1
|
Yoshii T, Hashimoto M, Egawa S, Hirai T, Inose H, Okawa A. Hydroxyapatite/collagen composite graft for posterior lumbar interbody fusion: a comparison with local bone graft. J Orthop Surg Res 2021; 16:639. [PMID: 34689807 PMCID: PMC8543945 DOI: 10.1186/s13018-021-02798-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
Background Autologous bone has been used for posterior lumbar intervertebral fusion (PLIF). However, harvesting autologous bone graft is associated with donor site complications. We previously developed a hydroxyapatite/collagen (HAp/Col) composite as an osteoconductive artificial bone, characterized by having a highly porous structure with sponge‐like elasticity. This study aims to investigate the effectiveness of HAp/Col composite with bone marrow aspirate (BMA) as a graft substitute in PLIF for the treatment of lumbar spinal diseases. Methods This study prospectively investigated patients who received one-level PLIF. For the interbody fusion, two titanium cages were inserted. On the one side of interbody space, HAp/Col composite incorporated with BMA filling the titanium cage was grafted. On the other side, local bone graft (LBG) harvested during decompressive laminotomy was grafted and then one-level instrumentation using pedicle screws was performed. The target levels were at L2/3 in 2 cases, L3/4 in 3 cases, L4/5 in 36 cases, and L5/S in 5 cases. We evaluated clinical symptoms and radiological outcomes of 46 patients and compared the fusion status of HAp/Col composite with that of LBG. Results The 1-year postoperative CT evaluation demonstrated that, in the HAp/Col, a complete fusion was observed in 38 patients (82.6%), whereas in the LBG, a complete fusion was observed in 35 patients (76.1%). There were no statistical differences between the HAp/Col and LBG. In the HAp/Col, incomplete fusion was observed in five patients (10.9%) and non-fusion in two patients (4.3%), and in the LBG, incomplete fusion was observed in nine patients (19.6%) and non-fusion in two patients (4.3%). At 2 years after the surgery, complete fusion increased to 44 patients (95.7%) in the HAp/Col and 41 patients (89.1%) in the LBG. There were no significant differences in the clinical scores for lumbar spine between patients with fusion and non-fusion. Conclusions The HAp/Col composite with BMA in the titanium cage can be effectively used as an alternative to conventional autologous LBG for intervertebral spinal fusion. Trial registration University hospital Medical Information Network, UMIN000045010, July 30th, 2021, Retrospectively registered, https://www.umin.ac.jp/english/.
Collapse
Affiliation(s)
- Toshitaka Yoshii
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, 1 Chome-5-45 Yushima, Bunkyo City, Tokyo, 113-8510, Japan.
| | - Motonori Hashimoto
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, 1 Chome-5-45 Yushima, Bunkyo City, Tokyo, 113-8510, Japan
| | - Satoru Egawa
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, 1 Chome-5-45 Yushima, Bunkyo City, Tokyo, 113-8510, Japan
| | - Takashi Hirai
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, 1 Chome-5-45 Yushima, Bunkyo City, Tokyo, 113-8510, Japan
| | - Hiroyuki Inose
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, 1 Chome-5-45 Yushima, Bunkyo City, Tokyo, 113-8510, Japan
| | - Atsushi Okawa
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, 1 Chome-5-45 Yushima, Bunkyo City, Tokyo, 113-8510, Japan
| |
Collapse
|
2
|
Sobczak-Kupiec A, Drabczyk A, Florkiewicz W, Głąb M, Kudłacik-Kramarczyk S, Słota D, Tomala A, Tyliszczak B. Review of the Applications of Biomedical Compositions Containing Hydroxyapatite and Collagen Modified by Bioactive Components. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2096. [PMID: 33919199 PMCID: PMC8122483 DOI: 10.3390/ma14092096] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Regenerative medicine is becoming a rapidly evolving technique in today's biomedical progress scenario. Scientists around the world suggest the use of naturally synthesized biomaterials to repair and heal damaged cells. Hydroxyapatite (HAp) has the potential to replace drugs in biomedical engineering and regenerative drugs. HAp is easily biodegradable, biocompatible, and correlated with macromolecules, which facilitates their incorporation into inorganic materials. This review article provides extensive knowledge on HAp and collagen-containing compositions modified with drugs, bioactive components, metals, and selected nanoparticles. Such compositions consisting of HAp and collagen modified with various additives are used in a variety of biomedical applications such as bone tissue engineering, vascular transplantation, cartilage, and other implantable biomedical devices.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bożena Tyliszczak
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland; (A.S.-K.); (A.D.); (W.F.); (M.G.); (S.K.-K.); (D.S.); (A.T.)
