1
|
Zhu G, Li J, Luo J, Rao Y. UCP2 attenuates neural apoptosis and inflammation in spinal cord injury by inducing the acetylation of ANXA1 and activating the PI3K/AKT pathway. Arch Biochem Biophys 2025; 768:110399. [PMID: 40132777 DOI: 10.1016/j.abb.2025.110399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/12/2025] [Accepted: 03/22/2025] [Indexed: 03/27/2025]
Abstract
Spinal cord injury (SCI) represents a prevalent form of mechanical trauma, frequently resulting in significant disability and mortality. Uncoupling protein 2 (UCP2) has been recognized for its neuroprotective properties; however, its specific role in SCI remains to be elucidated. This study aims to investigate the neuroprotective effects of UCP2 in the context of SCI and to further explore its downstream mechanisms of action. Through in vitro experiments, we demonstrated that UCP2 overexpression significantly improved cell viability and inhibited apoptosis and inflammatory responses in the lipopolysaccharides (LPS)-induced SCI cell model. Results of animal experiments showed that adeno-associated virus-mediated overexpression of UCP2 contributed to the recovery of SCI-afflicted rats, evidenced by improved Basso, Beattie, and Bresnahan scores, decreased water content in spinal tissues, reduced number of apoptotic cells in spinal cord. Mechanistic investigations revealed that UCP2 directly interacts with annexin A1 (ANXA1), enhancing its protein stability through acetylation at the K58 site. Furthermore, UCP2 was found to activate the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway by upregulating ANXA1 expression. Rescue assays indicated that knockdown of ANXA1 or inactivation of the PI3K/AKT pathway by LY294002 treatment partially neutralized the protective effects of UCP2 overexpression against apoptosis and inflammatory responses in LPS-stimulated BV-2 cells. Taken together, this study concludes that UCP2 ameliorates apoptosis and inflammatory responses in the SCI model by modulating acetylation-mediated protein stabilization of ANXA1 and activating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Guolin Zhu
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Junjie Li
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Jinxin Luo
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Yaojian Rao
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
2
|
Wang L, Shi G, Jin Y, Mo Z, Ren Z, Hua Z. High-dose preoperative intraperitoneal erythropoietin and intravenous methylprednisolone in acute traumatic spinal cord injuries following decompression surgeries. Open Med (Wars) 2025; 20:20241105. [PMID: 40177652 PMCID: PMC11964178 DOI: 10.1515/med-2024-1105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 09/20/2024] [Accepted: 11/21/2024] [Indexed: 04/05/2025] Open
Abstract
Background Methylprednisolone is preferably used in acute traumatic spinal cord injuries but its efficacy is limited. The objectives of the study were to evaluate the efficacy and safety of preoperative intraperitoneal erythropoietin plus a high dose of methylprednisolone against a high dose of methylprednisolone monotherapy in patients with traumatic spinal cord injuries. Methods In the retrospective study, patients received preoperative intraperitoneal erythropoietin + intravenous methylprednisolone (EM cohort, n = 107) or methylprednisolone monotherapy (PE cohort, n = 140). Results The time between decompression surgeries and injuries was 34.58 ± 6.39 h/patient (maximum: 49 h). Neurologic and sphincter functions of patients at follow-up in the EM cohort exhibited better than the preoperative neurologic and sphincter functions in the same cohort and also neurologic and sphincter functions at follow-up in the PE cohort (p < 0.05 for all). Higher 30-day postoperative mortality was reported in the PE cohort (43 (31%) vs 20 (19%), p = 0.0454) than those of the EM cohort. Conclusions Preoperative intraperitoneal erythropoietin plus a high dose of methylprednisolone appears to have a beneficial neuroprotective effect, exhibited improved sphincter functions, and decreased mortality more than a high dose of methylprednisolone monotherapy in patients with traumatic spinal cord injuries who underwent surgeries.
