1
|
Eskandari T, Eivazzadeh Y, Khaleghinia F, Kashi F, Oksenych V, Haghmorad D. Lipid Antigens: Revealing the Hidden Players in Adaptive Immune Responses. Biomolecules 2025; 15:84. [PMID: 39858478 PMCID: PMC11763959 DOI: 10.3390/biom15010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/31/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Traditionally, research on the adaptive immune system has focused on protein antigens, but emerging evidence has underscored the essential role of lipid antigens in immune modulation. Lipid antigens are presented by CD1 molecules and activate invariant natural killer T (iNKT) cells and group 1 CD1-restricted T cells, whereby they impact immune responses to pathogens and tumors. Recent advances in mass spectrometry, imaging techniques, and lipidomics have revolutionized the identification and characterization of lipid antigens and enhanced our understanding of their structural diversity and functional significance. These advancements have paved the way for lipid-based vaccines and immunotherapies through the application of nanoparticles and synthetic lipid antigens designed to boost immune responses against cancers and infectious diseases. Lipid trafficking, CD1 molecule interactions, and the immune system's response to lipid antigens are yet to be completely understood, particularly in the context of autoimmunity and microbial infections. In the years to come, continued research efforts are needed to uncover its underlying biological mechanisms and to exploit the full potential of therapies directed against lipid antigens.
Collapse
Affiliation(s)
- Tamana Eskandari
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Yasamin Eivazzadeh
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Fatemeh Khaleghinia
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Fatemeh Kashi
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | | | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| |
Collapse
|
2
|
Koniari E, Hatziagapiou K, Nikola AO, Georgoulia K, Marinakis N, Bakakos P, Athanasopoulou A, Koromilias A, Rovina N, Efthymiou V, Papakonstantinou E, Vlachakis D, Mavrikou S, Koutsoukou A, Traeger-Synodinos J, Chrousos GP. ENaC gene variants and their involvement in Covid‑19 severity. Biomed Rep 2024; 21:176. [PMID: 39355526 PMCID: PMC11443493 DOI: 10.3892/br.2024.1864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/05/2024] [Indexed: 10/03/2024] Open
Abstract
Epidemiological studies report the association of diverse cardiovascular conditions with coronavirus disease 2019 (COVID-19), but the causality has remained to be established. Specific genetic factors and the extent to which they can explain variation in susceptibility or severity are largely elusive. The present study aimed to evaluate the link between 32 cardio-metabolic traits and COVID-19. A total of 60 participants were enrolled, who were categorized into the following 4 groups: A control group with no COVID-19 or any other underlying pathologies, a group of patients with a certain form of dyslipidemia and predisposition to atherosclerotic disease, a COVID-19 group with mild or no symptoms and a COVID-19 group with severe symptomatology hospitalized at the Intensive Care Unit of Sotiria Hospital (Athens, Greece). Demographic, clinical and laboratory data were recorded and genetic material was isolated, followed by simultaneous analysis of the genes related to dyslipidemia using a custom-made next-generation sequencing panel. In the COVID-19 group with mild or absent symptoms, the variant c.112C>T:p.P38S was detected in the sodium channel epithelial 1 subunit α (SCNN1A) gene, with a major allele frequency (Maf) of <0.01. In the COVID-19 group with severe symptoms, the variant c.786G>A:p.T262T was detected in the SCNN1B gene, which encodes for the β-subunit of the epithelial sodium channel ENaC, with a Maf <0.01. None of the two rare variants were detected in the control or dyslipidemia groups. In conclusion, the current study suggests that ENaC variants are likely associated with genetic susceptibility to COVID-19, supporting the rationale for the risk and protective genetic factors for the morbidity and mortality of COVID-19.
