1
|
Najafi Z, Rahmanian-Devin P, Baradaran Rahimi V, Nokhodchi A, Askari VR. Challenges and opportunities of medicines for treating tendon inflammation and fibrosis: A comprehensive and mechanistic review. Fundam Clin Pharmacol 2024; 38:802-841. [PMID: 38468183 DOI: 10.1111/fcp.12999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/20/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Tendinopathy refers to conditions characterized by collagen degeneration within tendon tissue, accompanied by the proliferation of capillaries and arteries, resulting in reduced mechanical function, pain, and swelling. While inflammation in tendinopathy can play a role in preventing infection, uncontrolled inflammation can hinder tissue regeneration and lead to fibrosis and impaired movement. OBJECTIVES The inability to regulate inflammation poses a significant limitation in tendinopathy treatment. Therefore, an ideal treatment strategy should involve modulation of the inflammatory process while promoting tissue regeneration. METHODS The current review article was prepared by searching PubMed, Scopus, Web of Science, and Google Scholar databases. Several treatment approaches based on biomaterials have been developed. RESULTS This review examines various treatment methods utilizing small molecules, biological compounds, herbal medicine-inspired approaches, immunotherapy, gene therapy, cell-based therapy, tissue engineering, nanotechnology, and phototherapy. CONCLUSION These treatments work through mechanisms of action involving signaling pathways such as transforming growth factor-beta (TGF-β), mitogen-activated protein kinases (MAPKs), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), all of which contribute to the repair of injured tendons.
Collapse
Affiliation(s)
- Zohreh Najafi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Nokhodchi
- Lupin Pharmaceutical Research Center, 4006 NW 124th Ave., Coral Springs, Florida, Florida, 33065, USA
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Li J, Song Y, Wu L, Su D, Wang LF. Effects of a new continuous nursing program on the short-term and long-term low back pain in patients after UBED: a retrospective study based on 282 patients. Front Surg 2024; 11:1443231. [PMID: 39268492 PMCID: PMC11390385 DOI: 10.3389/fsurg.2024.1443231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Background Unilateral biportal endoscopic discectomy (UBED) is a widely accepted minimally invasive surgery for the treatment of lumbar degenerative diseases. However, some patients continue to have persistent low back pain (LBP) symptoms in the short and long term after surgery, which may be related to improper postoperative nursing and rehabilitation of patients. Further research is needed to determine whether continuous nursing can improve the symptoms of patients after UBED. Methods This study retrospectively enrolled 282 lumbar disc herniation (LDH) patients who underwent UBED in our hospital from January 2019 to January 2022. The patients were divided into two groups according to whether they accepted the continuous nursing program: 147 patients in the traditional nursing group and 135 patients in the continuous nursing group. Demographic characteristics, radiological parameters, and follow-up data of the patients were collected. Finally, the risk factors of LBP after UBED were analyzed. Results The visual analog scale (VAS) score of LBP in the continuous nursing group was 0.97 ± 1.159 at 3 months and 0.61 ± 0.954 at 12 months after operation, and VAS of leg pain was 0.23 ± 0.421 at 12 months after operation, which were better than those in the traditional nursing group (1.51 ± 1.313, 1.10 ± 1.076, 0.68 ± 0.788, respectively, p < 0.001) The Oswestry disability index (ODI) score of the continuous nursing group was lower than that of the traditional nursing group at 12 months after operation (7.36 ± 6.526 vs. 12.43 ± 6.942, p < 0.001). The rehabilitation completion (7.98 ± 1.857), efficacy satisfaction (9.13 ± 1.101), and re-herniation worry scores (1.97 ± 1.217) in the continuous nursing group were better than those in the traditional nursing group (4.14 ± 3.066, 8.28 ± 1.240, 2.79 ± 1.973, respectively, P < 0.001). The re-herniation rate within 1 year was similar between the two groups (3/135 vs. 2/147, p = 0.673). No incision infection occurred. Multivariate regression analysis showed that risk factors for persistent LBP at 3-month follow-up were degenerative disc [odds ratio (OR): 2.144, CI: 1.306-3.519, p = 0.03], Pfirrmann grade (OR: 3.073, CI: 1.427-6.614, p = 0.04), and surgical time (OR: 0.969, CI: 0.937-1.003, p = 0.74). At the 12-month follow-up, the risk factors for persistent LBP were preoperative VAS of the legs (OR: 1.261, CI: 1.000-1.591, p = 0.05) and Pfirrmann grade (OR: 3.309, CI: 1.460-7.496, p = 0.04). Conclusion Continuous nursing programs can improve the symptoms of short-term and long-term persistent LBP in patients after UBED, enhance the completion of rehabilitation training after UBED, alleviate patients' concerns about recurrence, and improve patients' satisfaction.