Collapse
Affiliation(s)
- Luowen Wang
- Department of Orthopedics, Shanghai Electric Power Hospital, No. 937 Yan’an West Road, Changning District, Shanghai, 200050, China
| | - Genbing Shi
- Department of Orthopedics, Shanghai Electric Power Hospital, No. 937 Yan’an West Road, Changning District, Shanghai, 200050, China
| | - Yongjia Jin
- Department of Orthopedics, Shanghai Electric Power Hospital, No. 937 Yan’an West Road, Changning District, Shanghai, 200050, China
| | - Zongyi Mo
- Department of Orthopedics, Shanghai Electric Power Hospital, No. 937 Yan’an West Road, Changning District, Shanghai, 200050, China
| | - Zhaogan Ren
- Department of Orthopedics, Shanghai Electric Power Hospital, No. 937 Yan’an West Road, Changning District, Shanghai, 200050, China
| | - Zhanqiang Hua
- Department of Orthopedics, Shanghai Electric Power Hospital, No. 937 Yan’an West Road, Changning District, Shanghai, 200050, China
| |
Collapse
|
3
|
Chen X, Wang B, Al Mamun A, Du K, Wang S, Hu Q, Chen X, Lu Y, Du A, Wu Y, Shao J, Wang S, Jiang C, Zhou K, Hu S, Xiao J. Pectin-Zein-IPA nanoparticles promote functional recovery and alleviate neuroinflammation after spinal cord injury. J Nanobiotechnology 2025; 23:152. [PMID: 40016738 PMCID: PMC11869623 DOI: 10.1186/s12951-025-03224-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/11/2025] [Indexed: 03/01/2025] Open
Abstract
INTRODUCTION Spinal cord injury (SCI) impairs the balance of gut microbiomes, which further aggravates inflammation in the injured areas and inhibits axonal regeneration. The intestinal microbiome plays an important role in SCI and regulating intestinal microbiome promotes SCI repair. However, current studies have shown that indole-3 propionate (IPA), a metabolite of gut bacteria, can promote axonal regeneration. However, the short half-life of IPA limits its effectiveness. Gut microbiota plays a role in the progression of SCI, but the studies about diet regulates intestinal flora metabolites to improve SCI are still limited and lack guiding significance. RESULTS The results showed that Pectin-Zein-IPA NPs treatment improves motor function recovery, inhibits the activation of oxidative stress, enhances axonal regeneration and activates AKT/Nrf-2 signaling pathway following SCI. Further analysis showed that Pec-Zein-IPA NPs treatment reduced the intestinal flora metabolite accumulation of L-methionine, and alleviated neuroinflammation by improving autophagy and inhibiting pyroptosis. Pec-Zein-IPA may reduced neuroinflammation after SCI by decreasing the abundance of Clostridia-UCG-014, Clostridia-vadinBB60-group, Shewanella (positively correlated with L-Methionine) and increasing the abundance of Parasutterella (negatively correlated with L-Methionine). CONCLUSIONS Our findings provide a strategy for oral drug research in SCI. The results suggest that Pectin-Zein-IPA NPs have potential advantages for treatment and management of SCI. Reducing L-methionine intake may help reduce neuroinflammation after SCI.
Collapse
Affiliation(s)
- Xianghang Chen
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang, 317500, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- College of Nursing, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Beini Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Abdullah Al Mamun
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Kaiyi Du
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shengfu Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qianqian Hu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xinyuan Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yang Lu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Anyu Du
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yueqi Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiaqin Shao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shuangshuang Wang
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang, 317500, China
| | - Chang Jiang
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang, 317500, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Siwang Hu
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang, 317500, China.
| | - Jian Xiao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- College of Nursing, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
- Department of Orthopaedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
4
|
Jung JW, Jeong JH, Ko MJ, Lee BJ, Kwon WK, Jeon SR, Lee S. Induced Neural Stem Cell Transplantation in Spinal Cord Injury: Present Status and Next Steps. Korean J Neurotrauma 2024; 20:234-245. [PMID: 39803345 PMCID: PMC11711022 DOI: 10.13004/kjnt.2024.20.e45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Spinal cord injury (SCI) remains a significant clinical challenge, with no fully effective treatment available despite advancements in various therapeutic approaches. This review examines the emerging role of induced neural stem cells (iNSCs) as promising candidates for SCI treatment, highlighting their potential for direct neural regeneration and integration with host tissue. We explore the biology of iNSCs, their mechanisms of action, and their interactions with host tissue, including modulating inflammatory responses, promoting axonal growth, and reconstructing neural circuits. Additionally, the importance of administration route, optimal timing for transplantation, and potential adverse events are discussed to address key challenges in translating these therapies to clinical applications. The review also emphasizes recent innovations, such as combining iNSC transplantation with rehabilitative training and the integration of biomaterials and growth factors to enhance therapeutic efficacy. Although preclinical studies have demonstrated positive outcomes, larger, controlled trials and standardized protocols are essential for validating the safety and effectiveness of iNSC-based therapies for SCI patients.
Collapse
Affiliation(s)
- Jae-Woo Jung
- Department of Neurosurgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Je Hoon Jeong
- Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Myeong Jin Ko
- Department of Neurosurgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Byung-Jou Lee
- Department of Neurosurgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Woo-Keun Kwon
- Department of Neurosurgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Sang Ryong Jeon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Subum Lee
- Department of Neurosurgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Jordan H, Sahni S, Nguyen M, Moradi M, Mumtaz S, Johnson L. Severe Transverse Myelitis Following Ankle Surgery Potentially Unmasking Late-Onset Systemic Lupus Erythematosus. Cureus 2024; 16:e74006. [PMID: 39703303 PMCID: PMC11658893 DOI: 10.7759/cureus.74006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
A 70-year-old female underwent open reduction and internal fixation (ORIF) of her right ankle following a mechanical trip and fell two weeks before hospital admission. Two weeks following surgery, the patient experienced sudden-onset bilateral anterior thigh paresthesias and burning mid-back pain. Over the ensuing two days, the patient developed bilateral lower extremity weakness, bilateral lower extremity numbness, and urinary retention with constipation, which led to hospital presentation. A non-contrast cervical/thoracic/lumbar spine MRI on the day of admission revealed a possible syrinx from T3-T12. A repeat thoracic spine MRI revealed enhancement of the spinal cord at T9-T10 and T11-T12, suggestive of transverse myelitis or spinal cord infarction. Initiation of IV methylprednisolone sodium succinate improved strength and sensation, and IVIG (intravenous immunoglobulin) therapy was initiated. Transverse myelitis is typically idiopathic or attributed to infectious causes or systemic autoimmune conditions. Spinal cord injury remained high on the differential diagnosis, considering transverse myelitis rarely presents in the postoperative period. While methylprednisolone sodium succinate is the first-line treatment for transverse myelitis, its role remains unclear in treating spinal cord injury. Given the patient's positive response to methylprednisolone sodium succinate, an autoimmune panel was sent to determine the underlying etiology, resulting in a positive ANA (antinuclear antibody) and anti-dsDNA. Thus, transverse myelitis may be an initial presentation of systemic lupus erythematosus (SLE). In rare cases of spinal cord injury versus immune-mediated disorders affecting the spinal cord, corticosteroid treatment should be considered pending diagnosis confirmation.