Collapse
Affiliation(s)
- Eleni Koniari
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Kyriaki Hatziagapiou
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, 11527 Athens, Greece
- First Department of Pediatrics, National and Kapodistrian University of Athens, 'Aghia Sophia' Children's Hospital, 11527 Athens, Greece
| | - Alexandra Olti Nikola
- First Department of Pediatrics, National and Kapodistrian University of Athens, 'Aghia Sophia' Children's Hospital, 11527 Athens, Greece
| | - Konstantina Georgoulia
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos Marinakis
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Petros Bakakos
- Intensive Care Unit, First Department of Pulmonary Medicine, National and Kapodistrian University of Athens and Sotiria Hospital, 11527 Athens, Greece
| | - Athanasia Athanasopoulou
- Intensive Care Unit, First Department of Pulmonary Medicine, National and Kapodistrian University of Athens and Sotiria Hospital, 11527 Athens, Greece
| | - Athanasios Koromilias
- Intensive Care Unit, First Department of Pulmonary Medicine, National and Kapodistrian University of Athens and Sotiria Hospital, 11527 Athens, Greece
| | - Nikoletta Rovina
- Intensive Care Unit, First Department of Pulmonary Medicine, National and Kapodistrian University of Athens and Sotiria Hospital, 11527 Athens, Greece
| | - Vasiliki Efthymiou
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 10447 Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 10447 Athens, Greece
| | - Sophia Mavrikou
- Faculty of Applied Biology and Biotechnology, Department of Biotechnology, Agricultural University of Athens, 10447 Athens, Greece
| | - Antonia Koutsoukou
- Intensive Care Unit, First Department of Pulmonary Medicine, National and Kapodistrian University of Athens and Sotiria Hospital, 11527 Athens, Greece
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
3
|
Baldovin T, Leoni D, Geppini R, Miatton A, Amoruso I, Fonzo M, Bertoncello C, Finco M, Mazzitelli M, Sasset L, Cattelan A, Baldo V. Immunogenicity and Determinants of Antibody Response to the BNT162b2 mRNA Vaccine: A Longitudinal Study in a Cohort of People Living with HIV. Vaccines (Basel) 2024; 12:1172. [PMID: 39460338 PMCID: PMC11512344 DOI: 10.3390/vaccines12101172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The COVID-19 pandemic posed significant challenges worldwide, with SARS-CoV-2 vaccines critical in reducing morbidity and mortality. This study evaluates the immunogenicity and antibody persistence of the BNT162b2 vaccine in people living with HIV (PLWH). METHODS We monitored anti-SARS-CoV-2 Spike IgG concentration in a cohort of PLWH at five time points (T0-T4) using chemiluminescent microparticle immunoassays (CMIAs) at the baselined both during and after vaccination. In severely immunocompromised individuals, a boosting dose was recommended, and participants and IgG concentration were measured in the two subgroups (boosted and not boosted). RESULTS In total, 165 PLWH were included, and 83% were male with a median age of 55 years (IQR: 47-62). At T1, 161 participants (97.6%) showed seroconversion with a median of IgG values of 468.8 AU/mL (IQR: 200.4-774.3 AU/mL). By T2, all subjects maintained a positive result, with the median anti-SARS-CoV-2 Spike IgG concentration increasing to 6191.6 AU/mL (IQR: 3666.7-10,800.8 AU/mL). At T3, all participants kept their antibody levels above the positivity threshold with a median of 1694.3 AU/mL (IQR: 926.3-2966.4 AU/mL). At T4, those without a booster dose exhibited a marked decrease to a median of 649.1 AU/mL (IQR: 425.5-1299.8 AU/mL), whereas those with a booster experienced a significant increase to a median of 13,105.2 AU/mL (IQR: 9187.5-18,552.1 AU/mL). The immune response was negatively influenced by the presence of dyslipidaemia at T1 (aOR 4.75, 95% CI: 1.39-16.20) and diabetes at T3 (aOR 7.11, 95% CI: 1.10-46.1), while the use of protease inhibitors (aORs 0.06, 95% CI: 0.01-0.91) and being female (aOR 0.02, 95% CI: 0.01-0.32) at T3 were protective factors. CONCLUSIONS The immunogenicity of the BNT162b2 vaccine in PLWH has been confirmed, with booster doses necessary to maintain high levels of anti-SARS-CoV-2 Spike IgG antibodies, especially in patients with comorbidities. These findings underline the importance of a personalized vaccination strategy in this population.
