1
|
Kim S, Kim J, Kim JL, Park MR, Park KW, Chung KW. Ganoderma lucidum and Robinia pseudoacacia Flower Extract Complex Alleviates Kidney Inflammation and Fibrosis by Modulating Oxidative Stress. Antioxidants (Basel) 2025; 14:409. [PMID: 40298637 PMCID: PMC12024243 DOI: 10.3390/antiox14040409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Chronic kidney disease (CKD) is characterized by functional and structural abnormalities, with its progression strongly influenced by oxidative stress and inflammatory responses, ultimately leading to renal fibrosis. This study aimed to investigate the effects of a Ganoderma lucidum and Robinia pseudoacacia flower extract complex (NEPROBIN) through in vitro and in vivo experiments. In vitro experiments with NRK52E renal tubular epithelial cells demonstrated that NEPROBIN significantly alleviates H2O2-induced oxidative stress and suppresses lipopolysaccharide (LPS)-induced activation of the mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathways. Additionally, NEPROBIN reduced LPS-induced NF-κB transcriptional activity and downregulated the expression of cytokines and chemokines in these cells. We further investigated the effects of NEPROBIN in vivo. Kidney damage was induced in mice using a 0.25% adenine diet (AD), and the mice were orally treated with NEPROBIN at doses of 100, 200, and 400 mg/kg/day for two weeks. NEPROBIN treatment significantly reduced AD-induced elevations in blood urea, serum creatinine, and urinary β2-microglobulin levels. Markers of oxidative stress and kidney damage were notably lower in the kidneys of NEPROBIN-treated mice. Furthermore, NEPROBIN effectively mitigated the AD-induced inflammatory response in the kidneys, with a marked reduction in cytokine and chemokine expression. This decrease in inflammation was associated with a significant reduction in tubulointerstitial fibrosis. Overall, NEPROBIN alleviated renal damage and fibrosis by directly targeting renal oxidative stress and inflammation, highlighting its potential as a therapeutic agent for CKD.
Collapse
Affiliation(s)
- Soyoung Kim
- HLscience Co., Ltd., Uiwang-si 16004, Republic of Korea; (S.K.); (J.-L.K.); (M.-R.P.)
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Jeongwon Kim
- Department of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea;
| | - Jong-Lae Kim
- HLscience Co., Ltd., Uiwang-si 16004, Republic of Korea; (S.K.); (J.-L.K.); (M.-R.P.)
| | - Mi-Ryeong Park
- HLscience Co., Ltd., Uiwang-si 16004, Republic of Korea; (S.K.); (J.-L.K.); (M.-R.P.)
| | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Ki Wung Chung
- Department of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea;
| |
Collapse
|
2
|
Chao MW, Liao CW, Lin CH, Tseng CY. Immunomodulatory protein from ganoderma microsporum protects against oxidative damages and cognitive impairments after traumatic brain injury. Mol Cell Neurosci 2022; 120:103735. [PMID: 35562037 DOI: 10.1016/j.mcn.2022.103735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 10/18/2022] Open
Abstract
A traumatic brain injury (TBI) causes abnormal proliferation of neuroglial cells, and over-release of glutamate induces oxidative stress and inflammation and leads to neuronal death, memory deficits, and even death if the condition is severe. There is currently no effective treatment for TBI. Recent interests have focused on the benefits of supplements or natural products like Ganoderma. Studies have indicated that immunomodulatory protein from Ganoderma microsporum (GMI) inhibits oxidative stress in lung cancer cells A549 and induces cancer cell death by causing intracellular autophagy. However, no evidence has shown the application of GMI on TBI. Thus, this study addressed whether GMI could be used to prevent or treat TBI through its anti-inflammation and antioxidative effects. We used glutamate-induced excitotoxicity as in vitro model and penetrating brain injury as in vivo model of TBI. We found that GMI inhibits the generation of intracellular reactive oxygen species and reduces neuronal death in cortical neurons against glutamate excitotoxicity. In neurite injury assay, GMI promotes neurite regeneration, the length of the regenerated neurite was even longer than that of the control group. The animal data show that GMI alleviates TBI-induced spatial memory deficits, expedites the restoration of the injured areas, induces the secretion of brain-derived neurotrophic factors, increases the superoxide dismutase 1 (SOD-1) and lowers the astroglial proliferation. It is the first paper to apply GMI to brain-injured diseases and confirms that GMI reduces oxidative stress caused by TBI and improves neurocognitive function. Moreover, the effects show that prevention is better than treatment. Thus, this study provides a potential treatment in naturopathy against TBI.