Collapse
Affiliation(s)
- Harrison Jordan
- Physical Medicine and Rehabilitation, ECU Health, Greenville, USA
| | - Sidharth Sahni
- Physical Medicine and Rehabilitation, New York University, New York, USA
| | - Matthew Nguyen
- Anesthesiology, Drexel University College of Medicine, Philadelphia, USA
| | - Michael Moradi
- Physical Medicine and Rehabilitation, Drexel University College of Medicine, Philadelphia, USA
| | - Shiraz Mumtaz
- Orthopedics, Drexel University College of Medicine, Philadelphia, USA
| | | |
Collapse
|
6
|
Wang J, Kumar A, Shimer AL, Su BW. Traumatic Cervical Facet Fractures and Dislocations. Clin Spine Surg 2024; 37:404-415. [PMID: 39392234 DOI: 10.1097/bsd.0000000000001706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024]
Abstract
Cervical facet injuries, though less common than other spinal injuries, represent a subset of subaxial cervical spine injuries and can present significant challenges in terms of diagnosis, management, and outcomes. A major concern with cervical facet fracture is identifying instability patterns that may necessitate surgical stabilization. Particularly in cases of cervical facet fracture dislocations, there remains controversy regarding requirements for closed reduction, timing, surgical approach, need for preoperative MRI, and method of fixation. This review article aims to provide a thorough understanding of the etiology, clinical presentation, diagnostic techniques, treatment options, and prognostic factors associated with cervical facet fractures.
Collapse
Affiliation(s)
- Jesse Wang
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA
| | - Abhishek Kumar
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA
| | - Adam L Shimer
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA
| | - Brian W Su
- Marin Health Spine Institute, A UCSF Clinic, Larkspur, CA
| |
Collapse
|
7
|
Mu Z, Qin J, Zhou X, Wang K. Synergistic effects of human umbilical cord mesenchymal stem cells/neural stem cells and epidural electrical stimulation on spinal cord injury rehabilitation. Sci Rep 2024; 14:26090. [PMID: 39478010 PMCID: PMC11526023 DOI: 10.1038/s41598-024-75754-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
Spinal cord injury (SCI) is a severe neurological condition marked by a complex pathology leading to irreversible functional loss, which current treatments fail to improve. Epidural electrical stimulation (EES) shows promise in alleviating pathological pain, regulating hemodynamic disturbances, and enhancing motor function by modulating residual interneurons in the lower spinal cord. Cell transplantation (CT), especially using human umbilical cord mesenchymal stem cells (hUCMSCs) and neural stem cells (NSCs), has significantly improved sensory and motor recovery in SCI. However, the limitations of single treatments have driven the exploration of a multifaceted strategy, combining various modalities to optimize recovery at different stages. To comprehensively investigate the effectiveness of in situ transplantation of hUCMSCs/NSCs combined with subacute epidural electrical stimulation in a murine spinal cord crush injury model, providing valuable references for future animal studies and clinical research. In this study, we first examined neural stem cell changes via mRNA sequencing in an in vitro Transwell co-culture model. We then explored cell interaction mechanisms using proliferation assays, differentiation assays, and neuron complexity analysis. For animal experiments, 40 C57BL/6 mice were assigned to four groups (Injury/EES/CT/Combination). Histological evaluations employed HE and immunofluorescence staining, while electrophysiological and behavioral tests assessed motor recovery. Quantitative data were reported as mean ± standard error, with statistical analyses performed using GraphPad Prism and SPSS. Initially, we found that NSCs in the in vitro co-culture model showed a unique expression profile of differentially expressed genes (DEGs) compared to controls. GO/KEGG analysis indicated these DEGs were mainly linked to cell differentiation and growth factor secretion pathways. Neuronal and astrocytic markers further confirmed enhanced NSC differentiation and neuronal maturation in the co-culture model. In vivo, live imaging and human nuclei immunofluorescence staining revealed that transplanted cells persisted for some time post-transplantation. Histological analysis showed that during acute inflammation, both the stem cell and combined therapy groups significantly inhibited microglial polarization. In the chronic phase, these groups reduced fibrotic scar formation and encouraged astrocytic bridging. Behavioral tests, including swimming and gait analysis, demonstrated that combined CT and EES therapy was more effective than either treatment alone. In summary, the combined therapy offers a promising approach for spinal cord injury treatment, providing superior outcomes over individual treatments. Our findings underscore the potential of a combined treatment approach utilizing stem cells transplantation and EES as an effective strategy for the comprehensive management of spinal cord crush injury in mice. This integrated approach holds promise for enhancing functional recovery and improving the quality of life for individuals with spinal cord injury (SCI).