Collapse
Affiliation(s)
- Jucai Li
- Department of Spine Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanli Song
- Department of Spine Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lumei Wu
- Department of Spine Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dan Su
- Department of Spine Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lin-Feng Wang
- Department of Spine Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
3
|
Etayo-Escanilla M, Campillo N, Ávila-Fernández P, Baena JM, Chato-Astrain J, Campos F, Sánchez-Porras D, García-García ÓD, Carriel V. Comparison of Printable Biomaterials for Use in Neural Tissue Engineering: An In Vitro Characterization and In Vivo Biocompatibility Assessment. Polymers (Basel) 2024; 16:1426. [PMID: 38794619 PMCID: PMC11125121 DOI: 10.3390/polym16101426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Nervous system traumatic injuries are prevalent in our society, with a significant socioeconomic impact. Due to the highly complex structure of the neural tissue, the treatment of these injuries is still a challenge. Recently, 3D printing has emerged as a promising alternative for producing biomimetic scaffolds, which can lead to the restoration of neural tissue function. The objective of this work was to compare different biomaterials for generating 3D-printed scaffolds for use in neural tissue engineering. For this purpose, four thermoplastic biomaterials, ((polylactic acid) (PLA), polycaprolactone (PCL), Filaflex (FF) (assessed here for the first time for biomedical purposes), and Flexdym (FD)) and gelatin methacrylate (GelMA) hydrogel were subjected to printability and mechanical tests, in vitro cell-biomaterial interaction analyses, and in vivo biocompatibility assessment. The thermoplastics showed superior printing results in terms of resolution and shape fidelity, whereas FD and GelMA revealed great viscoelastic properties. GelMA demonstrated a greater cell viability index after 7 days of in vitro cell culture. Moreover, all groups displayed connective tissue encapsulation, with some inflammatory cells around the scaffolds after 10 days of in vivo implantation. Future studies will determine the usefulness and in vivo therapeutic efficacy of novel neural substitutes based on the use of these 3D-printed scaffolds.
Collapse
Affiliation(s)
- Miguel Etayo-Escanilla
- Department of Histology, Tissue Engineering Group, University of Granada, 18016 Granada, Spain; (M.E.-E.); (P.Á.-F.); (F.C.); (V.C.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Doctoral Program in Biomedicine, University of Granada, 18012 Granada, Spain
| | - Noelia Campillo
- REGEMAT 3D, Avenida Del Conocimiento 41, A-111, 18016 Granada, Spain (J.M.B.)
- BRECA Health Care S.L., Avenida Del Conocimiento 41, 18016 Granada, Spain
| | - Paula Ávila-Fernández
- Department of Histology, Tissue Engineering Group, University of Granada, 18016 Granada, Spain; (M.E.-E.); (P.Á.-F.); (F.C.); (V.C.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - José Manuel Baena
- REGEMAT 3D, Avenida Del Conocimiento 41, A-111, 18016 Granada, Spain (J.M.B.)
- BRECA Health Care S.L., Avenida Del Conocimiento 41, 18016 Granada, Spain
| | - Jesús Chato-Astrain
- Department of Histology, Tissue Engineering Group, University of Granada, 18016 Granada, Spain; (M.E.-E.); (P.Á.-F.); (F.C.); (V.C.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Fernando Campos
- Department of Histology, Tissue Engineering Group, University of Granada, 18016 Granada, Spain; (M.E.-E.); (P.Á.-F.); (F.C.); (V.C.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - David Sánchez-Porras
- Department of Histology, Tissue Engineering Group, University of Granada, 18016 Granada, Spain; (M.E.-E.); (P.Á.-F.); (F.C.); (V.C.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Óscar Darío García-García
- Department of Histology, Tissue Engineering Group, University of Granada, 18016 Granada, Spain; (M.E.-E.); (P.Á.-F.); (F.C.); (V.C.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Víctor Carriel
- Department of Histology, Tissue Engineering Group, University of Granada, 18016 Granada, Spain; (M.E.-E.); (P.Á.-F.); (F.C.); (V.C.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
4
|
Nakazawa K, Toyoda H, Manaka T, Orita K, Hirakawa Y, Saito K, Iio R, Shimatani A, Ban Y, Yao H, Otsuki R, Torii Y, Oh JS, Shirafuji T, Nakamura H. In vivo study on the repair of rat Achilles tendon injury treated with non-thermal atmospheric-pressure helium microplasma jet. PLoS One 2024; 19:e0301216. [PMID: 38743641 PMCID: PMC11093389 DOI: 10.1371/journal.pone.0301216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 03/12/2024] [Indexed: 05/16/2024] Open
Abstract
Non-thermal atmospheric-pressure plasma (NTAPP) has been widely studied for clinical applications, e.g., disinfection, wound healing, cancer therapy, hemostasis, and bone regeneration. It is being revealed that the physical and chemical actions of plasma have enabled these clinical applications. Based on our previous report regarding plasma-stimulated bone regeneration, this study focused on Achilles tendon repair by NTAPP. This is the first study to reveal that exposure to NTAPP can accelerate Achilles tendon repair using a well-established Achilles tendon injury rat model. Histological evaluation using the Stoll's and histological scores showed a significant improvement at 2 and 4 weeks, with type I collagen content being substantial at the early time point of 2 weeks post-surgery. Notably, the replacement of type III collagen with type I collagen occurred more frequently in the plasma-treated groups at the early stage of repair. Tensile strength test results showed that the maximum breaking strength in the plasma-treated group at two weeks was significantly higher than that in the untreated group. Overall, our results indicate that a single event of NTAPP treatment during the surgery can contribute to an early recovery of an injured tendon.