| |
Collapse
|
3
|
Egawa S, Hirai K, Matsumoto R, Yoshii T, Yuasa M, Okawa A, Sugo K, Sotome S. Efficacy of Antibiotic-Loaded Hydroxyapatite/Collagen Composites Is Dependent on Adsorbability for Treating Staphylococcus aureus Osteomyelitis in Rats. J Orthop Res 2020; 38:843-851. [PMID: 31691335 PMCID: PMC7155147 DOI: 10.1002/jor.24507] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 10/25/2019] [Indexed: 02/04/2023]
Abstract
Osteomyelitis remains one of the most challenging disorders for orthopedic doctors despite the advancement of therapeutic techniques. The purpose of this study was to investigate the feasibility of local antibiotic administration using hydroxyapatite/collagen (HAp/Col) as a drug delivery system. We hypothesized that higher adsorbability of antibiotics onto HAp/Col will result in more efficacious activity and therefore, treatment of osteomyelitis. Eight antibiotics were examined in this study: amikacin, cefazolin, cefotiam, daptomycin, minocycline, piperacillin, teicoplanin, and vancomycin. Aligning with their adsorbability onto HAp/Col, minocycline, teicoplanin, and vancomycin showed antibacterial effects up to 14 days after subcutaneous implantation in Wistar rats; while antibiotics with reduced adsorbability (cefazolin, cefotiam, piperacillin) had diminished antibacterial effects. Furthermore, when implanted into a rat femur, vancomycin levels from the Hap/Col were detected in the medullary space above the minimum inhibitory concentration for Staphylococcus aureus for 7 days, while cefazolin levels were undetectable. Aligning with these results, implantation of Hap/Col impregnated with vancomycin to the femur in an acute osteomyelitis rat model had a greater therapeutic effect than cefazolin, as measured by the number of bacteria, the extent of bone destruction, and bone regeneration. These results indicated that the adsorbability of antibiotics onto their carrier is important when locally administered and that HAp/Col scaffolds might be a useful antibiotic delivery system for osteomyelitis. © 2019 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society J Orthop Res 38:843-851, 2020.
Collapse
Affiliation(s)
- Satoru Egawa
- Department of Orthopaedic and Spinal Surgery, Graduate SchoolTokyo Medical and Dental University1‐5‐45 Yushima, Bunkyo‐kuTokyo113‐8519Japan
| | - Keigo Hirai
- Department of Orthopaedic and Spinal Surgery, Graduate SchoolTokyo Medical and Dental University1‐5‐45 Yushima, Bunkyo‐kuTokyo113‐8519Japan
| | - Rempei Matsumoto
- Department of Orthopaedic and Spinal Surgery, Graduate SchoolTokyo Medical and Dental University1‐5‐45 Yushima, Bunkyo‐kuTokyo113‐8519Japan
| | - Toshitaka Yoshii
- Department of Orthopaedic and Spinal Surgery, Graduate SchoolTokyo Medical and Dental University1‐5‐45 Yushima, Bunkyo‐kuTokyo113‐8519Japan
| | - Masato Yuasa
- Department of Orthopaedic and Spinal Surgery, Graduate SchoolTokyo Medical and Dental University1‐5‐45 Yushima, Bunkyo‐kuTokyo113‐8519Japan
| | - Atsushi Okawa
- Department of Orthopaedic and Spinal Surgery, Graduate SchoolTokyo Medical and Dental University1‐5‐45 Yushima, Bunkyo‐kuTokyo113‐8519Japan
| | - Ken Sugo
- HOYA Technosurgical Corporation1‐1‐110, Tsutsujigaoka Akishima‐shiTokyo196‐0012Japan
| | - Shinichi Sotome
- Department of Orthopaedic Research and Development, Graduate SchoolTokyo, Medical and Dental University1‐5‐45 Yushima, Bunkyo‐kuTokyo113‐8519Japan
| |
Collapse
|
4
|
Takeoka Y, Yurube T, Morimoto K, Kunii S, Kanda Y, Tsujimoto R, Kawakami Y, Fukase N, Takemori T, Omae K, Kakiuchi Y, Miyazaki S, Kakutani K, Takada T, Nishida K, Fukushima M, Kuroda R. Reduced nucleotomy-induced intervertebral disc disruption through spontaneous spheroid formation by the Low Adhesive Scaffold Collagen (LASCol). Biomaterials 2020; 235:119781. [PMID: 31981764 DOI: 10.1016/j.biomaterials.2020.119781] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/24/2022]
Abstract
