1
|
Zhao XR, Gu YY, Wang JY, Yi Y, Zhang YQ, Shao QH, Liu MX, Zhang XL. The interplay between lipid droplets and Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2025:167953. [PMID: 40516715 DOI: 10.1016/j.bbadis.2025.167953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 05/15/2025] [Accepted: 06/11/2025] [Indexed: 06/16/2025]
Abstract
Lipid droplets (LDs), also known as lipid bodies, are dynamic intracellular organelles that are rich in lipids. They serve critical functions in metabolic regulation, membrane dynamics, and cellular signaling pathways. LD homeostasis plays a key role in neurotransmission, receptor activation, and neural development. Intracellular LD accumulation contributes to lipotoxicity and precedes neurodegeneration such as Parkinson's disease (PD). While recent studies have advanced our knowledge regarding how LD accumulation influences PD progression, several fundamental aspects of LD biology remain unclear. This review explores key mechanisms of LD buildup in PD pathogenesis. First, we discuss the formation and physiological roles of LD, followed by an analysis of how impaired LD generation contributes to PD development. Second, we analyze the causal relationship between LD formation and degradation. Lastly, we evaluate the therapeutic potential of LDs as diagnostic biomarkers and molecular targets for innovative neuroprotective and anti-inflammatory strategies. Thus, advancing the mechanistic understanding of LD biology can provide key insights into PD pathogenesis, facilitating the design of targeted therapies.
Collapse
Affiliation(s)
- Xin-Ru Zhao
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Ying-Ying Gu
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Jia-Yi Wang
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Ying Yi
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Yan-Qiu Zhang
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Qian-Hang Shao
- Department of Pharmacy, Peking University People's Hospital, Beijing 100871, PR China
| | - Ming-Xuan Liu
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Xiao-Ling Zhang
- College of Pharmacy, Nantong University, Nantong 226001, PR China.
| |
Collapse
|
2
|
Eom M, Han S, Park P, Kim G, Cho ES, Sim J, Lee KH, Kim S, Tian H, Böhm UL, Lowet E, Tseng HA, Choi J, Lucia SE, Ryu SH, Rózsa M, Chang S, Kim P, Han X, Piatkevich KD, Choi M, Kim CH, Cohen AE, Chang JB, Yoon YG. Statistically unbiased prediction enables accurate denoising of voltage imaging data. Nat Methods 2023; 20:1581-1592. [PMID: 37723246 PMCID: PMC10555843 DOI: 10.1038/s41592-023-02005-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/10/2023] [Indexed: 09/20/2023]
Abstract
Here we report SUPPORT (statistically unbiased prediction utilizing spatiotemporal information in imaging data), a self-supervised learning method for removing Poisson-Gaussian noise in voltage imaging data. SUPPORT is based on the insight that a pixel value in voltage imaging data is highly dependent on its spatiotemporal neighboring pixels, even when its temporally adjacent frames alone do not provide useful information for statistical prediction. Such dependency is captured and used by a convolutional neural network with a spatiotemporal blind spot to accurately denoise voltage imaging data in which the existence of the action potential in a time frame cannot be inferred by the information in other frames. Through simulations and experiments, we show that SUPPORT enables precise denoising of voltage imaging data and other types of microscopy image while preserving the underlying dynamics within the scene.