Collapse
Affiliation(s)
- Tatjana Baldovin
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35131 Padua, Italy (R.G.); (A.M.); (I.A.); (M.F.); (V.B.)
| | - Davide Leoni
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35131 Padua, Italy; (D.L.); (M.F.); (L.S.); (A.C.)
| | - Ruggero Geppini
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35131 Padua, Italy (R.G.); (A.M.); (I.A.); (M.F.); (V.B.)
| | - Andrea Miatton
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35131 Padua, Italy (R.G.); (A.M.); (I.A.); (M.F.); (V.B.)
| | - Irene Amoruso
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35131 Padua, Italy (R.G.); (A.M.); (I.A.); (M.F.); (V.B.)
| | - Marco Fonzo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35131 Padua, Italy (R.G.); (A.M.); (I.A.); (M.F.); (V.B.)
| | - Chiara Bertoncello
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35131 Padua, Italy (R.G.); (A.M.); (I.A.); (M.F.); (V.B.)
| | - Mascia Finco
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35131 Padua, Italy; (D.L.); (M.F.); (L.S.); (A.C.)
| | - Maria Mazzitelli
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35131 Padua, Italy; (D.L.); (M.F.); (L.S.); (A.C.)
| | - Lolita Sasset
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35131 Padua, Italy; (D.L.); (M.F.); (L.S.); (A.C.)
| | - Annamaria Cattelan
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35131 Padua, Italy; (D.L.); (M.F.); (L.S.); (A.C.)
- Department of Molecular Medicine, University of Padua, 35131 Padua, Italy
| | - Vincenzo Baldo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35131 Padua, Italy (R.G.); (A.M.); (I.A.); (M.F.); (V.B.)
| |
Collapse
|
4
|
Zhang Y, Wen Z, Xia C, Chen M, Cai F, Chu L. Association between baseline lipid profile and risk of worsening in patients with myasthenia gravis: A retrospective cohort study. Heliyon 2024; 10:e36737. [PMID: 39281610 PMCID: PMC11402134 DOI: 10.1016/j.heliyon.2024.e36737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024] Open
Abstract
Background Dyslipidemia has been implicated in autoimmunity; however, its association with myasthenia gravis (MG) prognosis is unclear. We aimed to investigate the correlation between baseline lipid profiles and risk of MG worsening. Methods This 7-year retrospective cohort study conducted at a Chinese hospital included 264 adult patients with MG. Data on baseline lipids, 1-year worsening, and covariates, including demographics, MG characteristics, comorbidities, and treatments were extracted. Results Univariate and multivariate logistic regression analyses failed to show a significant association between the risk of 1-year MG worsening and any of the seven blood lipid-related indicators. However, the subsequent non-linear analysis revealed an inflection point in the risk curve of ln[lipoprotein(a)], at 4.06 (58 nmol/L). The lipoprotein(a) levels on the left side of the inflection point presented a positive significant correlation with the risk of MG worsening (relative risk [RR]: 6.06, 95 % confidence interval [CI]: 1.00-38.57), whereas those on the right side of the inflection point demonstrated no significant correlation (RR: 0.86, 95 % CI: 0.55-1.34). Conclusions Except for lipoprotein(a) levels being associated with worsening of myasthenia gravis, most lipid parameters were not associated with changes in the clinical course and severity of myasthenia gravis.we observed that lower levels of lipoprotein(a) were associated with a better prognosis in the interval 7-58 nml/L, whereas beyond this interval this was not observed, suggesting dyslipidemia may impact MG prognosis. Further studies are required to validate these findings.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhiguo Wen
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Cong Xia
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Meiqiu Chen
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Fang Cai
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lan Chu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
5
|
Vitale E, Rizzo A, Santa K, Jirillo E. Associations between "Cancer Risk", "Inflammation" and "Metabolic Syndrome": A Scoping Review. BIOLOGY 2024; 13:352. [PMID: 38785834 PMCID: PMC11117847 DOI: 10.3390/biology13050352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Individuals with metabolic syndrome exhibit simultaneously pro-thrombotic and pro-inflammatory conditions which more probably can lead to cardiovascular diseases progression, type 2 diabetes mellitus, and some types of cancer. The present scoping review is aimed at highlighting the association between cancer risk, inflammation, and metabolic syndrome. METHODS A search strategy was performed, mixing keywords and MeSH terms, such as "Cancer Risk", "Inflammation", "Metabolic Syndrome", "Oncogenesis", and "Oxidative Stress", and matching them through Boolean operators. A total of 20 manuscripts were screened for the present study. Among the selected papers, we identified some associations with breast cancer, colorectal cancer, esophageal adenocarcinoma, hepatocellular carcinoma (HCC), and cancer in general. CONCLUSIONS Cancer and its related progression may also depend also on a latent chronic inflammatory condition associated with other concomitant conditions, including type 2 diabetes mellitus, metabolic syndrome, and obesity. Therefore, prevention may potentially help individuals to protect themselves from cancer.
