cureus 2022; 14:e28358. [PMID: 36185934 PMCID: PMC9514671 DOI: 10.7759/cureus.28358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Kawasaki disease is a systemic vasculitis with a risk of developing coronary artery lesions if left untreated. Kawasaki disease can be diagnosed clinically with classical symptoms (conjunctivitis, rash, lymphadenopathy, mucositis, edema of hands and feet), but predicting the risk of developing coronary artery aneurysm remains challenging. The coronary sequelae of Kawasaki disease have significant morbidity and mortality and are the second most common cause of acquired cardiac disease in children. Several genetic and immune factors are involved in the inflammation of coronary artery lesions in Kawasaki disease. Inositol trisphosphate 3-Kinase (ITPKC), Foxp3+, circular RNAs, mannose-binding lectin 2 (MBL2), complement factor H (CFH), kininogen 1 (KNG1), serpin family C member 1 (SERPINC1) and fibronectin 1 (FN1) are the essential genes identified in the pathogenesis of coronary artery lesions in Kawasaki disease. The addition of methylprednisolone to a combination of aspirin and intravenous immunoglobulins and biological agents like anakinra, etanercept, infliximab, and immunosuppressants like cyclosporine prevents the occurrence of coronary artery aneurysms in Kawasaki disease. Since the coronary artery lesions form the second most common cause of acquired cardiac disease in children and the incidence of myocardial infarction is a late complication, the risk stratification for coronary artery aneurysms and follow-up protocols for the prevention of cardiac thrombosis were proposed by the American Heart Association in 2017.
Collapse
|
5
|
Yang F, Ao X, Ding L, Ye L, Zhang X, Yang L, Zhao Z, Wang J. Non-coding RNAs in Kawasaki disease: Molecular mechanisms and clinical implications. Bioessays 2022; 44:e2100256. [PMID: 35355301 DOI: 10.1002/bies.202100256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/10/2022]
Abstract
Kawasaki disease (KD) is an acute self-limiting vasculitis with coronary complications, usually occurring in children. The incidence of KD in children is increasing year by year, mainly in East Asian countries, but relatively stably in Europe and America. Although studies on KD have been reported, the pathogenesis of KD is unknown. With the development of high-throughput sequencing technology, growing number of regulatory noncoding RNAs (ncRNAs) including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA) have been identified to involved in KD. However, the role of ncRNAs in KD has not been comprehensively elucidated. Therefore, it is significative to study the regulatory role of ncRNA in KD, which might help to uncover new and effective therapeutic strategies for KD. In this review, we summarize recent studies on ncRNA in KD from the perspectives of immune disorders, inflammatory disorders, and endothelial dysfunction, and highlight the potential of ncRNAs as therapeutic targets for KD.
Collapse
Affiliation(s)
- Fuqing Yang
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Lin Ding
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Lin Ye
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Xuejuan Zhang
- Department of General Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lanting Yang
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Zhonghao Zhao
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Shu L, Peng Y, Zhong L, Feng X, Qiao L, Yi Y. CircZNF124 regulates cell proliferation, leucine uptake, migration and invasion by miR-199b-5p/SLC7A5 pathway in endometrial cancer. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1291-1305. [PMID: 34145797 PMCID: PMC8589382 DOI: 10.1002/iid3.477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Recent studies have revealed that circular RNA participates in endometrial carcinoma (EC) progression. Here we investigated the role of circRNA zinc finger protein 124 (circZNF124) in EC genesis and underlying mechanism. METHODS The expression levels of circZNF124, microRNA-199b-5p (miR-199b-5p) and solute carrier family 7 member 5 (SLC7A5) were detected by quantitative real-time polymerase chain reaction. The expression of SLC7A5 and other indicated marker proteins was determined by western blot analysis. For functional assay, cell proliferation, leucine uptake and metastasis were investigated by total cell number, cell counting kit-8, cell colony formation, leucine uptake or transwell assay. The interaction between miR-199b-5p and circZNF124 or SLC7A5 was predicted by starbase online database, and identified by mechanism assays. The impact of circZNF124 absence on tumor growth in vivo was revealed by xenograft mouse model assay. Immunohistochemistry assay was implemented to detect the positive expression rate of nuclear proliferation marker (Ki67). RESULTS CircZNF124 and SLC7A5 expression were significantly increased, while miR-199b-5p was decreased in EC tissues and cells compared with normal endometrial tissues or cells. CircZNF124 expression was closely associated with EC severity and lymph node metastasis. Additionally, circZNF124 depletion repressed cell proliferation, leucine uptake, migration and invasion in both HEC1A and Ishikawa cells. CircZNF124 regulated SLC7A5 expression by binding to miR-199b-5p. MiR-199b-5p inhibitors or SLC7A5 overexpression attenuated circZNF124 silencing-mediated EC malignant progression. Furthermore, SLC7A5 absence inhibited tumor growth in vivo. CONCLUSION CircZNF124 depletion inhibited EC cell malignancy by miR-199b-5p/SLC7A5 pathway, which demonstrated that circZNF124 had the potential as a therapeutic target for EC.