Collapse
Affiliation(s)
- Minho Eom
- School of Electrical Engineering, KAIST, Daejeon, Republic of Korea
| | - Seungjae Han
- School of Electrical Engineering, KAIST, Daejeon, Republic of Korea
| | - Pojeong Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Gyuri Kim
- School of Electrical Engineering, KAIST, Daejeon, Republic of Korea
| | - Eun-Seo Cho
- School of Electrical Engineering, KAIST, Daejeon, Republic of Korea
| | - Jueun Sim
- Department of Materials Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Kang-Han Lee
- Department of Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Seonghoon Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - He Tian
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Urs L Böhm
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Einstein Center for Neurosciences, NeuroCure Cluster of Excellence, Charité University of Medicine Berlin, Berlin, Germany
| | - Eric Lowet
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Hua-An Tseng
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Jieun Choi
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon, Republic of Korea
| | - Stephani Edwina Lucia
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon, Republic of Korea
| | - Seung Hyun Ryu
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, Republic of Korea
| | - Márton Rózsa
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Sunghoe Chang
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Pilhan Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon, Republic of Korea
- Graduate School of Nanoscience and Technology, KAIST, Daejeon, Republic of Korea
| | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Kiryl D Piatkevich
- Research Center for Industries of the Future and School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Myunghwan Choi
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Adam E Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Jae-Byum Chang
- Department of Materials Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Young-Gyu Yoon
- School of Electrical Engineering, KAIST, Daejeon, Republic of Korea.
- KAIST Institute for Health Science and Technology, Daejeon, Republic of Korea.
- Department of Semiconductor System Engineering, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Choi J, Choi MS, Jeon J, Moon J, Lee J, Kong E, Lucia SE, Hong S, Lee JH, Lee EY, Kim P. In vivo longitudinal 920 nm two-photon intravital kidney imaging of a dynamic 2,8-DHA crystal formation and tubular deterioration in the adenine-induced chronic kidney disease mouse model. BIOMEDICAL OPTICS EXPRESS 2023; 14:1647-1658. [PMID: 37078028 PMCID: PMC10110322 DOI: 10.1364/boe.485187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Chronic kidney disease (CKD) is one of the most common renal diseases manifested by gradual loss of kidney function with no symptoms in the early stage. The underlying mechanism in the pathogenesis of CKD with various causes such as high blood pressure, diabetes, high cholesterol, and kidney infection is not well understood. In vivo longitudinal repetitive cellular-level observation of the kidney of the CKD animal model can provide novel insights to diagnose and treat the CKD by visualizing the dynamically changing pathophysiology of CKD with its progression over time. In this study, using two-photon intravital microscopy with a single 920 nm fixed-wavelength fs-pulsed laser, we longitudinally and repetitively observed the kidney of an adenine diet-induced CKD mouse model for 30 days. Interestingly, we could successfully visualize the 2,8-dihydroxyadenine (2,8-DHA) crystal formation with a second-harmonics generation (SHG) signal and the morphological deterioration of renal tubules with autofluorescence using a single 920 nm two-photon excitation. The longitudinal in vivo two-photon imaging results of increasing 2,8-DHA crystals and decreasing tubular area ratio visualized by SHG and autofluorescence signal, respectively, were highly correlated with the CKD progression monitored by a blood test showing increased cystatin C and blood urea nitrogen (BUN) levels over time. This result suggests the potential of label-free second-harmonics generation crystal imaging as a novel optical technique for in vivo CKD progression monitoring.
Collapse
Affiliation(s)
- Jieun Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Min-Sun Choi
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Jehwi Jeon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jieun Moon
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jingu Lee
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Eunji Kong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Stephani Edwina Lucia
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sujung Hong
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Ji-Hye Lee
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
| | - Eun Young Lee
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
- BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Pilhan Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
4
|
Lee DJ, Kim ES, Lee HW, Kim HM. Advances in small molecule two-photon fluorescent trackers for lipid droplets in live sample imaging. Front Chem 2022; 10:1072143. [PMID: 36505737 PMCID: PMC9733596 DOI: 10.3389/fchem.2022.1072143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 11/26/2022] Open
Abstract
Two-photon fluorescent trackers for monitoring of lipid droplets (LDs) would be highly effective for illustrating the critical roles of LDs in live cells or tissues. Although a number of one-photon fluorescent trackers for labeling LDs have been developed, their usability remains constrained in live sample imaging due to photo damage, shallow imaging depth, and auto-fluorescence. Recently, some two-photon fluorescent trackers for LDs have been developed to overcome these limitations. In this mini-review article, the advances in two-photon fluorescent trackers for monitoring of LDs are summarized. We summarize the chemical structures, two-photon properties, live sample imaging, and biomedical applications of the most recent representative two-photon fluorescent trackers for LDs. Additionally, the current challenges and future research trends for the two-photon fluorescent trackers of LDs are discussed.