Collapse
Affiliation(s)
- Elsa Vitale
- Scientific Directorate, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Alessandro Rizzo
- Medical Oncology, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Kazuki Santa
- Faculty of Medical Science, Juntendo University, 6-8-1 Hinode, Urayasu 279-0013, Chiba, Japan;
| | - Emilio Jirillo
- Scuola di Medicina, University of Bari, 70121 Bari, Italy;
| |
Collapse
|
6
|
Das D, Banerjee A, Manna K, Sarkar D, Shil A, Sikdar Ne E Bhakta M, Mukherjee S, Maji BK. Quercetin counteracts monosodium glutamate to mitigate immunosuppression in the thymus and spleen via redox-guided cellular signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155226. [PMID: 38387276 DOI: 10.1016/j.phymed.2023.155226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/13/2023] [Accepted: 11/18/2023] [Indexed: 02/24/2024]
Abstract
BACKGROUND Chronic inflammation brought on by oxidative stress can result in several immunopathologies. Natural compounds with antioxidant characteristics, like quercetin, have shown effectiveness in reducing oxidative damage and regulating the immune response. PURPOSE The commonly used food additive monosodium glutamate (M) causes immunosuppression by disrupting redox equilibrium and inducing oxidative stress. The goal of this work is to examine the therapeutic potential of quercetin against immunotoxicity brought on by M, revealing the molecular route implicated in such immunopathology by targeting the thymus and spleen, to support the development of future anti-inflammatory and antioxidant therapies. STUDY DESIGN AND METHODS M-fed rats were employed as an immunotoxicity model and were supplemented with quercetin for four weeks. Hematological and biochemical parameters were measured; H&E staining, immunohistochemistry, flow cytometry, real-time quantitative PCR, and western blotting were performed. RESULTS Based on the findings, TLR4 was activated by M to cause oxidative stress-mediated inflammation, which was alleviated by the supplementation of quercetin by modulating redox homeostasis to neutralize free radicals and suppress the inflammatory response. To prevent M-induced inflammation, quercetin demonstrated anti-inflammatory functions by blocking NF-kB activation, lowering the production of pro-inflammatory cytokines, and increasing the release of anti-inflammatory cytokines. By normalizing lipid profiles and lowering the potential risk of immunological deficiency caused by M, quercetin also improves lipid metabolism. Additionally, it has shown potential for modifying insulin levels, suggesting a possible function in controlling M-induced alteration in glucose metabolism. The addition of quercetin to M enhanced the immune response by improving immunoglobulin levels and CD4/CD8 expression in the thymus and spleen. Additionally, quercetin inhibited apoptosis by controlling mitochondrial caspase-mediated cellular signaling, suggesting that it may be able to halt cell death in M-fed rats. CONCLUSION The results of this study first indicate that quercetin, via modulating redox-guided cellular signaling, has a promising role in reducing immune disturbances. This study illuminates the potential of quercetin as a safe, natural remedy for immunopathology caused by M, including thymic hypoplasia and/or splenomegaly, and paves the way for future anti-inflammatory and antioxidant supplements.