Collapse
Affiliation(s)
- Zhiping Mu
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Jiaodi Qin
- First Clinical Institute, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xiaohua Zhou
- Chongqing Shizhu Tujia Autonomous County Traditional Chinese Medicine Hospital, Chongqing, 409199, People's Republic of China
| | - Kunzheng Wang
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, People's Republic of China.
| |
Collapse
|
8
|
Zarra F, Rolando M, Gandhi DN, Alozai MI, Mercado A, Chaurasia B, Videtta W. Glucocorticoids in Acute Spinal Cord Injury: Why are they still used nowadays? Neurosurg Rev 2024; 47:658. [PMID: 39304573 DOI: 10.1007/s10143-024-02900-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/03/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Affiliation(s)
- Francisco Zarra
- Department of Neurosurgery, University of Buenos Aires School of Medicine, Buenos Aires, Argentina.
| | - Marcos Rolando
- Department of Intensive Care Unit, Clínica la Sagrada Familia, Ciudad Autónoma de Buenos Aires, Argentina
| | | | | | - Alejandro Mercado
- Department of Neurosurgery, Hospital Militar Regional Mendoza, Mendoza, Argentina
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj, Nepal
| | - Walter Videtta
- Department of Critical Care, Hospital de Eva Perón de Merlo, Provincia de Buenos Aires, Argentina
| |
Collapse
|
9
|
Kim S, Han KD, Kim B, Min JH, Chang WH, Cho IY, Shin DW. Short-Term and Long-Term Risk of Diabetes Mellitus among Patients with Spinal Cord Injury: A Nationwide Retrospective Cohort Study. Healthcare (Basel) 2024; 12:1859. [PMID: 39337199 PMCID: PMC11431731 DOI: 10.3390/healthcare12181859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVES Estimating the risk of diabetes mellitus (DM) is important for the proper management of patients with spinal cord injury (SCI). We investigated the short-term and long-term risks of DM among patients with SCI, according to the presence or severity of post-SCI disability and the level of injury. METHODS We conducted a retrospective cohort study using the Korean National Health Insurance Service (2010-2018) database. After matching by age and sex, 6129 SCI patients and 22,979 controls were included. The primary outcome was incident DM, and risk was evaluated for both the short term (within 1 year after SCI) and the long term (after 1 year of SCI diagnosis). RESULTS The risk of DM was higher among patients with cervical- and thoracic-level SCI accompanied by disability compared to the controls during follow-up (4.6 ± 2.6 years). The short-term risk of DM was higher among patients with SCI (odds ratio [OR] 2.51, 95% confidence interval [CI] 1.91-3.27) than among the controls and it was even higher among patients with severe disability (OR 5.38, 95% CI 2.91-9.27). According to the level of injury, patients with cervical SCI had the highest short-term risk of DM (with disability, OR 4.93, 95% CI 3.07-7.63). There was no significant increase of DM risk in the long term, after 1 year of SCI diagnosis. CONCLUSIONS Patients with SCI accompanied by severe disability and cervical-level injury had higher risks of pronounced DM in the short term. The findings of this study emphasize the need for active surveillance of DM among patients with high-level SCI and disability, especially in the short term, in addition to continuous monitoring and proper management of DM in the long term.
Collapse
Affiliation(s)
- Seonghye Kim
- International Healthcare Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Kyung-Do Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Bongseong Kim
- Department of Statistics and Actuarial Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Ju-Hong Min
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul 06351, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul 03063, Republic of Korea
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - In Young Cho
- Department of Family Medicine & Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute of Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul 03063, Republic of Korea
| | - Dong Wook Shin
- Department of Family Medicine & Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute of Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul 03063, Republic of Korea
- Department of Digital Health, Samsung Advanced Institute of Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul 03063, Republic of Korea
| |
Collapse
|
10
|
Oh HJ. KJNT Symposium 2024: A Starting Point for a Leap Forward. Korean J Neurotrauma 2024; 20:135-136. [PMID: 39372114 PMCID: PMC11450334 DOI: 10.13004/kjnt.2024.20.e31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024] Open
Affiliation(s)
- Hyuk-Jin Oh
- Department of Neurosurgery, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| |
Collapse
|
11
|
Zeller SL, Stein A, Frid I, Carpenter AB, Soldozy S, Rawanduzy C, Rosenberg J, Bauerschmidt A, Al-Mufti F, Mayer SA, Kinon MD, Wainwright JV. Critical Care of Spinal Cord Injury. Curr Neurol Neurosci Rep 2024; 24:355-363. [PMID: 39008022 DOI: 10.1007/s11910-024-01357-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
PURPOSE OF REVIEW Spinal cord injury (SCI) is a major cause of morbidity and mortality, posing a significant financial burden on patients and the healthcare system. While little can be done to reverse the primary mechanical insult, minimizing secondary injury due to ischemia and inflammation and avoiding complications that adversely affect neurologic outcome represent major goals of management. This article reviews important considerations in the acute critical care management of SCI to improve outcomes. RECENT FINDINGS Neuroprotective agents, such as riluzole, may allow for improved neurologic recovery but require further investigation at this time. Various forms of neuromodulation, such as transcranial magnetic stimulation, are currently under investigation. Early decompression and stabilization of SCI is recommended within 24 h of injury when indicated. Spinal cord perfusion may be optimized with a mean arterial pressure goal from a lower limit of 75-80 to an upper limit of 90-95 mmHg for 3-7 days after injury. The use of corticosteroids remains controversial; however, initiation of a 24-h infusion of methylprednisolone 5.4 mg/kg/hour within 8 h of injury has been found to improve motor scores. Attentive pulmonary and urologic care along with early mobilization can reduce in-hospital complications.