Collapse
Affiliation(s)
- Dong Joon Lee
- Department of Energy Systems Research, Ajou University, Suwon, South Korea
| | - Eun Seo Kim
- Department of Energy Systems Research, Ajou University, Suwon, South Korea
| | - Hyo Won Lee
- Research Institute of Basic Sciences, Suwon, South Korea,Department of Chemistry, Ajou University, Suwon, South Korea,*Correspondence: Hyo Won Lee, ; Hwan Myung Kim,
| | - Hwan Myung Kim
- Department of Energy Systems Research, Ajou University, Suwon, South Korea,Department of Chemistry, Ajou University, Suwon, South Korea,*Correspondence: Hyo Won Lee, ; Hwan Myung Kim,
| |
Collapse
|
5
|
Hong S, Lee J, Moon J, Kong E, Jeon J, Kim YS, Kim HR, Kim P. Intravital longitudinal cellular visualization of oral mucosa in a murine model based on rotatory side-view confocal endomicroscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:4160-4174. [PMID: 36032579 PMCID: PMC9408257 DOI: 10.1364/boe.462269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Oral mucosa is a soft tissue lining the inside of the mouth, protecting the oral cavity from microbiological insults. The mucosal immune system is composed of diverse types of cells that defend against a wide range of pathogens. The pathophysiology of various oral mucosal diseases has been studied mostly by ex vivo histological analysis of harvested specimens. However, to analyze dynamic cellular processes in the oral mucosa, longitudinal in vivo observation of the oral mucosa in a single mouse during pathogenesis is a highly desirable and efficient approach. Herein, by utilizing micro GRIN lens-based rotatory side-view confocal endomicroscopy, we demonstrated non-invasive longitudinal cellular-level in vivo imaging of the oral mucosa, visualizing fluorescently labeled cells including various immune cells, pericytes, nerve cells, and lymphatic and vascular endothelial cells. With rotational and sliding movement of the side-view endomicroscope on the oral mucosa, we successfully achieved a multi-color wide-area cellular-level visualization in a noninvasive manner. By using a transgenic mouse expressing photoconvertible protein, Kaede, we achieved longitudinal repetitive imaging of the same microscopic area in the buccal mucosa of a single mouse for up to 10 days. Finally, we performed longitudinal intravital visualization of the oral mucosa in a DNFB-derived oral contact allergy mouse model, which revealed highly dynamic spatiotemporal changes of CSF1R or LysM expressing immune cells such as monocytes, macrophages, and granulocytes in response to allergic challenge for one week. This technique can be a useful tool to investigate the complex pathophysiology of oral mucosal diseases.
Collapse
Affiliation(s)
- Sujung Hong
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jingu Lee
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jieun Moon
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Eunji Kong
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jehwi Jeon
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yeon soo Kim
- Department of Otorhinolaryngology, Konyang University College of Medicine, Konyang University Hospital, Daejeon, 35365, Republic of Korea
| | - Hyung-Ryong Kim
- Department of Pharmacology, College of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
6
|
Moon J, Jeon J, Kong E, Hong S, Lee J, Lee EK, Kim P. Intravital two-photon imaging and quantification of hepatic steatosis and fibrosis in a live small animal model. BIOMEDICAL OPTICS EXPRESS 2021; 12:7918-7927. [PMID: 35003876 PMCID: PMC8713697 DOI: 10.1364/boe.442608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/24/2021] [Accepted: 11/16/2021] [Indexed: 05/02/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases closely associated with the metabolic system, including obesity and type 2 diabetes. The progression of NAFLD with advanced fibrosis is associated with an increased risk of liver cirrhosis and cancer as well as various extra-hepatic diseases. Yet, the underlying mechanism is not fully understood partly due to the absence of effective high-resolution in vivo imaging methods and the appropriate animal models recapitulating the pathology of NAFLD. To improve our understanding about complex pathophysiology of NAFLD, the need for an advanced imaging methodology to visualize and quantify subcellular-level features of NAFLD in vivo over time is ever-increasing. In this study, we established an advanced in vivo two-photon imaging technique to visualize and quantify subcellular-level pathological features of NAFLD in a live mouse animal developing hepatic steatosis, fibrosis, and disrupted microvasculature.