Back pain is a global health problem with a high morbidity and socioeconomic burden. Intervertebral disc herniation and degeneration are its primary cause, further associated with neurological radiculopathy, myelopathy, and paralysis. The current surgical treatment is principally discectomy, resulting in the loss of spinal movement and shock absorption. Therefore, the development of disc regenerative therapies is essential. Here we show reduced disc damage by a new collagen type I-based scaffold through actinidain hydrolysis-Low Adhesive Scaffold Collagen (LASCol)-with a high 3D spheroid-forming capability, water-solubility, and biodegradability and low antigenicity. In human disc nucleus pulposus and annulus fibrosus cells surgically obtained, time-dependent spheroid formation with increased expression of phenotypic markers and matrix components was observed on LASCol but not atelocollagen (AC). In a rat tail nucleotomy model, LASCol-injected and AC-injected discs presented relatively similar radiographic and MRI damage control; however, LASCol, distinct from AC, decelerated histological disc disruption, showing collagen type I-comprising LASCol degradation, aggrecan-positive and collagen type II-positive endogenous cell migration, and M1-polarized and also M2-polarized macrophage infiltration. Reduced nucleotomy-induced disc disruption through spontaneous spheroid formation by LASCol warrants further investigations of whether it may be an effective treatment without stem cells and/or growth factors for intervertebral disc disease.
Collapse
Affiliation(s)
- Yoshiki Takeoka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Takashi Yurube
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Koichi Morimoto
- Department of Genetic Engineering, Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493, Japan.
| | - Saori Kunii
- Department of Genetic Engineering, Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493, Japan.
| | - Yutaro Kanda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Ryu Tsujimoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Yohei Kawakami
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Naomasa Fukase
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Toshiyuki Takemori
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Kaoru Omae
- Translational Research Center for Medical Innovation (TRI), Foundation for Biomedical Research and Innovation at Kobe, 1-5-4 Minatojima-Minamimachi, Kobe, 650-0047, Japan.
| | - Yuji Kakiuchi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Shingo Miyazaki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Kenichiro Kakutani
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Toru Takada
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Kotaro Nishida
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Masanori Fukushima
- Translational Research Center for Medical Innovation (TRI), Foundation for Biomedical Research and Innovation at Kobe, 1-5-4 Minatojima-Minamimachi, Kobe, 650-0047, Japan.
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
5
|
Wang H, Tang X, Li W, Chen J, Li H, Yan J, Yuan X, Wu H, Liu C. Enhanced osteogenesis of bone marrow stem cells cultured on hydroxyapatite/collagen I scaffold in the presence of low-frequency magnetic field. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:89. [PMID: 31342178 DOI: 10.1007/s10856-019-6289-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 01/29/2019] [Indexed: 06/10/2023]
Abstract
As a non-invasive biophysical therapy, electromagnetic fields (EMF) have been widely used to promote the healing of fractures. In the present study, hydroxyapatite/collagen I (HAC) loaded with rabbit bone marrow mesenchymal stem cells (MSCs) were cultured in a dynamic perfusion bioreactor and exposed to EMF of 15 Hz/1mT. Osteogenic differentiation of the seeded cells was analyzed through the evaluation of ALP activity and osteogenesis-related genes expression in vitro. The in vivo osteogenesis efficacy of the cell laden HAC constructs treated with/without EMF was evaluated through a rabbit femur condyle defect model. The results showed that EMF of 15 Hz/1mT could enhance the osteogenic differentiation of the cells seeded on HAC scaffold. Furthermore, the in vivo experiments demonstrated that EMF exposure could promote bone regeneration within the defect and bone integration between the graft and host bone. Taking together, the MSCs seeded HAC scaffold combined with EMF exposure could be a promising approach for bone tissue engineering.