Collapse
Affiliation(s)
- Debasmita Das
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India
| | - Arnab Banerjee
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India
| | - Krishnendu Manna
- Department of Food & Nutrition, University of Kalyani, Kalyani, Nadia, West Bengal, India
| | - Deotima Sarkar
- Department of Bacteriology, National Institute of Cholera and Enteric Diseases, Indian Council of Medical Research (ICMR-NICED), Kolkata 700010, India
| | - Aparna Shil
- Microbiology, Nutrition and Dietetics Laboratory, Physiology Unit, Department of Life Sciences, Presidency University, Kolkata-700073, India
| | - Mausumi Sikdar Ne E Bhakta
- Microbiology, Nutrition and Dietetics Laboratory, Physiology Unit, Department of Life Sciences, Presidency University, Kolkata-700073, India
| | - Sandip Mukherjee
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India
| | - Bithin Kumar Maji
- Department of Physiology (UG & PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India.
| |
Collapse
|
7
|
Hulme KD, Tong ZWM, Rowntree LC, van de Sandt CE, Ronacher K, Grant EJ, Dorey ES, Gallo LA, Gras S, Kedzierska K, Barrett HL, Short KR. Increasing HbA1c is associated with reduced CD8 + T cell functionality in response to influenza virus in a TCR-dependent manner in individuals with diabetes mellitus. Cell Mol Life Sci 2024; 81:35. [PMID: 38214784 PMCID: PMC10786977 DOI: 10.1007/s00018-023-05010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 01/13/2024]
Abstract
Diabetes mellitus is on the rise globally and is a known susceptibility factor for severe influenza virus infections. However, the mechanisms by which diabetes increases the severity of an influenza virus infection are yet to be fully defined. Diabetes mellitus is hallmarked by high glucose concentrations in the blood. We hypothesized that these high glucose concentrations affect the functionality of CD8+ T cells, which play a key role eliminating virus-infected cells and have been shown to decrease influenza disease severity. To study the effect of hyperglycemia on CD8+ T cell function, we stimulated peripheral blood mononuclear cells (PBMCs) from donors with and without diabetes with influenza A virus, anti-CD3/anti-CD28-coated beads, PMA and ionomycin (PMA/I), or an influenza viral peptide pool. After stimulation, cells were assessed for functionality [as defined by expression of IFN-γ, TNF-α, macrophage inflammatory protein (MIP)-1β, and lysosomal-associated membrane protein-1 (CD107a)] using flow cytometry. Our results showed that increasing HbA1c correlated with a reduction in TNF-α production by CD8+ T cells in response to influenza stimulation in a TCR-specific manner. This was not associated with any changes to CD8+ T cell subsets. We conclude that hyperglycemia impairs CD8+ T cell function to influenza virus infection, which may be linked with the increased risk of severe influenza in patients with diabetes.
Collapse
Affiliation(s)
- Katina D Hulme
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Zhen Wei Marcus Tong
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Carolien E van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Katharina Ronacher
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Emma J Grant
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Emily S Dorey
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Linda A Gallo
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Moreton Bay, QLD, Australia
| | - Stephanie Gras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Helen L Barrett
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
- Obstetric Medicine, The Royal Hospital for Women, Randwick, NSW, Australia
- School of Medicine, UNSW, Randwick, NSW, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
8
|
Macklin M, Thompson C, Kawano-Dourado L, Bauer Ventura I, Weschenfelder C, Trostchansky A, Marcadenti A, Tighe RM. Linking Adiposity to Interstitial Lung Disease: The Role of the Dysfunctional Adipocyte and Inflammation. Cells 2023; 12:2206. [PMID: 37759429 PMCID: PMC10526202 DOI: 10.3390/cells12182206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Adipose tissue has functions beyond its principal functions in energy storage, including endocrine and immune functions. When faced with a surplus of energy, the functions of adipose tissue expand by mechanisms that can be both adaptive and detrimental. These detrimental adipose tissue functions can alter normal hormonal signaling and promote local and systemic inflammation with wide-ranging consequences. Although the mechanisms by which adipose tissue triggers metabolic dysfunction and local inflammation have been well described, little is known about the relationship between adiposity and the pathogenesis of chronic lung conditions, such as interstitial lung disease (ILD). In this review, we detail the conditions and mechanisms by which adipose tissue becomes dysfunctional and relate this dysfunction to inflammatory changes observed in various forms of ILD. Finally, we review the existing basic and clinical science literature linking adiposity to ILD, highlighting the need for additional research on the mechanisms of adipocyte-mediated inflammation in ILD and its clinical implications.