Collapse
Affiliation(s)
- Katusmasa Nakazawa
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka City University, Abeno, Osaka, Japan
| | - Hiromitsu Toyoda
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka City University, Abeno, Osaka, Japan
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Abeno, Osaka, Japan
| | - Tomoya Manaka
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Abeno, Osaka, Japan
| | - Kumi Orita
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Abeno, Osaka, Japan
| | | | - Kosuke Saito
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka City University, Abeno, Osaka, Japan
| | - Ryosuke Iio
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka City University, Abeno, Osaka, Japan
| | | | - Yoshitaka Ban
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka City University, Abeno, Osaka, Japan
| | - Hana Yao
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Abeno, Osaka, Japan
| | - Ryosuke Otsuki
- Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, Sumiyoshi, Osakas, Japan
| | - Yamato Torii
- Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, Sumiyoshi, Osakas, Japan
| | - Jun-Seok Oh
- Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, Sumiyoshi, Osakas, Japan
| | - Tatsuru Shirafuji
- Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, Sumiyoshi, Osakas, Japan
| | - Hiroaki Nakamura
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka City University, Abeno, Osaka, Japan
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Abeno, Osaka, Japan
| |
Collapse
|
5
|
Berasain J, Ávila-Fernández P, Cárdenas-Pérez R, Cànaves-Llabrés AI, Etayo-Escanilla M, Alaminos M, Carriel V, García-García ÓD, Chato-Astrain J, Campos F. Genipin crosslinking promotes biomechanical reinforcement and pro-regenerative macrophage polarization in bioartificial tubular substitutes. Biomed Pharmacother 2024; 174:116449. [PMID: 38518607 DOI: 10.1016/j.biopha.2024.116449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024] Open
Abstract
Traumatic nerve injuries are nowadays a significant clinical challenge and new substitutes with adequate biological and mechanical properties are in need. In this context, fibrin-agarose hydrogels (FA) have shown the possibility to generate tubular scaffolds with promising results for nerve repair. However, to be clinically viable, these scaffolds need to possess enhanced mechanical properties. In this line, genipin (GP) crosslinking has demonstrated to improve biomechanical properties with good biological properties compared to other crosslinkers. In this study, we evaluated the impact of different GP concentrations (0.05, 0.1 and 0.2% (m/v)) and reaction times (6, 12, 24, 72 h) on bioartificial nerve substitutes (BNS) consisting of nanostructured FA scaffolds. First, crosslinked BNS were studied histologically, ultrastructurally and biomechanically and then, its biocompatibility and immunomodulatory effects were ex vivo assessed with a macrophage cell line. Results showed that GP was able to improve the biomechanical resistance of BNS, which were dependent on both the GP treatment time and concentration without altering the structure. Moreover, biocompatibility analyses on macrophages confirmed high cell viability and a minimal reduction of their metabolic activity by WST-1. In addition, GP-crosslinked BNS effectively directed macrophage polarization from a pro-inflammatory (M1) towards a pro-regenerative (M2) phenotype, which was in line with the cytokines release profile. In conclusion, this study considers time and dose-dependent effects of GP in FA substitutes which exhibited increased biomechanical properties while reducing immunogenicity and promoting pro-regenerative macrophage shift. These tubular substitutes could be useful for nerve application or even other tissue engineering applications such as urethra.
Collapse
Affiliation(s)
- Jone Berasain
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Spain; Postgraduate Master Program in Tissue Engineering and Advanced Therapies, University of Granada, Spain
| | - Paula Ávila-Fernández
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Spain
| | - Rocío Cárdenas-Pérez
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Spain; Postgraduate Master Program in Tissue Engineering and Advanced Therapies, University of Granada, Spain
| | - Antoni Ignasi Cànaves-Llabrés
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Spain; Postgraduate Master Program in Tissue Engineering and Advanced Therapies, University of Granada, Spain
| | - Miguel Etayo-Escanilla
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Spain
| | - Víctor Carriel
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Spain
| | - Óscar Darío García-García
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Spain.
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Spain.
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Spain
| |
Collapse
|
6
|
Sun J, Xu Y, Zhu J, Zhu B, Gao W. Efficacy and safety of continuous nursing in improving functional recovery after total hip or knee arthroplasty in older adults: A systematic review. Int J Nurs Sci 2024; 11:286-294. [PMID: 38707686 PMCID: PMC11064567 DOI: 10.1016/j.ijnss.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/15/2024] [Accepted: 03/08/2024] [Indexed: 05/07/2024] Open
Abstract
Objective This systematic review was conducted to evaluate the efficacy and safety of continuous nursing care for the recovery of joint function in older adults with total hip or knee arthroplasty. Methods Randomized controlled trials and cohort studies of continuous nursing in older patients after joint replacement were searched from the database of Cochrane Library, Web of Science, PubMed, and Embase from their establishment to October 25, 2023. After literature screening, two researchers completed data extraction, and the risk of bias was assessed using the Cochrane risk-of-bias tool. The risk analysis included in cohort studies was based on the Newcastle-Ottawa Scale (NOS). Results The study included a total of 15 articles, comprising 34,186 knee and hip replacement patients. In this review, the effects of continuous nursing on the recovery of joint function of knee replacement and hip replacement in older adults were classified and discussed. Continuous nursing interventions targeted for total hip replacement could greatly increase the range of joint mobility, enhance muscle strength during hip movements like flexion, extension, and abduction, maintain joint stability, relieve pain, improve daily activities, and lower the risk of complications. For older patients with knee arthroplasty, continuous nursing programs could markedly improve knee motion range, joint flexion, joint stability, daily activities, and pain management. Despite the implementation of interventions, the incidence of complications caused by total knee replacement did not decrease. Out of all the studies reviewed, only one used a theoretical framework for interventions provided to patients during the postoperative period of hip arthroplasty. The overall quality of the included studies was very high. Conclusion Continuous nursing can effectively improve the joint function of older patients after joint replacement. However, its effectiveness in terms of clinical outcomes, patient satisfaction, and medical cost of associated continuous nursing needs to be further clarified. In addition, continuous nursing has no significant advantage in the safety of postoperative complications and readmission rates in older adults after knee joint replacement. To enhance the efficacy and safety of continuous nursing effectively, it is crucial to refine the continuous nursing program in the future, thereby elevating the quality of nursing services.