Collapse
Affiliation(s)
- Sabrina L Zeller
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA
- Department of Neurosurgery, New York Medical College, Valhalla, NY, USA
| | - Alan Stein
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA
- Department of Neurosurgery, New York Medical College, Valhalla, NY, USA
| | - Ilya Frid
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA
- Department of Neurosurgery, New York Medical College, Valhalla, NY, USA
| | - Austin B Carpenter
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA
- Department of Neurosurgery, New York Medical College, Valhalla, NY, USA
| | - Sauson Soldozy
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA
- Department of Neurosurgery, New York Medical College, Valhalla, NY, USA
| | - Cameron Rawanduzy
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA
- Department of Neurosurgery, New York Medical College, Valhalla, NY, USA
| | - Jon Rosenberg
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA
- Department of Neurosurgery, New York Medical College, Valhalla, NY, USA
| | - Andrew Bauerschmidt
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA
- Department of Neurosurgery, New York Medical College, Valhalla, NY, USA
| | - Fawaz Al-Mufti
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA
- Department of Neurosurgery, New York Medical College, Valhalla, NY, USA
| | - Stephan A Mayer
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA
- Department of Neurosurgery, New York Medical College, Valhalla, NY, USA
| | - Merritt D Kinon
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA
- Department of Neurosurgery, New York Medical College, Valhalla, NY, USA
- Department of Orthopedic Surgery, New York Medical College, 100 Woods Road, Valhalla, NY, 10595, USA
| | - John V Wainwright
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA.
- Department of Neurosurgery, New York Medical College, Valhalla, NY, USA.
- Department of Orthopedic Surgery, New York Medical College, 100 Woods Road, Valhalla, NY, 10595, USA.
| |
Collapse
|
12
|
Ohashi N, Uta D, Ohashi M, Hoshino R, Baba H. Omega-conotoxin MVIIA reduces neuropathic pain after spinal cord injury by inhibiting N-type voltage-dependent calcium channels on spinal dorsal horn. Front Neurosci 2024; 18:1366829. [PMID: 38469570 PMCID: PMC10925679 DOI: 10.3389/fnins.2024.1366829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
Spinal cord injury (SCI) leads to the development of neuropathic pain. Although a multitude of pathological processes contribute to SCI-induced pain, excessive intracellular calcium accumulation and voltage-gated calcium-channel upregulation play critical roles in SCI-induced pain. However, the role of calcium-channel blockers in SCI-induced pain is unknown. Omega-conotoxin MVIIA (MVIIA) is a calcium-channel blocker that selectively inhibits N-type voltage-dependent calcium channels and demonstrates neuroprotective effects. Therefore, we investigated spinal analgesic actions and cellular mechanisms underlying the analgesic effects of MVIIA in SCI. We used SCI-induced pain model rats and conducted behavioral tests, immunohistochemical analyses, and electrophysiological experiments (in vitro whole-cell patch-clamp recording and in vivo extracellular recording). A behavior study suggested intrathecal MVIIA administration in the acute phase after SCI induced analgesia for mechanical allodynia. Immunohistochemical experiments and in vivo extracellular recordings suggested that MVIIA induces analgesia in SCI-induced pain by directly inhibiting neuronal activity in the superficial spinal dorsal horn. In vitro whole-cell patch-clamp recording showed that MVIIA inhibits presynaptic N-type voltage-dependent calcium channels expressed on primary afferent Aδ-and C-fiber terminals and suppresses the presynaptic glutamate release from substantia gelatinosa in the spinal dorsal horn. In conclusion, MVIIA administration in the acute phase after SCI may induce analgesia in SCI-induced pain by inhibiting N-type voltage-dependent calcium channels on Aδ-and C-fiber terminals in the spinal dorsal horn, resulting in decreased neuronal excitability enhanced by SCI-induced pain.
