1
|
Sourugeon Y, Boffa A, Perucca Orfei C, de Girolamo L, Magalon J, Sánchez M, Tischer T, Filardo G, Laver L. Cell-based therapies have disease-modifying effects on osteoarthritis in animal models: A systematic review by the ESSKA Orthobiologic Initiative. Part 3: Umbilical cord, placenta, and other sources for cell-based injectable therapies. Knee Surg Sports Traumatol Arthrosc 2025; 33:1695-1708. [PMID: 39302089 DOI: 10.1002/ksa.12472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE This systematic review aimed to investigate in animal models the presence of disease-modifying effects driven by non-bone marrow-derived and non-adipose-derived products, with a particular focus on umbilical cord and placenta-derived cell-based therapies for the intra-articular injective treatment of osteoarthritis (OA). METHODS A systematic review was performed on three electronic databases (PubMed, Web of Science and Embase) according to PRISMA guidelines. The results were synthesised to investigate disease-modifying effects in preclinical animal studies comparing injectable umbilical cord, placenta, and other sources-derived products with OA controls. The risk of bias was assessed using the SYRCLE tool. RESULTS A total of 80 studies were included (2314 animals). Cell therapies were most commonly obtained from the umbilical cord in 33 studies and placenta/amniotic tissue in 18. Cell products were xenogeneic in 61 studies and allogeneic in the remaining 19 studies. Overall, 25/27 (92.6%) of studies on umbilical cord-derived products documented better results compared to OA controls in at least one of the following outcomes: macroscopic, histological and/or immunohistochemical findings, with 19/22 of studies (83.4%) show positive results at the cartilage level and 4/6 of studies (66.7%) at the synovial level. Placenta-derived injectable products documented positive results in 13/16 (81.3%) of the studies, 12/15 (80.0%) at the cartilage level, and 2/4 (50.0%) at the synovial level, but 2/16 studies (12.5%) found overall worse results than OA controls. Other sources (embryonic, synovial, peripheral blood, dental pulp, cartilage, meniscus and muscle-derived products) were investigated in fewer preclinical studies. The risk of bias was low in 42% of items, unclear in 49%, and high in 9% of items. CONCLUSION Interest in cell-based injectable therapies for OA treatment is soaring, particularly for alternatives to bone marrow and adipose tissue. While expanded umbilical cord mesenchymal stem cells reported auspicious disease-modifying effects in preventing OA progression in animal models, placenta/amniotic tissue also reported deleterious effects on OA joints. Lower evidence has been found for other cellular sources such as embryonic, synovial, peripheral blood, dental-pulp, cartilage, meniscus, and muscle-derived products. LEVEL OF EVIDENCE Level II.
Collapse
Affiliation(s)
- Yosef Sourugeon
- Division of Surgery, Orthopaedics Department, Chaim Sheba Medical Centre, Ramat Gan, Israel
| | - Angelo Boffa
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Carlotta Perucca Orfei
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
| | - Laura de Girolamo
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
| | - Jeremy Magalon
- INSERM, NRA, C2VN, Aix Marseille University, Marseille, France
- SAS Remedex, Marseille, France
- Cell Therapy Laboratory, Hôpital De La Conception, AP-HM, Marseille, France
| | - Mikel Sánchez
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Vitoria‑Gasteiz, Spain
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, Spain
| | - Thomas Tischer
- Department of Orthopaedic and Trauma Surgery, Malteser Waldkrankenhaus, Erlangen, Germany
- Department of Orthopaedic Surgery, University of Rostock, Rostock, Germany
| | - Giuseppe Filardo
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Surgery, Service of Orthopaedics and Traumatology, EOC, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Lior Laver
- Arthrosport Clinic, Tel‑Aviv, Israel
- Rappaport Faculty of Medicine, Technion University Hospital (IsraelInstitute of Technology), Haifa, Israel
- Department of Orthopaedics, Hillel Yaffe Medical Center (HYMC), Hadera, Israel
| |
Collapse
|
2
|
Lin J, Huang J, Jiao Z, Nian M, Li C, Dai Y, Jia S, Zhang X. Mesenchymal stem cells for osteoarthritis: Recent advances in related cell therapy. Bioeng Transl Med 2025; 10:e10701. [PMID: 39801757 PMCID: PMC11711223 DOI: 10.1002/btm2.10701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/20/2024] [Accepted: 07/04/2024] [Indexed: 01/06/2025] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease that affects the entire joint and has been a huge burden on the health care system worldwide. Although traditional therapy and targeted cartilage cell therapy have made significant progress in the treatment of OA and cartilage regeneration, there are still many problems. Mesenchymal stem cells from various tissues are the most studied cell type and have been used in preclinical and clinical studies of OA, because they are more widely available, have a greater capacity for in vitro expansion, and have anti-inflammatory and immunomodulatory properties compared to autologous chondrocytes. This article will systematically review the latest developments in these areas. It may provide new insights for improving OA and cartilage regeneration.