Collapse
Affiliation(s)
- Jing Sun
- School of Nursing, Jiangsu Vocational College of Medicine, Yancheng, China
- Department of Nursing, Faculty of Nursing, Lincoln University College, Kuala Lumpur, Malaysia
| | - Yirong Xu
- School of Nursing, Jiangsu Vocational College of Medicine, Yancheng, China
- Department of Nursing, Faculty of Nursing, Lincoln University College, Kuala Lumpur, Malaysia
| | - Juan Zhu
- School of Nursing, Jiangsu Vocational College of Medicine, Yancheng, China
- Department of Nursing, Faculty of Nursing, Lincoln University College, Kuala Lumpur, Malaysia
| | - Bei Zhu
- School of Nursing, Jiangsu Vocational College of Medicine, Yancheng, China
- Department of Nursing, Faculty of Nursing, Lincoln University College, Kuala Lumpur, Malaysia
| | - Wei Gao
- School of Nursing, Jiangsu Vocational College of Medicine, Yancheng, China
| |
Collapse
|
7
|
Zhao Y, Dong H, Xia Q, Wang Y, Zhu L, Hu Z, Xia J, Mao Q, Weng Z, Yi J, Feng S, Jiang Y, Liao W, Xin Z. A new strategy for intervertebral disc regeneration: The synergistic potential of mesenchymal stem cells and their extracellular vesicles with hydrogel scaffolds. Biomed Pharmacother 2024; 172:116238. [PMID: 38308965 DOI: 10.1016/j.biopha.2024.116238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a disease that severely affects spinal health and is prevalent worldwide. Mesenchymal stem cells (MSCs) and their derived extracellular vesicles (EVs) have regenerative potential and have emerged as promising therapeutic tools for treating degenerative discs. However, challenges such as the harsh microenvironment of degenerated intervertebral discs and EVs' limited stability and efficacy have hindered their clinical application. In recent years, hydrogels have attracted much attention in the field of IDD therapy because they can mimic the physiologic microenvironment of the disc and provide a potential solution by providing a suitable growth environment for MSCs and EVs. This review introduced the biological properties of MSCs and their derived EVs, summarized the research on the application of MSCs and EVs in IDD, summarized the current clinical trial studies of MSCs and EVs, and also explored the mechanism of action of MSCs and EVs in intervertebral discs. In addition, plenty of research elaborated on the mechanism of action of different classified hydrogels in tissue engineering, the synergistic effect of MSCs and EVs in promoting intervertebral disc regeneration, and their wide application in treating IDD. Finally, the challenges and problems still faced by hydrogel-loaded MSCs and EVs in the treatment of IDD are summarized, and potential solutions are proposed. This paper outlines the synergistic effects of MSCs and EVs in treating IDD in combination with hydrogels and aims to provide theoretical references for future related studies.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Huaize Dong
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Qiuqiu Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yanyang Wang
- Department of Cell Engineering Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Lu Zhu
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zongyue Hu
- Department of Pain Rehabilitation, Affiliated Sinopharm Gezhouba Central Hospital, Third Clinical Medical College of Three Gorges University, Yichang 443003, Hubei, China
| | - Jiyue Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Qiming Mao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zijing Weng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Jiangbi Yi
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Shuai Feng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Youhong Jiang
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Wenbo Liao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zhijun Xin
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China; Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005 Paris, France.