Collapse
Affiliation(s)
- Huaixi Wang
- Department of Spine and Spinal Cord Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu road, 450003, Zhengzhou, P. R. China
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, 430030, Wuhan, P. R. China
| | - Xiangyu Tang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, 430030, Wuhan, P. R. China
| | - Wenkai Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, 430030, Wuhan, P. R. China
| | - Jingyuan Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, 430030, Wuhan, P. R. China
| | - Hao Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, 430030, Wuhan, P. R. China
| | - Jiyuan Yan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, 430030, Wuhan, P. R. China
| | - Xuefeng Yuan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, 430030, Wuhan, P. R. China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, 430030, Wuhan, P. R. China.
| | - Chaoxu Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, 430030, Wuhan, P. R. China.
| |
Collapse
|
6
|
Liu H, Mukherjee S, Liu Y, Ramakrishna S. Recent studies on electrospinning preparation of patterned, core-shell, and aligned scaffolds. J Appl Polym Sci 2018. [DOI: 10.1002/app.46570] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Huichao Liu
- College of Mechanical and Electric Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Shayanti Mukherjee
- Centre for Nanofiber and Nanotechnology; National University of Singapore; Singapore 117576 Singapore
- The Ritchie Centre; Hudson Institute of Medical Research; Clayton Australia
| | - Yong Liu
- College of Mechanical and Electric Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Seeram Ramakrishna
- Centre for Nanofiber and Nanotechnology; National University of Singapore; Singapore 117576 Singapore
| |
Collapse
|
7
|
Efficacy and safety of porous hydroxyapatite/type 1 collagen composite implantation for bone regeneration: A randomized controlled study. J Orthop Sci 2016; 21:373-80. [PMID: 26961287 DOI: 10.1016/j.jos.2016.01.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 01/06/2016] [Accepted: 01/22/2016] [Indexed: 02/09/2023]
Abstract
BACKGROUND Porous hydroxyapatite/collagen composite (HAp/Col) is a bioresorbable bone substitute composed of nano-scale HAp and porcine type 1 collagen. In this study, the efficacy and safety were assessed in comparison to commercially available porous β-tricalcium phosphate (β-TCP). METHODS Patients with bone defects caused by benign bone tumors, fractures, or harvesting of autografts were randomly allocated for implantation of porous HAp/Col (n = 63) or porous β-TCP (n = 63). X-ray images were scored and used to evaluate the efficacy of the implantation until 24 weeks after surgery. Blood tests and observation of the surgical site were also performed to evaluate the safety of the implants. In total, 59 and 60 cases were analyzed in the porous HAp/Col and β-TCP groups, respectively. RESULTS At 18 and 24 weeks after surgery, the highest grade of bone regeneration was more frequent in the porous HAp/Col group than in the porous β-TCP group (p = 0.0004 and 0.0254 respectively). Wilcoxon's rank sum test confirmed the superiority of porous HAp/Col from early time points onward (p = 0.0084, 4 w; p = 0.0037, 8 w; p = 0.0030, 12 w; p < 0.0001, 18 w; and p = 0.0316, 24 w). The incidence of adverse effects was higher in the porous HAp/Col group than in the β-TCP group. However, no serious adverse events were reported and no cases needed to drop out of the clinical trial. CONCLUSIONS The superiority of porous HAp/Col for bone regeneration in comparison to an established porous β-TCP was confirmed. Although the incidence of side effects associated with the porous HAp/Col implant was higher than that in the β-TCP group, no serious adverse events occurred that resulted in rejection of the implants.