Collapse
Affiliation(s)
- Ming-Wei Chao
- Department of Bioscience Technology, College of Science, Chung Yuan Christian University, 200 Chung Pei Road, Zhongli District, Taoyuan City 32023, Taiwan.
| | - Chia-Wei Liao
- Department of Biomedical Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Zhongli District, Taoyuan City 32023, Taiwan
| | - Chin-Hung Lin
- Department of Biomedical Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Zhongli District, Taoyuan City 32023, Taiwan.
| | - Chia-Yi Tseng
- Department of Biomedical Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Zhongli District, Taoyuan City 32023, Taiwan.
| |
Collapse
|
3
|
Kahveci R, Kahveci FO, Gokce EC, Gokce A, Kısa Ü, Sargon MF, Fesli R, Gürer B. Effects of Ganoderma lucidum Polysaccharides on Different Pathways Involved in the Development of Spinal Cord Ischemia Reperfusion Injury: Biochemical, Histopathologic, and Ultrastructural Analysis in a Rat Model. World Neurosurg 2021; 150:e287-e297. [PMID: 33689849 DOI: 10.1016/j.wneu.2021.02.129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Inflammation and oxidative stress are 2 important factors in the emergence of paraplegia associated with spinal cord ischemia-reperfusion injury (SCIRI) after thoracoabdominal aortic surgery. Here it is aimed to investigate the effects of Ganoderma lucidum polysaccharide (GLPS) on SCIRI. METHODS Rats were randomly selected into 4 groups of 8 animals each: sham, ischemia, methylprednisolone, and GLPS. To research the impacts of various pathways that are efficacious in formation of SCIRI, tumor necrosis factor α, interleukin 1β, nitric oxide, superoxide dismutase levels, and catalase, glutathione peroxidase activities, malondialdehyde levels, and caspase-3 activity were measured in tissues taken from the spinal cord of rats in all groups killed 24 hours after ischemia reperfusion injury. The Basso, Beattie, and Bresnahan locomotor scale and inclined plane test were used for neurologic assessment before and after SCIRI. In addition, histologic and ultrastructural analyses of tissue samples in all groups were performed. RESULTS SCIRI also caused marked increase in tissue tumor necrosis factor α, interleukin 1β, nitric oxide, malondialdehyde levels, and caspase-3 activity, because of inflammation, increased free radical generation, lipid peroxidation, and apoptosis, respectively. On the other hand, SCIRI caused significant reduction in tissue superoxide dismutase, glutathione peroxidase, and catalase activities. Pretreatment with GLPS likewise diminished the level of the spinal cord edema, inflammation, and tissue injury shown by pathologic and ultrastructural examination. Pretreatment with GLPS reversed all these biochemical changes and improved the altered neurologic status. CONCLUSIONS These outcomes propose that pretreatment with GLPS prevents progression of SCIRI by alleviating inflammation, oxidation, and apoptosis.
Collapse
Affiliation(s)
- Ramazan Kahveci
- Department of Neurosurgery, Balıkesir University, Faculty of Medicine, Balıkesir, Turkey
| | - Fatih Ozan Kahveci
- Department of Emergency Medicine, Balıkesir Atatürk City Hospital, Balıkesir, Turkey
| | - Emre Cemal Gokce
- Department of Neurosurgery, Abdurrahman Yurtaslan Ankara Oncology Education and Research Hospital, Ankara, Turkey
| | - Aysun Gokce
- Department of Pathology, Ministry of Health, Diskapi Yildirim Beyazit Education and Research Hospital, Ankara, Turkey
| | - Üçler Kısa
- Department of Biochemistry, Kirikkale University, Faculty of Medicine, Kirikkale, Turkey
| | - Mustafa Fevzi Sargon
- Department of Anatomy, Lokman Hekim University, Faculty of Medicine, Ankara, Turkey
| | - Ramazan Fesli
- Department of Neurosurgery, Tarsus Medical Park Hospital, Mersin, Turkey
| | - Bora Gürer
- Department of Neurosurgery, University of Health Sciences, Fatih Sultan Mehmet Education and Research Hospital, Istanbul, Turkey.
| |
Collapse
|
4
|
Ganoderma lucidum Prevents Cisplatin-Induced Nephrotoxicity through Inhibition of Epidermal Growth Factor Receptor Signaling and Autophagy-Mediated Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4932587. [PMID: 32695255 PMCID: PMC7362286 DOI: 10.1155/2020/4932587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/16/2020] [Accepted: 06/02/2020] [Indexed: 01/07/2023]
Abstract
Background Cisplatin (cis-diaminedichloroplatinum, CDDP) is a broad-spectrum antineoplastic agent. However, CDDP has been blamed for its nephrotoxicity, which is the main dose-limiting adverse effect. Ganoderma lucidum (GL), a medicinal mushroom, has antioxidant and inflammatory activities. Therefore, this study is aimed at finding out the potential nephroprotection of GL against CDDP-induced nephrotoxicity in rats and the possible molecular mechanisms including the EGFR downstream signaling, apoptosis, and autophagy. Methods Rats were given GL (500 mg/kg) for 10 days and a single injection of CDDP (12 mg/kg, i.p). Results Nephrotoxicity was evidenced by a significant increase in renal indices and oxidative stress markers. Additionally, CDDP showed a plethora of inflammatory and apoptotic responses as evidenced by a profound increase of HMGB-1, NF-κB, and caspase-3 expressions, whereas administration of GL significantly improved all these indices as well as the histopathological insults. Renal expression of EGFR showed a similar trend after GL administration. Furthermore, activation of autophagy protein, LC3 II, was found to be involved in GL-mediated nephroprotection correlated with the downregulation of apoptotic signaling, caspase-3 and terminal deoxynucleotidyl transferase (TDT) renal expressions. Conclusion These results suggest that GL might have improved CDDP-induced nephrotoxicity through antioxidant, anti-inflammatory, and autophagy-mediated apoptosis mechanisms and that inhibition of EGFR signaling might be involved in nephroprotection.