| |
Collapse
|
8
|
Ortiz-Arrabal O, Irastorza-Lorenzo A, Campos F, Martín-Piedra MÁ, Carriel V, Garzón I, Ávila-Fernández P, de Frutos MJ, Esteban E, Fernández J, Janer A, Campos A, Chato-Astrain J, Alaminos M. Fibrin and Marine-Derived Agaroses for the Generation of Human Bioartificial Tissues: An Ex Vivo and In Vivo Study. Mar Drugs 2023; 21:md21030187. [PMID: 36976236 PMCID: PMC10058299 DOI: 10.3390/md21030187] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Development of an ideal biomaterial for clinical use is one of the main objectives of current research in tissue engineering. Marine-origin polysaccharides, in particular agaroses, have been widely explored as scaffolds for tissue engineering. We previously developed a biomaterial based on a combination of agarose with fibrin, that was successfully translated to clinical practice. However, in search of novel biomaterials with improved physical and biological properties, we have now generated new fibrin-agarose (FA) biomaterials using 5 different types of agaroses at 4 different concentrations. First, we evaluated the cytotoxic effects and the biomechanical properties of these biomaterials. Then, each bioartificial tissue was grafted in vivo and histological, histochemical and immunohistochemical analyses were performed after 30 days. Ex vivo evaluation showed high biocompatibility and differences in their biomechanical properties. In vivo, FA tissues were biocompatible at the systemic and local levels, and histological analyses showed that biointegration was associated to a pro-regenerative process with M2-type CD206-positive macrophages. These results confirm the biocompatibility of FA biomaterials and support their clinical use for the generation of human tissues by tissue engineering, with the possibility of selecting specific agarose types and concentrations for applications requiring precise biomechanical properties and in vivo reabsorption times.
Collapse
Grants
- FIS PI20/0317 FIS PI20/0318 FIS PI21/0980 ICI19/00024 ICI21/00010 Spanish Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica (I+D+I) of the Spanish Ministry of Science and Innovation (Instituto de Salud Carlos III),
- PE-0395-2019 PI-0442-2019 Consejería de Salud y Familias, Junta de Andalucía, Spain
- IDI-20180052 Hispanagar SA, Burgos, Spain, through CDTI, Ministry of Science and Innovation, Spain, Pro-grama Operativo Plurirregional de Crecimiento Inteligente (CRIN)
- B-CTS-504-UGR20 B-CTS-450-UGR20 marco del Programa Operativo FEDER Andalucía 2014-2020, University of Granada and Conseje-ría de Transformación Económica, Industria, Conocimiento y Universidades
Collapse
Affiliation(s)
- Olimpia Ortiz-Arrabal
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain
- Doctoral Program in Biochemistry and Molecular Biology, University of Granada, E18016 Granada, Spain
| | - Ainhoa Irastorza-Lorenzo
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain
| | - Miguel Ángel Martín-Piedra
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain
| | - Víctor Carriel
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain
| | - Ingrid Garzón
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain
| | - Paula Ávila-Fernández
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain
| | | | | | | | | | - Antonio Campos
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, E18016 Granada, Spain
| |
Collapse
|
9
|
Ferracini R, Artiaco S, Daghino W, Falco M, Gallo A, Garibaldi R, Tiraboschi E, Guidotti C, Bistolfi A. Microfragmented Adipose Tissue (M-FATS) for Improved Healing of Surgically Repaired Achilles Tendon Tears: A Preliminary Study. Foot Ankle Spec 2022; 15:472-478. [PMID: 33241717 DOI: 10.1177/1938640020974557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Tendon healing is a complicated process that results in inferior structural and functional properties when compared with healthy tendon; the purpose of this study was to assess the effects of the adjunct of microfragmented adipose tissue (M-FATS) after the suture of a series of Achilles tendons. METHODS After complete Achilles tendon tear, 8 patients underwent open suture repair in conjunction with perilesional application of a preparation of M-FATS rich in mesenchymal stem cells. Results were compared with a similar group of patients treated with conventional open suture. Outcomes were evaluated based on range of motion, functional recovery, and complications according to the American Orthopedic Foot and Ankle Society (AOFAS) score and Foot and Ankle Disability Index (FADI). Achilles tendons were examined by ultrasound (US) at 3 months. RESULTS The AOFAS and FADI scores showed no differences between the 2 groups. US evaluation showed quicker tendon remodeling in the M-FATS group. Adverse events were not documented for both procedures. CONCLUSIONS The combined application of derived M-FATS for tendon rupture is safe and presents new possibilities for enhanced healing. LEVELS OF EVIDENCE Level IIIb: Case control study.