Collapse
Affiliation(s)
- Jianjing Lin
- Department of Sports Medicine and RehabilitationPeking University Shenzhen HospitalShenzhenChina
| | - Jingtao Huang
- Department of Sports Medicine and RehabilitationPeking University Shenzhen HospitalShenzhenChina
- Shantou University Medical CollegeShantouChina
| | - Zilu Jiao
- Department of Sports Medicine and RehabilitationPeking University Shenzhen HospitalShenzhenChina
| | - Mengyuan Nian
- Cardre Health Care DepartmentPeking University Shenzhen HospitalShenzhenChina
| | - Canfeng Li
- Department of Sports Medicine and RehabilitationPeking University Shenzhen HospitalShenzhenChina
| | - Yali Dai
- Cardre Health Care DepartmentPeking University Shenzhen HospitalShenzhenChina
| | - Shicheng Jia
- Department of Sports Medicine and RehabilitationPeking University Shenzhen HospitalShenzhenChina
- Shantou University Medical CollegeShantouChina
| | - Xintao Zhang
- Department of Sports Medicine and RehabilitationPeking University Shenzhen HospitalShenzhenChina
| |
Collapse
|
3
|
Rahmadian R, Adly M, Dilogo IH, Revilla G, Ariliusra Z. Single intra-articular injection of human synovial membrane MSC from grade IV knee osteoarthritis patient improve cartilage repair in OA rat model. J Orthop Surg Res 2024; 19:710. [PMID: 39487527 PMCID: PMC11531201 DOI: 10.1186/s13018-024-05149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/05/2024] [Indexed: 11/04/2024] Open
Abstract
AIM This study aims to assess the effectiveness of therapy of human synovial membrane-derived MSCs (SM-MSC) from OA grade IV patients in treating knee OA. METHODS SM-MSC were isolated from patients undergoing total knee replacement surgery, cultured to the fourth passage, and characterized using flow cytometry. Differentiation potential was assessed through lineage-specific staining. Osteoarthritis was induced in 24 Wistar rats via monosodium iodoacetate (MIA). The rats were divided into three groups: negative control, OA control, and OA treated with SM-MSC. Radiological, histopathological, and molecular analyses were conducted to evaluate cartilage repair and gene expression. RESULTS Flow cytometry confirmed the MSC phenotype of SM-MSC, and successful differentiation was observed. Radiological and histopathological analyses showed significant improvement in the SM-MSC treated group, with reduced cartilage damage and higher Safranin O staining compared to the OA control group. Gene expression analysis indicated increased type-2 collagen (COL-2) expression in the SM-MSC treated group, although MMP-13 levels remained unchanged across all groups. CONCLUSION Human SM-MSCs from OA grade IV patients significantly improved cartilage repair in an OA rat model, demonstrating their potential as a therapeutic option for OA. To enhance long-term efficacy and anti-inflammatory effects, further studies are needed to optimize treatment protocols, including injection frequency and dosage.
Collapse
Affiliation(s)
- Rizki Rahmadian
- Biomedical Sciences Doctoral Program, Faculty of Medicine, Andalas University, Padang, Indonesia.