Collapse
Affiliation(s)
- Michael Macklin
- Section of Rheumatology, The University of Chicago, Chicago, IL 60637, USA;
| | - Chelsea Thompson
- Section of Rheumatology, The University of Chicago, Chicago, IL 60637, USA;
| | - Leticia Kawano-Dourado
- Hcor Research Institute (IP-Hcor), Hcor, São Paulo 04004-050, Brazil; (L.K.-D.); (A.M.)
- Pulmonary Division, Heart Institute (InCor), University of Sao Paulo Medical School, São Paulo 05403-903, Brazil
| | | | - Camila Weschenfelder
- Graduate Program in Health Sciences (Cardiology), Cardiology Institute, University Foundation of Cardiology (IC/FUC), Porto Alegre 90050-170, Brazil;
| | - Andrés Trostchansky
- Department of Biochemistry and Biomedical Research Center, School of Medicine, University of the Republic, Montevideo 11800, Uruguay;
| | - Aline Marcadenti
- Hcor Research Institute (IP-Hcor), Hcor, São Paulo 04004-050, Brazil; (L.K.-D.); (A.M.)
- Graduate Program in Health Sciences (Cardiology), Cardiology Institute, University Foundation of Cardiology (IC/FUC), Porto Alegre 90050-170, Brazil;
- Graduate Program in Epidemiology, School of Public Health, University of São Paulo (FSP-USP), São Paulo 01246-904, Brazil
| | - Robert M. Tighe
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC 27710, USA;
| |
Collapse
|
9
|
Dechates B, Porntharukchareon T, Sirisreetreerux S, Therawit P, Worawitchawong S, Sornsamdang G, Soonklang K, Tawinprai K. Immune Response to CoronaVac and Its Safety in Patients with Type 2 Diabetes Compared with Healthcare Workers. Vaccines (Basel) 2023; 11:vaccines11030684. [PMID: 36992267 DOI: 10.3390/vaccines11030684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Background: Vaccines for SARS-CoV-2 have been critical for preventing disease. Previous research showed patients with diabetes have impaired immunity. This study aimed to determine the immunity to coronavirus after CoronaVac by comparing patients with type 2 diabetes (T2D) and healthcare workers (HCW). Materials and methods: A prospective cohort study evaluated immune responses and safety after two doses of CoronaVac in T2D and HCW groups at Chulabhorn Hospital. The levels of total antibodies against the receptor-binding domain (anti-RBD) of the SARS-CoV-2 spike protein at baseline and 4 weeks after vaccination were collected. The level of anti-RBD concentrations was reported as geometric mean concentration (GMC) and compared between groups using the geometric mean ratio (GMR). Results: 81 participants were included; 27 had T2D and 54 were HCW. After complete vaccination, anti-RBD concentrations were not significantly different between T2D (57.68 binding antibody units (BAU)/mL, 95% confidence interval (CI) = 29.08; 114.44) and HCW (72.49 BAU/mL, 95% CI = 55.77; 94.22) groups. Subgroup analysis showed the GMC of anti-RBD was significantly lower in T2D patients with dyslipidaemia (50.04 BAU/mL) than in T2D patients without dyslipidaemia (341.64 BAU/mL). Conclusions: The immune response at 4 weeks after two doses of CoronaVac did not significantly differ between patients with T2D and HCW.