Collapse
Affiliation(s)
- Riccardo Ferracini
- Orthopaedic Unit, Koelliker Hospital, Turin, Italy.,Orthopaedic Clinic, University of Genova, Italy
| | - Stefano Artiaco
- Department of Orthopaedics, Traumatology and Rehabilitation, Hospital Città della Salute e della Scienza, Turin, Italy
| | - Walter Daghino
- Department of Orthopaedics, Traumatology and Rehabilitation, Hospital Città della Salute e della Scienza, Turin, Italy
| | - Mara Falco
- Radiodiagnostic Cellini Humanitas, Turin, Italy
| | - Alessandra Gallo
- Diagnostic Imaging and Radiotherapy, Koelliker Hospital, Turin, Italy
| | | | | | - Claudio Guidotti
- Department of Orthopaedics, Traumatology and Rehabilitation, Hospital Città della Salute e della Scienza, Turin, Italy
| | - Alessandro Bistolfi
- Department of Orthopaedics, Traumatology and Rehabilitation, Hospital Città della Salute e della Scienza, Turin, Italy
| |
Collapse
|
10
|
Wu T, Qi W, Shan H, Tu B, Jiang S, Lu Y, Wang F. Ginsenoside Rg1 enhances the healing of injured tendon in achilles tendinitis through the activation of IGF1R signaling mediated by oestrogen receptor. J Ginseng Res 2022; 46:526-535. [PMID: 35818420 PMCID: PMC9270649 DOI: 10.1016/j.jgr.2021.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/22/2021] [Accepted: 08/17/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND During the pathogenesis of tendinopathy, the chronic inflammation caused by the injury and apoptosis leads to the generation of scars. Ginsenoside Rg1 (Rg1) is extracted from ginseng and has anti-inflammatory effects. Rg1 is a unique phytoestrogen that can activate the estrogen response element. This research aimed to explore whether Rg1 can function in the process of tendon repair through the estrogen receptor. METHODS In this research, the effects of Rg1 were evaluated in tenocytes and in a rat model of Achilles tendinitis (AT). Protein levels were shown by western blotting. qRT-PCR was employed for evaluating mRNA levels. Cell proliferation was evaluated through EdU assay and cell migration was evaluated by transwell assay and scratch test assay. RESULTS Rg1 up-regulated the expression of matrix-related factors and function of tendon in AT rat model. Rg1 reduced early inflammatory response and apoptosis in the tendon tissue of AT rat model. Rg1 promoted tenocyte migration and proliferation. The effects of Rg1 on tenocytes were inhibited by ICI182780. Rg1 activates the insulin-like growth factor-I receptor (IGF1R) and MAPK signaling pathway. CONCLUSION Rg1 promotes injured tendon healing in AT rat model through IGF1R and MAPK signaling pathway activation.
Collapse
Affiliation(s)
| | | | - Haojie Shan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Bin Tu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shilin Jiang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ye Lu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
11
|
Effects of a continuous nursing care model on elderly patients with total hip arthroplasty: a randomized controlled trial. Aging Clin Exp Res 2022; 34:1603-1611. [PMID: 34476774 DOI: 10.1007/s40520-021-01965-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/14/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Continuous nursing care (CNC) is an extended service based on meeting the needs of discharged patients for post-discharge treatment and rehabilitation. This research aimed to investigate the effects of CNC on older patients with total hip arthroplasty and to offer a scientific basis for improving the prognosis. METHODS A total of 134 patients with total hip arthroplasty were randomly divided into the control group (n = 67) and the intervention group (n = 67). The control group was treated by conventional nursing care and the intervention group was treated by CNC. Harris hip score, Barthel index, the activities of daily living (ADL) scale, self-rating depression scale (SDS) and self-rating anxiety scale (SAS) in these two groups were evaluated. Demographic characteristics between groups were analyzed by unpaired t test. The observation indexes between groups were assessed by two-way ANOVA test followed by Tukey's multiple comparisons test. RESULTS The scores of Harris hip score, Barthel index, ADL, SDS and SAS in the intervention group after intervention and after follow-up were better than the intervention group before intervention (all p < 0.01). Meanwhile, the scores of Harris hip score, Barthel index, ADL, SDS and SAS in the intervention group were better than the control group both after intervention and after follow-up (all p < 0.01). CONCLUSION In conclusion, CNC showed better efficacy than conventional nursing care in promoting hip joint function recovery, improving quality of life and alleviating anxiety and depression for older patients with total hip arthroplasty.
Collapse
|
12
|
Utami Nike D, Md Fadilah NI, Sallehuddin N, Nor Azlan AYH, Imran FH, Maarof M, Fauzi MB. Genipin-Crosslinking Effects on Biomatrix Development for Cutaneous Wound Healing: A Concise Review. Front Bioeng Biotechnol 2022; 10:865014. [PMID: 35677301 PMCID: PMC9169157 DOI: 10.3389/fbioe.2022.865014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/15/2022] [Indexed: 12/17/2022] Open
Abstract
Split skin graft (SSG), a standard gold treatment for wound healing, has numerous limitations such as lack of fresh skin to be applied, tedious process, severe scarring, and keloid formation followed by higher risks of infection. Thus, there is a gap in producing polymeric scaffolds as an alternative for wound care management. Bioscaffold is the main component in tissue engineering technology that provides porous three-dimensional (3D) microarchitecture for cells to survive. Upon skin tissue reconstruction, the 3D-porous structure ensures sufficient nutrients and gaseous diffusion and cell penetration that improves cell proliferation and vascularization for tissue regeneration. Hence, it is highly considered a promising candidate for various skin wound healing applications. To date, natural-based crosslinking agents have been extensively used to tailor the physicochemical and mechanical properties of the skin biomatrix. Genipin (GNP) is preferable to other plant-based crosslinkers due to its biological activities, such as antiinflammatory and antioxidant, which are key players to boost skin wound healing. In addition, it has shown a noncytotoxic effect and is biocompatible with human skin cells. This review validated the effects of GNP in biomatrix fabrication for skin wound healing from the last 7 years of established research articles and stipulated the biomaterial development-scale point of view. Lastly, the possible role of GNP in the skin wound healing cascade is also discussed. Through the literature output, it can be concluded that GNP has the capability to increase the stability of biomatrix and maintain the skin cells viability, which will contribute in accelerating wound healing.