Collapse
Affiliation(s)
- Nobuko Ohashi
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Daisuke Uta
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Masayuki Ohashi
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Rintaro Hoshino
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroshi Baba
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
13
|
Yari D, Saberi A, Salmasi Z, Ghoreishi SA, Etemad L, Movaffagh J, Ganjeifar B. Recent Advances in the Treatment of Spinal Cord Injury. THE ARCHIVES OF BONE AND JOINT SURGERY 2024; 12:380-399. [PMID: 38919744 PMCID: PMC11195032 DOI: 10.22038/abjs.2023.73944.3424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/07/2023] [Indexed: 06/27/2024]
Abstract
Spinal cord injury (SCI) is a complex, multifaceted, progressive, and yet incurable complication that can cause irreversible damage to the individual, family, and society. In recent years strategies for the management and rehabilitation of SCI besides axonal regeneration, remyelination, and neuronal plasticity of the injured spinal cord have significantly improved. Although most of the current research and therapeutic advances have been made in animal models, so far, no specific and complete treatment has been reported for SCI in humans. The failure to treat this complication has been due to the inherent neurological complexity and the structural, cellular, molecular, and biochemical characteristics of spinal cord injury. In this review, in addition to elucidating the causes of spinal cord injury from a molecular and pathophysiological perspective, the complexity and drawbacks of neural regeneration that lead to the failure in SCI treatment are described. Also, recent advances and cutting-edge strategies in most areas of SCI treatment are presented.
Collapse
Affiliation(s)
- Davood Yari
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
- Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Saberi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Alireza Ghoreishi
- Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Orthopedic Surgery, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jebrail Movaffagh
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Babak Ganjeifar
- Department of Neurosurgery, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Zhou Q, He W, Lv J, Liu H, Yang H, Zhang J, Liu T. Benefits of Early Surgical Treatment for Patients with Multilevel Cervical Canal Stenosis of Acute Traumatic Central Cord Syndrome. Orthop Surg 2023; 15:3092-3100. [PMID: 37771121 PMCID: PMC10694011 DOI: 10.1111/os.13904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/27/2023] [Accepted: 08/27/2023] [Indexed: 09/30/2023] Open
Abstract
INTRODUCTION Currently, there exists considerable debate surrounding the optimal treatment approaches for different subtypes of patients with spinal cord injury (SCI). The purpose of this study was to conduct a comparative analysis of the benefits associated with conservative treatment and treatments with different surgical periods for patients diagnosed with acute traumatic central cord syndrome (ATCCS) and multilevel cervical canal stenosis (CCS). METHODS A retrospective cohort study was conducted, and 93 patients who met inclusion and exclusion criteria in our hospital between 2015 and 2020 were followed for a minimum duration of 2 years. Among them, 30 patients (Group A) received conservative treatment, 18 patients (Group B) received early surgery (≤7 days), and 45 patients (Group C) received late surgery (>7 days). The American Spinal Injury Association (ASIA) grade, Japanese Orthopedic Association (JOA) score, and recovery rate (RR) were evaluated. Multivariate linear regression was used to analyze prognostic determinants. Cost-utility analysis was performed based on the EQ-5D scale. RESULTS The ASIA grade, JOA score, and RR of all three groups improved compared with the previous evaluation (P < 0.05). During follow-up, the ASIA grade, JOA score, and RR of Group B were all better than for Group A and Group C (P < 0.05), while there was no significant difference between Group A and C (P > 0.05). The EQ-5D scale in Group B was optimal at the last follow-up. The incremental cost-utility ratio (ICUR) of Group A was the lowest, while that of Group B compared to Group A was less than the threshold of patients' willingness to pay. Age, initial ASIA grade, and treatment types significantly affected the outcomes. CONCLUSIONS Both conservative and surgical treatments yield good results. Compared with patients who received conservative treatment and late surgery, patients who received early surgery had better clinical function and living quality. Despite the higher cost, early surgery is cost-effective when compared to conservative treatment. Younger age, initial better ASIA grade, and earlier surgery were associated with better prognosis.
Collapse
Affiliation(s)
- Quan Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Wei He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Jiaheng Lv
- Department of Orthopaedics, The First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Hao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Junxin Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina
| |
Collapse
|
15
|
Chen SY, Yang RL, Wu XC, Zhao DZ, Fu SP, Lin FQ, Li LY, Yu LM, Zhang Q, Zhang T. Mesenchymal Stem Cell Transplantation: Neuroprotection and Nerve Regeneration After Spinal Cord Injury. J Inflamm Res 2023; 16:4763-4776. [PMID: 37881652 PMCID: PMC10595983 DOI: 10.2147/jir.s428425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023] Open
Abstract
Spinal Cord Injury (SCI), with its morbidity characteristics of high disability rate and high mortality rate, is a disease that is highly destructive to both the physiology and psychology of the patient, and for which there is still a lack of effective treatment. Following spinal cord injury, a cascade of secondary injury reactions known as ischemia, peripheral inflammatory cell infiltration, oxidative stress, etc. create a microenvironment that is unfavorable to neural recovery and ultimately results in apoptosis and necrosis of neurons and glial cells. Mesenchymal stem cell (MSC) transplantation has emerged as a more promising therapeutic options in recent years. MSC can promote spinal cord injury repair through a variety of mechanisms, including immunomodulation, neuroprotection, and nerve regeneration, giving patients with spinal cord injury hope. In this paper, it is discussed the neuroprotection and nerve regeneration components of MSCs' therapeutic method for treating spinal cord injuries.