Collapse
Affiliation(s)
- Bothamai Dechates
- Department of Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, 906 Thung Song Hong, Lak Si, Bangkok 10210, Thailand
| | - Thachanun Porntharukchareon
- Department of Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, 906 Thung Song Hong, Lak Si, Bangkok 10210, Thailand
| | - Supamas Sirisreetreerux
- Department of Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, 906 Thung Song Hong, Lak Si, Bangkok 10210, Thailand
| | - Phonthip Therawit
- Department of Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, 906 Thung Song Hong, Lak Si, Bangkok 10210, Thailand
| | - Supanat Worawitchawong
- Department of Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, 906 Thung Song Hong, Lak Si, Bangkok 10210, Thailand
| | - Gaidganok Sornsamdang
- Central Laboratory Center, Chulabhorn Hospital, Chulabhorn Royal Academy, 906 Thung Song Hong, Lak Si, Bangkok 10210, Thailand
| | - Kamonwan Soonklang
- Center of Learning and Research in Celebration of HRH Princess Chulabhorn 60th Birthday Anniversary, Chulabhorn Royal Academy, 906 Thung Song Hong, Lak Si, Bangkok 10210, Thailand
| | - Kriangkrai Tawinprai
- Department of Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, 906 Thung Song Hong, Lak Si, Bangkok 10210, Thailand
| |
Collapse
|
10
|
Neshat S, Rezaei A, Farid A, Sarallah R, Javanshir S, Ahmadian S, Chatrnour G, Daneii P, Heshmat-Ghahdarijani K. The tangled web of dyslipidemia and cancer: Is there any association? JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2022; 27:93. [PMID: 36685020 PMCID: PMC9854911 DOI: 10.4103/jrms.jrms_267_22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/09/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022]
Abstract
Cancer is a primary cause of mortality around the world and imposes a significant physiological, psychological, and financial burden on patients. Lipids regulate cell cycle progression and affect cell proliferation, migration, and apoptosis. Therefore, alterations in serum lipid levels might contribute to carcinogenesis. In this article, we review the relationships between triglyceride (TG), total cholesterol, high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) levels and different types of cancer. Then, we examine the association between cancer and familial hypercholesterolemia. Finally, we evaluate the impact of statins on different types of cancer. Increased total cholesterol has been reported to increase cellular proliferation and angiogenesis in tumors and inhibit apoptosis. Increased LDL-C has been reported to induce inflammation and increase susceptibility to oxidative damage. HDL-C has anti-oxidation, anti-inflammatory, and antiproliferative properties. Increased levels of serum TG can induce oxidative stress and a chronic inflammatory state and therefore contribute to the proliferation and progression of cancer cells. Statins decrease downstream products of cholesterol synthesis that are crucial in cell proliferation and growth. Thus, lipid components can have prognostic value in cancer and management of serum lipid levels through lifestyle changes and medical therapy can be beneficial in cancer prevention and treatment.
Collapse
Affiliation(s)
- Sina Neshat
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Rezaei
- Department of Internal Medicine, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Armita Farid
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rojin Sarallah
- Department of Internal Medicine, School of Medicine, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Salar Javanshir
- Department of Internal Medicine, School of Medicine, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Sarina Ahmadian
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gelayol Chatrnour
- Department of Internal Medicine, Independent Researcher, New Jersey, United States of America
| | - Padideh Daneii
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kiyan Heshmat-Ghahdarijani
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran,Address for correspondence: Dr. Kiyan Heshmat-Ghahdarijani, Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran. E-mail:
| |
Collapse
|
11
|
Krüger K, Tirekoglou P, Weyh C. Immunological mechanisms of exercise therapy in dyslipidemia. Front Physiol 2022; 13:903713. [PMID: 36003652 PMCID: PMC9393246 DOI: 10.3389/fphys.2022.903713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/07/2022] [Indexed: 12/05/2022] Open
Abstract
Numerous studies demonstrated the strong link between dyslipidemia and the cardiovascular risk. Physical activity and exercise represent effective prevention and therapy strategies for dyslipidemia and at the same time counteract numerous comorbidities that often accompany the disease. The physiological mechanisms are manifold, and primary mechanisms might be an increased energy consumption and associated adaptations of the substrate metabolism. Recent studies showed that there are bidirectional interactions between dyslipidemia and the immune system. Thus, abnormal blood lipids may favor pro-inflammatory processes, and at the same time inflammatory processes may also promote dyslipidemia. Physical activity has been shown to affect numerous immunological processes and has primarily anti-inflammatory effects. These are manifested by altered leukocyte subtypes, cytokine patterns, stress protein expression, and by reducing hallmarks of immunosenescence. The aim of this review is to describe the effects of exercise on the treatment dyslipidemia and to discuss possible immunological mechanisms against the background of the current literature.