Collapse
Affiliation(s)
- Dewi Utami Nike
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nusaibah Sallehuddin
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ahmad Yasser Hamdi Nor Azlan
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Malaysia
| | - Farrah Hani Imran
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- *Correspondence: Mh Busra Fauzi,
| |
Collapse
|
13
|
Yang QQ, Zhang L, Zhou YL, Tang JB. Morphological changes of macrophages and their potential contribution to tendon healing. Colloids Surf B Biointerfaces 2021; 209:112145. [PMID: 34637957 DOI: 10.1016/j.colsurfb.2021.112145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/03/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022]
Abstract
Poor healing ability and adhesion formation greatly hinder the recovery of injured tendon function. Previously, our local sustained gene delivery system by using cyclooxygenases (COX-1 and COX-2)-engineered miRNA plasmid/nanoparticles loaded hydrogel significantly inhibited adhesion formation and promoted tendon healing. The present study aims to study morphological changes of the macrophages in the healing tendons after above treatment with the hydrogel. Firstly, we assessed the therapeutic effect of localized delivery of the hydrogel on cyclooxygenases in the injured rat Achilles tendon model. We found ultimate strengths of the healing tendons were significantly increased at week 2 and 3. We then studied the distribution of macrophages before and after tendon injury, and found macrophages were rapidly recruited into injured sites of tendons. After being isolated and cultured, macrophages were transfected with 6-Carboxyfluorescein (FAM) labeled siRNA/nanoparticles and presented a high transfection efficiency (>70%). We further compared the change of iNOS/CD206 in macrophages between negative control siRNA/nanoparticle group and COX siRNA/nanoparticle group. The major finding is that the morphology of the macrophages changed from type I macrophages to type II macrophages after transfection of COX siRNA/nanoparticles in vitro. Subsequently, rat Achilles tendon cells were cultured with supernatant collected from macrophages transfected with negative control siRNA/nanoparticles and COX siRNA/nanoparticles, and the proliferation of tendon cells was significantly increased in COX siRNA/nanoparticle supernatant group. Because type II macrophages are responsible for tissue repair, the changes in macrophage polarization from M1 to M2 may be one of the important events in promoting the tendon healing.
Collapse
Affiliation(s)
- Qian Qian Yang
- The Nanomedicine Research Laboratory, Research for Frontier Medicine and Hand Surgery Research Center, Research Center of Clinic Medicine, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Luzhong Zhang
- The Nanomedicine Research Laboratory, Research for Frontier Medicine and Hand Surgery Research Center, Research Center of Clinic Medicine, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - You Lang Zhou
- The Nanomedicine Research Laboratory, Research for Frontier Medicine and Hand Surgery Research Center, Research Center of Clinic Medicine, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China.
| | - Jin Bo Tang
- The Nanomedicine Research Laboratory, Research for Frontier Medicine and Hand Surgery Research Center, Research Center of Clinic Medicine, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
14
|
Linares-Gonzalez L, Rodenas-Herranz T, Campos F, Ruiz-Villaverde R, Carriel V. Basic Quality Controls Used in Skin Tissue Engineering. Life (Basel) 2021; 11:1033. [PMID: 34685402 PMCID: PMC8541591 DOI: 10.3390/life11101033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/25/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
Reconstruction of skin defects is often a challenging effort due to the currently limited reconstructive options. In this sense, tissue engineering has emerged as a possible alternative to replace or repair diseased or damaged tissues from the patient's own cells. A substantial number of tissue-engineered skin substitutes (TESSs) have been conceived and evaluated in vitro and in vivo showing promising results in the preclinical stage. However, only a few constructs have been used in the clinic. The lack of standardization in evaluation methods employed may in part be responsible for this discrepancy. This review covers the most well-known and up-to-date methods for evaluating the optimization of new TESSs and orientative guidelines for the evaluation of TESSs are proposed.
Collapse
Affiliation(s)
- Laura Linares-Gonzalez
- Servicio de Dermatología, Hospital Universitario San Cecilio, 18016 Granada, Spain; (L.L.-G.); (T.R.-H.)
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Teresa Rodenas-Herranz
- Servicio de Dermatología, Hospital Universitario San Cecilio, 18016 Granada, Spain; (L.L.-G.); (T.R.-H.)
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Fernando Campos
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Ricardo Ruiz-Villaverde
- Servicio de Dermatología, Hospital Universitario San Cecilio, 18016 Granada, Spain; (L.L.-G.); (T.R.-H.)