Collapse
Affiliation(s)
- Si-Yu Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Rui-Lin Yang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Xiang-Chong Wu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - De-Zhi Zhao
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Sheng-Ping Fu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Feng-Qin Lin
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Lin-Yan Li
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Li-Mei Yu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Qian Zhang
- Department of Human Anatomy, Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People’s Republic of China
| |
Collapse
|
16
|
Baltin M, Smirnova V, Khamatnurova R, Sabirova D, Samigullin B, Sachenkov O, Baltina T. Functional State of the Motor Centers of the Lumbar Spine after Contusion (Th8-Th9) with Application of Methylprednisolone-Copolymer at the Site of Injury. Biomedicines 2023; 11:2026. [PMID: 37509665 PMCID: PMC10377350 DOI: 10.3390/biomedicines11072026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Spinal cord injuries must be treated as soon as possible. Studies of NASCIS protocols have questioned the use of methylprednisolone therapy. This study aimed to evaluate the effect of local delivery of methylprednisolone succinate in combination with a tri-block copolymer in rats with spinal cord injury. The experiments were conducted in accordance with the bioethical guidelines. We evaluated the state of the motor centers below the level of injury by assessing the amplitude of evoked motor responses in the hind limb muscles of rats during epidural stimulation. Kinematic analysis was performed to examine the stepping cycle in each rat. Trajectories of foot movements were plotted to determine the range of limb motion, maximum foot lift height, and lateral deviation of the foot in rats on the 21st day after spinal cord injury. We have shown that the local application of methylprednisolone succinate in combination with block copolymer leads to recovery of center excitability by 21 days after injury. In rats, they recovered weight-supported locomotion, directional control of walking, and balance. The proposed assessment method provides valuable information on gait disturbances following injury and can be utilized to evaluate the quality of therapeutic interventions.
Collapse
Affiliation(s)
- Maxim Baltin
- Research Laboratory "Mechanobiology", Institute of Fundamental Medicine and Biology, Kazan Federal University, 420015 Kazan, Russia
- Research Institute of Sports Reserve Training Technologies, Volga State University of Physical Culture, Sports and Tourism, Universiade Village, 35, 420010 Kazan, Russia
| | - Victoriya Smirnova
- N.I. Lobachevsky Institute of Mathematics and Mechanics, Kazan Federal University, 420008 Kazan, Russia
| | - Regina Khamatnurova
- Interdisciplinary Neuroscience Faculty, Goethe-Universität Frankfurt am Main, 60323 Frankfurt am Main, Germany
| | - Diana Sabirova
- N.I. Lobachevsky Institute of Mathematics and Mechanics, Kazan Federal University, 420008 Kazan, Russia
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 76 K. Marx St., 420015 Kazan, Russia
| | - Bulat Samigullin
- Research Laboratory "Mechanobiology", Institute of Fundamental Medicine and Biology, Kazan Federal University, 420015 Kazan, Russia
- NeuroStart Medical Center, 420049 Kazan, Russia
| | - Oskar Sachenkov
- N.I. Lobachevsky Institute of Mathematics and Mechanics, Kazan Federal University, 420008 Kazan, Russia
- Department Machines Science and Engineering Graphics, Tupolev Kazan National Research Technical University, 420111 Kazan, Russia
| | - Tatyana Baltina
- Research Laboratory "Mechanobiology", Institute of Fundamental Medicine and Biology, Kazan Federal University, 420015 Kazan, Russia
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 76 K. Marx St., 420015 Kazan, Russia
| |
Collapse
|
17
|
Wang S, Du C, Li G. Mesenchymal stem cell-derived extracellular vesicles: emerging concepts in the treatment of spinal cord injury. Am J Transl Res 2023; 15:4425-4438. [PMID: 37560238 PMCID: PMC10408507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/09/2023] [Indexed: 08/11/2023]
Abstract
Spinal cord injury (SCI) is a prevalent central nervous system disease with a high disability rate, leading to the loss of motor and sensory nerve function. Due to the complex pathophysiology of SCI, more effective clinical treatment strategies are needed. Research has indicated the considerable potential of extracellular vesicles (EVs) derived from mesenchymal stem cells (MSC-EVs) as a cell-free therapy in SCI repair and regeneration due to their ability to regulate immune cell activity and stimulate damaged neuron regeneration. Moreover, applying MSCs and engineered EVs can fully exploit the potential of MSC-EVs in spinal cord repair. Here, we outline the pathological process of SCI and its current clinical treatment status, summarize the latest MSC-EVs research and its pretreatment and engineering strategies in SCI treatment, and explore MSC-EVs application prospects.