Collapse
Affiliation(s)
- Liuping Shu
- Department of Genecology, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou, China
| | - Yan Peng
- Department of Genecology, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou, China
| | - Liyan Zhong
- Department of Genecology, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou, China
| | - Xi Feng
- Department of Genecology, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou, China
| | - Lifu Qiao
- Department of Genecology, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou, China
| | - Yi Yi
- Department of Genecology, Wujin Hospital Affiliated with Jiangsu University, The Wujin Clinical College of Xuzhou Medical University, Changzhou, China
| |
Collapse
|
7
|
Pezoulas VC, Papaloukas C, Veyssiere M, Goules A, Tzioufas AG, Soumelis V, Fotiadis DI. A computational workflow for the detection of candidate diagnostic biomarkers of Kawasaki disease using time-series gene expression data. Comput Struct Biotechnol J 2021; 19:3058-3068. [PMID: 34136104 PMCID: PMC8178098 DOI: 10.1016/j.csbj.2021.05.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
Unlike autoimmune diseases, there is no known constitutive and disease-defining biomarker for systemic autoinflammatory diseases (SAIDs). Kawasaki disease (KD) is one of the "undiagnosed" types of SAIDs whose pathogenic mechanism and gene mutation still remain unknown. To address this issue, we have developed a sequential computational workflow which clusters KD patients with similar gene expression profiles across the three different KD phases (Acute, Subacute and Convalescent) and utilizes the resulting clustermap to detect prominent genes that can be used as diagnostic biomarkers for KD. Self-Organizing Maps (SOMs) were employed to cluster patients with similar gene expressions across the three phases through inter-phase and intra-phase clustering. Then, false discovery rate (FDR)-based feature selection was applied to detect genes that significantly deviate across the per-phase clusters. Our results revealed five genes as candidate biomarkers for KD diagnosis, namely, the HLA-DQB1, HLA-DRA, ZBTB48, TNFRSF13C, and CASD1. To our knowledge, these five genes are reported for the first time in the literature. The impact of the discovered genes for KD diagnosis against the known ones was demonstrated by training boosting ensembles (AdaBoost and XGBoost) for KD classification on common platform and cross-platform datasets. The classifiers which were trained on the proposed genes from the common platform data yielded an average increase by 4.40% in accuracy, 5.52% in sensitivity, and 3.57% in specificity than the known genes in the Acute and Subacute phases, followed by a notable increase by 2.30% in accuracy, 2.20% in sensitivity, and 4.70% in specificity in the cross-platform analysis.