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Víctor Carriel
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| |
Collapse
|
15
|
Liu X, Dai TJ, Li BL, Li C, Zheng ZY, Liu Y. Early functional rehabilitation compared with traditional immobilization for acute Achilles tendon ruptures : a meta-analysis. Bone Joint J 2021; 103-B:1021-1030. [PMID: 34058871 DOI: 10.1302/0301-620x.103b6.bjj-2020-1890.r1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AIMS The aim of this meta-analysis was to assess the prognosis after early functional rehabilitation or traditional immobilization in patients who underwent operative or nonoperative treatment for rupture of the Achilles tendon. METHODS PubMed, Embase, Web of Science, and Cochrane Library were searched for randomized controlled trials (RCTs) from their inception to 3 June 2020, using keywords related to rupture of the Achilles tendon and rehabilitation. Data extraction was undertaken by independent reviewers and subgroup analyses were performed based on the form of treatment. Risk ratios (RRs) and weighted mean differences (WMDs) (with 95% confidence intervals (CIs)) were used as summary association measures. RESULTS We included 19 trials with a total of 1,758 patients. There was no difference between the re-rupture rate (RR 0.84 (95% CI 0.56 to 1.28); p = 0.423), time to return to work (WMD -1.29 (95% CI -2.63 to 0.05); p = 0.060), and sporting activity (WMD -1.50 (95% CI -4.36 to 1.37); p = 0.306) between the early functional rehabilitation and the traditional immobilization treatment strategies. Early rehabilitation up to 12 weeks yielded significantly better Achilles tendon Total Rupture Scores ((ATRS) WMD 5.11 (95% CI 2.10 to 8.12); p < 0.001). Patients who underwent functional rehabilitation had significantly lower limb symmetry index of heel-rise work ((HRW) WMD -4.19 (95% CI -8.20 to 0.17); p = 0.041) at one year. CONCLUSION Early functional rehabilitation is safe and provides better early function and the same functional outcome in the longer term. Cite this article: Bone Joint J 2021;103-B(6):1021-1030.
Collapse
Affiliation(s)
- Xuan Liu
- Beijing Sport University, Beijing, China
| | - Tian-Jiao Dai
- Beijing Sport University, Beijing, China.,Jiangsu College of Nursing, Jiangsu, China
| | - Bao-Lin Li
- Beijing Sport University, Beijing, China
| | - Chen Li
- Beijing Sport University, Beijing, China
| | | | - Ye Liu
- Beijing Sport University, Beijing, China
| |
Collapse
|
16
|
García-García ÓD, El Soury M, González-Quevedo D, Sánchez-Porras D, Chato-Astrain J, Campos F, Carriel V. Histological, Biomechanical, and Biological Properties of Genipin-Crosslinked Decellularized Peripheral Nerves. Int J Mol Sci 2021; 22:ijms22020674. [PMID: 33445493 PMCID: PMC7826762 DOI: 10.3390/ijms22020674] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Acellular nerve allografts (ANGs) represent a promising alternative in nerve repair. Our aim is to improve the structural and biomechanical properties of biocompatible Sondell (SD) and Roosens (RS) based ANGs using genipin (GP) as a crosslinker agent ex vivo. The impact of two concentrations of GP (0.10% and 0.25%) on Wistar rat sciatic nerve-derived ANGs was assessed at the histological, biomechanical, and biocompatibility levels. Histology confirmed the differences between SD and RS procedures, but not remarkable changes were induced by GP, which helped to preserve the nerve histological pattern. Tensile test revealed that GP enhanced the biomechanical properties of SD and RS ANGs, being the crosslinked RS ANGs more comparable to the native nerves used as control. The evaluation of the ANGs biocompatibility conducted with adipose-derived mesenchymal stem cells cultured within the ANGs confirmed a high degree of biocompatibility in all ANGs, especially in RS and RS-GP 0.10% ANGs. Finally, this study demonstrates that the use of GP could be an efficient alternative to improve the biomechanical properties of ANGs with a slight impact on the biocompatibility and histological pattern. For these reasons, we hypothesize that our novel crosslinked ANGs could be a suitable alternative for future in vivo preclinical studies.
Collapse
Affiliation(s)
- Óscar Darío García-García
- Tissue Engineering Group, Department of Histology, University of Granada, 18016 Granada, Spain; (Ó.D.G.-G.); (M.E.S.); (D.G.-Q.); (D.S.-P.); (J.C.-A.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain
- Doctoral Program in Biomedicine, University of Granada, 18012 Granada, Spain
| | - Marwa El Soury
- Tissue Engineering Group, Department of Histology, University of Granada, 18016 Granada, Spain; (Ó.D.G.-G.); (M.E.S.); (D.G.-Q.); (D.S.-P.); (J.C.-A.)
- Department of Clinical and Biological Sciences and Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, 10043 Orbassano, Italy
| | - David González-Quevedo
- Tissue Engineering Group, Department of Histology, University of Granada, 18016 Granada, Spain; (Ó.D.G.-G.); (M.E.S.); (D.G.-Q.); (D.S.-P.); (J.C.-A.)
- Department of Orthopedic Surgery and Traumatology, Regional University Hospital of Málaga, 29010 Málaga, Spain
| | - David Sánchez-Porras
- Tissue Engineering Group, Department of Histology, University of Granada, 18016 Granada, Spain; (Ó.D.G.-G.); (M.E.S.); (D.G.-Q.); (D.S.-P.); (J.C.-A.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, University of Granada, 18016 Granada, Spain; (Ó.D.G.-G.); (M.E.S.); (D.G.-Q.); (D.S.-P.); (J.C.-A.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, University of Granada, 18016 Granada, Spain; (Ó.D.G.-G.); (M.E.S.); (D.G.-Q.); (D.S.-P.); (J.C.-A.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain
- Correspondence: (F.C.); (V.C.)
| | - Víctor Carriel
- Tissue Engineering Group, Department of Histology, University of Granada, 18016 Granada, Spain; (Ó.D.G.-G.); (M.E.S.); (D.G.-Q.); (D.S.-P.); (J.C.-A.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain
- Correspondence: (F.C.); (V.C.)
| |
Collapse
|