Collapse
Affiliation(s)
- Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sport Science, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | |
Collapse
|
12
|
Shi Y, Shu J, Ning Z, Fan D, Shu H, Zhao H, Li L, Zhao N, Lu C, Lu A, He X. Analysis of Hepatic Lipid Metabolism and Immune Function During the Development of Collagen-Induced Arthritis. Front Immunol 2022; 13:901697. [PMID: 35784282 PMCID: PMC9245434 DOI: 10.3389/fimmu.2022.901697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
The liver is essential for metabolic and immune functions and has been linked to systemic inflammatory diseases. However, the role of the liver is still elusive during the development of rheumatoid arthritis (RA), although there have been indeed some reports. We used label-free quantitative proteomics and experimental verification in this study to reveal the hepatic lipid metabolism and immune function during collagen-induced arthritis (CIA) development. The proteomics results revealed that the role of the liver differs in different phases of CIA rats. In terms of specific performance, hepatic lipid metabolism, which is primarily concerned with cholesterol, triacylglycerol, and phospholipid, was significantly influenced in the CIA induction phase, whereas the immune function, which includes binding of granulocytes, adhesion of immune cells, etc., was affected considerably at the peak phase of CIA rats compared to normal rats. Finally, the hepatic dynamic changes in CIA rats were further confirmed using targeted metabolomics and ELISA. We found that most fatty acids of the liver in the CIA induction phase were significantly decreased, and proteins related to complement activation and migration or adhesion of immune cells including C3, MMP-8, CTSZ, and S100A9 were significantly increased in the liver of CIA rats in the peak phase. Our findings indicated that the lipid metabolism and immune function of the liver were influenced in CIA rats. Thus, the conditions of the liver during RA development should be considered in therapeutic and nutritional interventions.
Collapse
Affiliation(s)
- Yingjie Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Shu
- Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, China
| | - Zhangchi Ning
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dancai Fan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haiyang Shu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hanxiao Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aiping Lu
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Shanghai GuangHua Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China
- *Correspondence: Aiping Lu, ; Xiaojuan He,
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Aiping Lu, ; Xiaojuan He,
| |
Collapse
|
13
|
Zhao T, Wang C, Duan B, Yang P, Wu J, Zhang Q. Altered Lipid Profile in COVID-19 Patients and Metabolic Reprogramming. Front Microbiol 2022; 13:863802. [PMID: 35633693 PMCID: PMC9133671 DOI: 10.3389/fmicb.2022.863802] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/28/2022] [Indexed: 01/09/2023] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) is a global pandemic. Previous studies have reported dyslipidemia in patients with COVID-19. Herein, we conducted a retrospective study and a bioinformatics analysis to evaluate the essential data of the lipid profile as well as the possible mechanism in patients with COVID-19. Methods First of all, the retrospective study included three cohorts: patients with COVID-19, a healthy population, and patients with chronic obstructive pulmonary disease (COPD). For each subject, serum lipid profiles in the biochemical data were compared, including triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C). Furthermore, bioinformatics analyses were performed for exploring the biological or immunological mechanisms. Results In line with the biochemical data of the three cohorts, the statistical result displayed that patients with COVID-19 were more likely to have lower levels of TC and HDL-C as compared with healthy individuals. The differential proteins associated with COVID-19 are involved in the lipid pathway and can target and regulate cytokines and immune cells. Additionally, a heatmap revealed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections were possibly involved in lipid metabolic reprogramming. The viral proteins, such as spike (S) and non-structural protein 2 (Nsp2) of SARS-CoV-2, may be involved in metabolic reprogramming. Conclusion The metabolic reprogramming after SARS-CoV-2 infections is probably associated with the immune and clinical phenotype of patients. Hence, metabolic reprogramming may be targeted for developing antivirals against COVID-19.
Collapse
Affiliation(s)
- Tie Zhao
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Chunhui Wang
- Department of Clinical Laboratory, Huizhou Central People’s Hospital, Huizhou, China
| | - Biyan Duan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Peipei Yang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|