Collapse
|
8
|
Masaoka T, Yamada T, Yuasa M, Yoshii T, Okawa A, Morita S, Kozaka Y, Hirano M, Sotome S. Biomechanical evaluation of the rabbit tibia after implantation of porous hydroxyapatite/collagen in a rabbit model. J Orthop Sci 2016; 21:230-6. [PMID: 26778623 DOI: 10.1016/j.jos.2015.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/05/2015] [Accepted: 11/30/2015] [Indexed: 02/09/2023]
Abstract
PURPOSE Porous hydroxyapatite/collagen composite (HAp/Col) is an artificial bone substitute with excellent osteoconduction and sponge-like elasticity. However, the porosity of porous HAp/Col is as high as 95% and its mechanical strength is very poor. The aim of this study was to biomechanically analyze sites implanted with porous HAp/Col. METHODS Rectangular cortical bone defects (3 × 8 mm) were made in the tibia of rabbits and filled with porous HAp/Col or porous β-tricalcium phosphate or left vacant. The tibia was harvested at 4 or 12 weeks after surgery. The harvested specimens were analyzed using a micro-CT system, and the mechanical strength of the specimens was examined by torsion testing. RESULTS Quantitative micro-CT analysis of the regenerated bone revealed that both bone substitutes equally facilitated bone regeneration. Biomechanical testing demonstrated that the torsional strength of HAp/Col-implanted sites was higher than that of the control (vs control: p = 0.030 and vs β-TCP: p = 0.056). CONCLUSIONS The results indicate that porous HAp/Col implantation is an effective strategy for recovery of the mechanical strength of bone defects.
Collapse
Affiliation(s)
- Tomokazu Masaoka
- Department of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, Japan; Department of Rehabilitation Medicine, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, Japan
| | - Tsuyoshi Yamada
- Department of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, Japan
| | - Masato Yuasa
- Department of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, Japan
| | - Toshitaka Yoshii
- Department of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, Japan
| | - Atsushi Okawa
- Department of Orthopaedic and Spinal Surgery, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, Japan
| | - Sadao Morita
- Department of Rehabilitation Medicine, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, Japan
| | - Yuko Kozaka
- HOYA Technosurgical Corporation, 4-28-4 Yotsuya Shinjuku-ku, Tokyo, Japan
| | - Masahiro Hirano
- HOYA Technosurgical Corporation, 4-28-4 Yotsuya Shinjuku-ku, Tokyo, Japan
| | - Shinichi Sotome
- Department of Orthopaedic Research and Development, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
9
|
Taniyama T, Masaoka T, Yamada T, Wei X, Yasuda H, Yoshii T, Kozaka Y, Takayama T, Hirano M, Okawa A, Sotome S. Repair of osteochondral defects in a rabbit model using a porous hydroxyapatite collagen composite impregnated with bone morphogenetic protein-2. Artif Organs 2015; 39:529-35. [PMID: 25865039 DOI: 10.1111/aor.12409] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Articular cartilage has a limited capacity for spontaneous repair, and an effective method to repair damaged articular cartilage has not yet been established. The purpose of this study was to evaluate the effect of transplantation of porous hydroxyapatite collagen (HAp/Col) impregnated with bone morphogenetic protein-2 (BMP-2). To evaluate the characteristics of porous HAp/Col as a drug delivery carrier of recombinant human BMP-2 (rhBMP-2), the rhBMP-2 adsorption capacity and release kinetics of porous HAp/Col were analyzed. Porous HAp/Col impregnated with different amounts of rhBMP-2 (0, 5, and 25 μg) was implanted into osteochondral defects generated in the patellar groove of Japanese white rabbits to evaluate the effect on osteochondral defect regeneration. At 3, 6, 12, and 24 weeks after operation, samples were harvested and subjected to micro-computed tomography analysis and histological evaluation of articular cartilage and subchondral bone repair. The adsorption capacity was 329.4 μg of rhBMP-2 per cm(3) of porous HAp/Col. Although 36% of rhBMP-2 was released within 24 h, more than 50% of the rhBMP-2 was retained in the porous HAp/Col through the course of the experiment. Defects treated with 5 μg of rhBMP-2 showed the most extensive subchondral bone repair and the highest histological regeneration score, and differences against the untreated defect group were significant. The histological regeneration score of defects treated with 25 μg of rhBMP-2 increased up to 6 weeks after implantation, but then decreased. Porous HAp/Col, therefore, is an appropriate carrier for rhBMP-2. Implantation of porous HAp/Col impregnated with rhBMP-2 is effective for rigid subchondral bone repair, which is important for the repair of the smooth articular surface.