Collapse
Affiliation(s)
- Shujun Wang
- School of Physical Education, Liaocheng UniversityLiaocheng, Shandong, China
| | - Chengzhe Du
- School of Physical Education, Liaocheng UniversityLiaocheng, Shandong, China
| | - Guilan Li
- School of Life Sciences, Liaocheng UniversityLiaocheng, Shandong, China
| |
Collapse
|
18
|
Cui Y, Yang B, Lin S, Huang L, Xie F, Feng W, Lin Z. FGF23 alleviates neuronal apoptosis and inflammation, and promotes locomotion recovery via activation of PI3K/AKT signalling in spinal cord injury. Exp Ther Med 2023; 26:340. [PMID: 37383378 PMCID: PMC10294607 DOI: 10.3892/etm.2023.12039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/24/2023] [Indexed: 06/30/2023] Open
Abstract
Fibroblast growth factor 23 (FGF23) regulates neuronal morphology, synaptic growth and inflammation; however, its involvement in spinal cord injury (SCI) remains unclear. Therefore, the present study aimed to investigate the effect of FGF23 on neuronal apoptosis, inflammation and locomotion recovery, as well as its underlying mechanism in experimental SCI models. Primary rat neurons were stimulated with H2O2 to establish an in vitro model of SCI and were then transfected with an FGF23 overexpression (oeFGF23) or short hairpin RNA (shFGF23) adenovirus-associated virus and treated with or without LY294002 (a PI3K/AKT inhibitor). Subsequently, an SCI rat model was constructed, followed by treatment with oeFGF23, LY294002 or a combination of the two. FGF23 overexpression (oeFGF23 vs. oeNC) decreased the cell apoptotic rate and cleaved-caspase3 expression, but increased Bcl-2 expression in H2O2-stimulated neurons, whereas shFGF23 transfection (shFGF23 vs. shNC) exhibited the opposite effect (all P<0.05). Furthermore, FGF23 overexpression (oeFGF23 vs. oeNC) could activate the PI3K/AKT signalling pathway, whereas treatment with the PI3K/AKT inhibitor (LY294002) (oeFGF23 + LY294002 vs. LY294002) attenuated these effects in H2O2-stimulated neurons (all P<0.05). In SCI model rats, FGF23 overexpression (oeFGF23 vs. oeNC) reduced the laceration and inflammatory cell infiltration in injured tissue, decreased TNF-α and IL-1β levels, and improved locomotion recovery (all P<0.05); these effects were attenuated by additional administration of LY294002 (oeFGF23 + LY294002 vs. LY294002) (all P<0.05). In conclusion, FGF23 alleviated neuronal apoptosis and inflammation, and promoted locomotion recovery via activation of the PI3K/AKT signalling pathway in SCI, indicating its potential as a treatment option for SCI; however, further studies are warranted for validation.
Collapse
Affiliation(s)
- Yan Cui
- Department of Orthopaedic Trauma, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Bin Yang
- Department of Orthopaedic Trauma, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Shaoyi Lin
- Department of Orthopaedic Trauma, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Luqiang Huang
- Department of Orthopaedic Trauma, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Feibin Xie
- Department of Orthopaedic Trauma, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Wei Feng
- Department of Neurosurgery, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Zhenzong Lin
- Department of Orthopaedic Trauma, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| |
Collapse
|
19
|
Multiple strategies enhance the efficacy of MSCs transplantation for spinal cord injury. Biomed Pharmacother 2023; 157:114011. [PMID: 36410123 DOI: 10.1016/j.biopha.2022.114011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/05/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Spinal cord injury (SCI) is a serious complication of the central nervous system (CNS) after spine injury, often resulting in severe sensory, motor, and autonomic dysfunction below the level of injury. To date, there is no effective treatment strategy for SCI. Recently, stem cell therapy has brought hope to patients with neurological diseases. Mesenchymal stem cells (MSCs) are considered to be the most promising source of cellular therapy after SCI due to their immunomodulatory, neuroprotective and angiogenic potential. Considering the limited therapeutic effect of MSCs due to the complex pathophysiological environment following SCI, this paper not only reviews the specific mechanism of MSCs to facilitate SCI repair, but also further discusses the research status of these pluripotent stem cells combined with other therapeutic approaches to promote anatomical and functional recovery post-SCI.
Collapse
|
20
|
Yang R, Pan J, Wang Y, Xia P, Tai M, Jiang Z, Chen G. Application and prospects of somatic cell reprogramming technology for spinal cord injury treatment. Front Cell Neurosci 2022; 16:1005399. [PMID: 36467604 PMCID: PMC9712200 DOI: 10.3389/fncel.2022.1005399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/02/2022] [Indexed: 08/10/2023] Open
Abstract
Spinal cord injury (SCI) is a serious neurological trauma that is challenging to treat. After SCI, many neurons in the injured area die due to necrosis or apoptosis, and astrocytes, oligodendrocytes, microglia and other non-neuronal cells become dysfunctional, hindering the repair of the injured spinal cord. Corrective surgery and biological, physical and pharmacological therapies are commonly used treatment modalities for SCI; however, no current therapeutic strategies can achieve complete recovery. Somatic cell reprogramming is a promising technology that has gradually become a feasible therapeutic approach for repairing the injured spinal cord. This revolutionary technology can reprogram fibroblasts, astrocytes, NG2 cells and neural progenitor cells into neurons or oligodendrocytes for spinal cord repair. In this review, we provide an overview of the transcription factors, genes, microRNAs (miRNAs), small molecules and combinations of these factors that can mediate somatic cell reprogramming to repair the injured spinal cord. Although many challenges and questions related to this technique remain, we believe that the beneficial effect of somatic cell reprogramming provides new ideas for achieving functional recovery after SCI and a direction for the development of treatments for SCI.
Collapse
Affiliation(s)
- Riyun Yang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Jingying Pan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Yankai Wang
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
| | - Panhui Xia
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
| | - Mingliang Tai
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
| | - Zhihao Jiang
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
| | - Gang Chen
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|