Collapse
Affiliation(s)
- Jieun Moon
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jehwi Jeon
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Eunji Kong
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sujung Hong
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jingu Lee
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Eun Kyung Lee
- Department of Internal Medicine, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
7
|
Hong S, Park YH, Lee J, Moon J, Kong E, Jeon J, Park JC, Kim HR, Kim P. 3D Visualization of Dynamic Cellular Reaction of Pulpal CD11c+ Dendritic Cells against Pulpitis in Whole Murine Tooth. Int J Mol Sci 2021; 22:ijms222312683. [PMID: 34884488 PMCID: PMC8657593 DOI: 10.3390/ijms222312683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
In dental pulp, diverse types of cells mediate the dental pulp immunity in a highly complex and dynamic manner. Yet, 3D spatiotemporal changes of various pulpal immune cells dynamically reacting against foreign pathogens during immune response have not been well characterized. It is partly due to the technical difficulty in detailed 3D comprehensive cellular-level observation of dental pulp in whole intact tooth beyond the conventional histological analysis using thin tooth slices. In this work, we validated the optical clearing technique based on modified Murray’s clear as a valuable tool for a comprehensive cellular-level analysis of dental pulp. Utilizing the optical clearing, we successfully achieved a 3D visualization of CD11c+ dendritic cells in the dentin-pulp complex of a whole intact murine tooth. Notably, a small population of unique CD11c+ dendritic cells extending long cytoplasmic processes into the dentinal tubule while located at the dentin-pulp interface like odontoblasts were clearly visualized. 3D visualization of whole murine tooth enabled a reliable observation of these rarely existing cells with a total number less than a couple of tens in one tooth. These CD11c+ dendritic cells with processes in the dentinal tubule were significantly increased in the dental pulpitis model induced by mechanical and chemical irritation. Additionally, the 3D visualization revealed a distinct spatial 3D arrangement of pulpal CD11c+ cells in the pulp into a front-line barrier-like formation in the pulp within 12 h after the irritation. Collectively, these observations demonstrated the unique capability of optical clearing-based comprehensive 3D cellular-level visualization of the whole tooth as an efficient method to analyze 3D spatiotemporal changes of various pulpal cells in normal and pathological conditions.
Collapse
Affiliation(s)
- Sujung Hong
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea; (S.H.); (J.L.); (J.M.)
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon 34141, Korea; (E.K.); (J.J.)
| | - Yeoung-Hyun Park
- Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Korea; (Y.-H.P.); (J.-C.P.)
| | - Jingu Lee
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea; (S.H.); (J.L.); (J.M.)
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon 34141, Korea; (E.K.); (J.J.)
| | - Jieun Moon
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea; (S.H.); (J.L.); (J.M.)
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon 34141, Korea; (E.K.); (J.J.)
| | - Eunji Kong
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon 34141, Korea; (E.K.); (J.J.)
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Jehwi Jeon
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon 34141, Korea; (E.K.); (J.J.)
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Joo-Cheol Park
- Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Korea; (Y.-H.P.); (J.-C.P.)
| | - Hyung-Ryong Kim
- Department of Pharmacology, College of Dentistry, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: (H.-R.K.); (P.K.)
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea; (S.H.); (J.L.); (J.M.)
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Deahak-ro, Yuseong-gu, Daejeon 34141, Korea; (E.K.); (J.J.)
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
- Correspondence: (H.-R.K.); (P.K.)
| |
Collapse
|