Collapse
Affiliation(s)
- Takashi Taniyama
- Department of Orthopaedic and Spinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomokazu Masaoka
- Department of Orthopaedic and Spinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tsuyoshi Yamada
- Department of Orthopaedic and Spinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Xuetao Wei
- Department of Orthopaedic and Spinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroaki Yasuda
- Department of Orthopaedic and Spinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshitaka Yoshii
- Department of Orthopaedic and Spinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuko Kozaka
- HOYA Technosurgical Corporation, Tokyo, Japan
| | | | | | - Atsushi Okawa
- Department of Orthopaedic and Spinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinichi Sotome
- Department of Orthopaedic Research and Development, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
10
|
Serum levels of M-CSF, RANKL and OPG in rats fed with Kashin-Beck disease-affected diet. J Orthop Surg Res 2014; 9:78. [PMID: 25138985 PMCID: PMC4143575 DOI: 10.1186/s13018-014-0078-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/08/2014] [Indexed: 11/17/2022] Open
Abstract
Objective There were no studies on the macrophage colony-stimulating factor (M-CSF), receptor activator of NF-kappaB ligand (RANKL) and osteoprotegerin (OPG) in the pathogenesis of Kashin-Beck disease (KBD). The objective of the present study was to investigate the serum M-CSF, RANKL and OPG in rats fed with KBD-affected diet. Methods Ninety Wistar rats were divided into five groups. The rats received standard commercial feed with or without T-2 toxin additive, low protein feed with or without or T-2 toxin additive and the KBD-affected feed. The serum bioactivity of M-CSF, RANKL and OPG was tested by enzyme-linked immunosorbent assay. Results The serum levels of M-CSF in E group rats were higher than those in the other groups in the five groups (P < 0.01). The serum levels of RANKL and OPG in E group rats were highest in the five groups and have significant difference compared to the other groups (P < 0.05). Conclusions The molecule of M-CSF, RANKL and OPG may be involved in the regulation of epiphyseal plate injury and repair in KBD, and its participation in the pathogenesis of KBD should be studied in the future.
Collapse
|
11
|
Zhang Q, Liu M, Zhou Y, Liu W, Shen J, Shen Y, Liu L. The effect of alendronate on the expression of important cell factors in osteoclasts. Mol Med Rep 2013; 8:1195-203. [PMID: 23942871 DOI: 10.3892/mmr.2013.1630] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/24/2013] [Indexed: 11/05/2022] Open
Abstract
This study investigated the effects of alendronate (ALN) on critical cell factors in osteoclasts. RAW 264.7 cells were induced by sRANKL to change to mature osteoclasts. On the sixth day of incubation, the osteoclasts were treated with ALN at various concentrations and for different incubation times. The concentration groups included 10-5 M, 10-6 M and 10-7 M ALN, respectively. The cells were incubated for 0 (control group), 2, 4, 6 and 8 h for each dose group. The mRNA and protein expression of tartrate‑resistant acid phosphatase, carbonic anhydrase II, osteoclast‑associated receptor and FAS/FASL genes in osteoclasts was analyzed. A concentration- and time‑dependent decrease in the mRNA and protein expression levels of the five genes was observed, and no significant difference between the two control groups was observed (P>0.05). Notably, significant differences between any two experimental groups were observed (P<0.05). Thus, ALN significantly decreased the expression of critical factors involved in osteoclast function.
Collapse
Affiliation(s)
- Qinghong Zhang
- Department of Prosthodontics, Stomatology Hospital, College of Medical Sciences, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | | | | | | | | | | | | |
Collapse
|