Collapse
Affiliation(s)
- Vasileios C. Pezoulas
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, Ioannina GR45110, Greece
| | - Costas Papaloukas
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, Ioannina GR45110, Greece
- Department of Biological Applications and Technology, University of Ioannina, Ioannina GR45100, Greece
| | - Maëva Veyssiere
- INSERM U976, Human Immunology, Physiopathology and Immunotherapy, Paris, France
| | - Andreas Goules
- Department of Pathophysiology, School of Medicine, University of Athens, Athens GR15772, Greece
| | - Athanasios G. Tzioufas
- Department of Pathophysiology, School of Medicine, University of Athens, Athens GR15772, Greece
| | - Vassili Soumelis
- INSERM U976, Human Immunology, Physiopathology and Immunotherapy, Paris, France
- Hôpital Saint Louis, Saint Louis Research Institute, Paris, France
| | - Dimitrios I. Fotiadis
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, Ioannina GR45110, Greece
- Department of Biomedical Research, FORTH (Foundation for Research & Technology)-IMBB (Institute of Molecular Biology and Biotechnology), Ioannina GR45110, Greece
| |
Collapse
|
8
|
Mao L, Guo J, Hu L, Li L, Bennett S, Xu J, Zou J. Circular RNAs in childhood-related diseases and cancers: A review. Cell Biochem Funct 2020; 39:458-467. [PMID: 33354822 DOI: 10.1002/cbf.3611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/01/2020] [Accepted: 12/13/2020] [Indexed: 12/16/2022]
Abstract
Research into the diagnosis, treatment and prevention of childhood-related diseases is the key to reducing their morbidity and mortality. Circular RNAs (circRNAs) play critical roles, both in physiology and pathology, and there is ample evidence to show that they play varying roles in tissue development and gene regulation. Studies on circRNAs in different childhood-related diseases have confirmed their great potential for disease prevention and treatment. These breakthroughs highlight the pathological role of circRNAs in cancers, as well as cardiovascular and hereditary childhood illnesses. In this review, we summarize the role of circRNAs in childhood-related diseases and cancer, and provide an update of the possible diagnostic and therapeutic application of circRNAs.
Collapse
Affiliation(s)
- Liwei Mao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jianmin Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Linghui Hu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lexuan Li
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Samuel Bennett
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
9
|
Song J, Kim YK. Discovery and Functional Prediction of Long Non-Coding RNAs Common to Ischemic Stroke and Myocardial Infarction. J Lipid Atheroscler 2020; 9:449-459. [PMID: 33024736 PMCID: PMC7521976 DOI: 10.12997/jla.2020.9.3.449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/21/2020] [Accepted: 08/02/2020] [Indexed: 12/26/2022] Open
Abstract
Objective Ischemic stroke and myocardial infarction are 2 of the leading causes of mortality. Both conditions are caused by arterial occlusion, resulting in ischemic necrosis of the cells in the cortex and heart. Long non-coding RNAs (lncRNAs) are a group of non-coding RNAs longer than 200 nucleotides without protein-coding potential. Thousands of lncRNAs have been identified but their involvement in ischemic stroke and myocardial infarction has not been studied extensively. Therefore, this study aimed to identify the role of lncRNAs, particularly those that are commonly altered in these two ischemic injuries. Methods We combined diverse RNA sequencing data obtained from public databases and performed extensive bioinformatics analyses to determine reliable lncRNAs commonly identified from these datasets. Using sequence analysis, we also detected the lncRNAs that may act as microRNA (miRNA) regulators. Results We found several altered lncRNAs that were common in ischemic stroke and myocardial infarction models. Some of these lncRNAs, including zinc finger NFX1-type containing 1 antisense RNA 1 and small nucleolar RNA host gene 1, were previously reported to be involved in the pathogenesis of each of these models. Interestingly, several lncRNAs had binding sites for miRNAs that were previously reported to be involved in the hypoxic response, suggesting the possible role of these lncRNAs as regulators in ischemic responses. Conclusion The lncRNAs identified in this study will be useful in determining the regulatory networks in ischemic stroke and myocardial infarction and in identifying potential specific markers for each of these ischemic diseases.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Korea
| | - Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, Korea
| |
Collapse
|
10
|
Yoon KL. Circular RNA as a Possible Novel Biomarker for Kawasaki Disease. J Lipid Atheroscler 2019; 8:48-49. [PMID: 32821698 PMCID: PMC7379080 DOI: 10.12997/jla.2019.8.1.48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/22/2022] Open
Affiliation(s)
- Kyung Lim Yoon
- Department of Pediatrics, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Korea
| |
Collapse
|