Collapse
|
5
|
Ganoderma lucidum Triterpenoids (GLTs) Reduce Neuronal Apoptosis via Inhibition of ROCK Signal Pathway in APP/PS1 Transgenic Alzheimer's Disease Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9894037. [PMID: 32089787 PMCID: PMC7008260 DOI: 10.1155/2020/9894037] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/04/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia among senior citizen. Ganoderma lucidum triterpenoids (GLTs) have nutritional health benefits and has been shown to promote health and longevity, but a protective effect of GLTs on AD damage has not yet been reported. The objective of this research was to elucidate the phylactic effect of GLTs on AD model mice and cells and to explore its underlying mechanisms. Morris water maze (MWM) test was conducted to detect changes in the cognitive function of mice. Hematoxylin-eosin (HE) staining was applied to observe pathological changes in the hippocampus. Silver nitrate staining was applied to observe the hippocampal neuronal tangles (NFTs). Apoptosis of the hippocampal neurons in mouse brain tissue was determined by TUNEL staining. The expression levels of apoptosis-related protein Bcl2, Bax, and caspase 3/cleaved caspase 3; antioxidative protein Nrf2, NQO1, and HO1; and ROCK signaling pathway-associated proteins ROCK2 and ROCK1 were measured by western blot. In vivo experiments show that 5-month-old APP/PS1 mice appeared to have impaired acquisition of spatial learning and GLTs could reduce cognitive impairment in AD mice. Compared to normal mice, the hippocampus of APP/PS1 mouse's brains was severely damaged, while GLTs could alleviate this symptom by inhibiting apoptosis, relieving oxidative damage, and inactivating the ROCK signaling pathway. In in vitro cell experiments, Aβ 25-35 was applied to induce hippocampal neurons into AD model cells. GLTs promoted cell proliferation, facilitated superoxide dismutase (SOD) expression, and inhibited malondialdehyde (MDA) and lactic dehydrogenase (LDH) expression of neurons. Our study highlights that GLTs improve cognitive impairment, alleviate neuronal damage, and inhibit apoptosis in the hippocampus tissues and cells in AD through inhibiting the ROCK signaling pathway.
Collapse
|
6
|
Laçin N, İzol SB, İpek F, Tuncer MC. Ganoderma lucidum, a promising agent possessing antioxidant and anti-inflammatory effects for treating calvarial defects with graft application in rats. Acta Cir Bras 2019; 34:e201900904. [PMID: 31778526 PMCID: PMC6887096 DOI: 10.1590/s0102-865020190090000004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose: Ganoderma lucidum, a kind of mushroom used for its
antioxidant, anti-inflammatory, and immunomodulatory activities, was
investigated in the present study for its possible healing effect on
calvarial defects with bone grafts. Methods: Wistar male rats (n = 30) were divided into 3 groups: 1) the
control (defect) group (n = 10), 2) defect and graft group
(n = 10), and 3) defect, graft, and G.
lucidum treated group (n = 10). The G.
lucidum was administered to the rats at 20 mL/kg per day via
gastric lavage. Results: In the defect and graft group, osteonectin positive expression was observed
in osteoblast and osteocyte cells at the periphery of the small bone
trabeculae within the graft area. In the defect, graft, and G.
lucidum treated group, osteonectin expression was positive in
the osteoblast and osteocyte cells and positive osteonectin expression in
new bone trabeculae. The expression of matrix metalloproteinase-9 (MMP-9)
was positive in the inflammatory cells, fibroblast cells, and degenerated
collagen fibril areas within the defect area. Conclusion: This study shows that, with its antioxidant and anti-inflammatory properties,
G. Lucidum is an important factor in the treatment of
calvarial bone defects.
Collapse
Affiliation(s)
- Nihat Laçin
- PhD, Assistant Professor, Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Katip Çelebi, İzmir, Turkey. Technical procedures, manuscript preparation and writing, final approval
| | - Serhat Bozan İzol
- PhD, Research Assistant, Department of Periodontology, Faculty of Dentistry, University of Bingöl, Turkey. Technical procedures, manuscript preparation and writing, final approval
| | - Fikret İpek
- PhD, Assistant Professor, Department of Periodontology, Faculty of Dentistry, University of Dicle, Diyarbakir, Turkey. Technical procedures, manuscript preparation and writing, final approval
| | - Mehmet Cudi Tuncer
- PhD, Professor, Department of Anatomy, Faculty of Medicine, University of Dicle, Diyarbakir, Turkey. Technical procedures, histopathological examinations, manuscript preparation and writing, final approval
| |
Collapse
|