- Orthopaedic and Traumatology Division, Department of Surgery, M. Djamil General Hospital, Faculty of Medicine, Andalas University, Padang, Indonesia.
| | - Marlina Adly
- Faculty of Pharmacy, Andalas University, Padang, Indonesia
| | - Ismail Hadisoebroto Dilogo
- Department of Orthopaedic and Traumatology, Cipto Mangunkusumo General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Gusti Revilla
- Department of Anatomy, Faculty of Medicine, Andalas University, Padang, Indonesia
| | - Zikril Ariliusra
- Orthopaedic and Traumatology Division, Department of Surgery, M. Djamil General Hospital, Faculty of Medicine, Andalas University, Padang, Indonesia
| |
Collapse
|
4
|
Liao J, Gu Q, Liu Z, Wang H, Yang X, Yan R, Zhang X, Song S, Wen L, Wang Y. Edge advances in nanodrug therapies for osteoarthritis treatment. Front Pharmacol 2024; 15:1402825. [PMID: 39539625 PMCID: PMC11559267 DOI: 10.3389/fphar.2024.1402825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
As global population and lifestyles change, osteoarthritis (OA) is becoming a major healthcare challenge world. OA, a chronic condition characterized by inflammatory and degeneration, often present with joint pain and can lead to irreversible disability. While there is currently no cure for OA, it is commonly managed using nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, and glucosamine. Although these treatments can alleviate symptoms, it is difficult to effectively deliver and sustain therapeutic agents within joints. The emergence of nanotechnology, particularly in form of smart nanomedicine, has introduced innovative therapeutic approaches for OA treatment. Nanotherapeutic strategies offer promising advantages, including more precise targeting of affected areas, prolonged therapeutic effects, enhanced bioavailability, and reduced systemic toxicity compared to traditional treatments. While nanoparticles show potential as a viable delivery system for OA therapies based on encouraging lab-based and clinical trials results, there remails a considerable gap between current research and clinical application. This review highlights recent advances in nanotherapy for OA and explore future pathways to refine and optimize OA treatments strategies.
Collapse
Affiliation(s)
- Jinfeng Liao
- Department of Dermatology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Qingjia Gu
- Department of ENT, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Zheng Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Hailian Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Xian Yang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongkai Yan
- Department of Radiology, Ohio state university, Columbus, OH, United States
| | - Xiaofeng Zhang
- Greenwich Hospital, Yale New Haven Health, Greenwich, CT, United States
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Lebin Wen
- Department of Thyroid, Sichuan Second Hospital of TCM, Chengdu, China
| | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
5
|
Deng Z, Zeng X, Lin B, Chen L, Wu J, Zheng J, Ma Y, Lyu FJ, Zheng Q. Human umbilical cord mesenchymal stem cells on treating osteoarthritis in a rabbit model: Injection strategies. Heliyon 2024; 10:e38384. [PMID: 39430502 PMCID: PMC11489144 DOI: 10.1016/j.heliyon.2024.e38384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
Human umbilical cord mesenchymal stem cells (UCMSCs) are a novel stem-cell source to treat osteoarthritis (OA). Here we investigated the therapeutic effects of UCMSCs injection strategies on knee OA in a rabbit model. Thirty OA rabbits randomly received normal saline, a single dose of 1 × 106 UCMSCs, or three injections of 1 × 106 UCMSCs at 2, 4, 6 weeks. Articular cartilages were collected after 8 weeks. Macroscopic and histological assessments indicated that intra-articular injection of UCMSCs, both single and multiple injection, significantly reduced the formation of periarticular osteophytes and articular cartilage degeneration when compared with the control. Furthermore, both UCMSCs injections increased the expression of chondrogenic markers in the articular cartilage, and reduced the levels of TNF-α and IL-6 in synovium. Micro-CT showed significant reduction of sub-chondral bone degeneration and osteophytes in the multiple-injection group compared to the control and single-injection group. Taken together, intra-articular injection of UCMSCs for OA treatment is safe and effective. Single and multiple injection of UCMSCs had comparable reparative effect on cartilage lesions, while multiple injection of UCMSCs further exerted effect on enhancing subchondral bone volume.
Collapse
Affiliation(s)
- Zhantao Deng
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xiaoli Zeng
- Guangdong Xiangxue Stem Cell Regenerative Medicine Technology Co., Ltd, Guangzhou, China
| | - Bofu Lin
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Lixuan Chen
- Guangdong Xiangxue Stem Cell Regenerative Medicine Technology Co., Ltd, Guangzhou, China
| | - Jiwei Wu
- Guangdong Xiangxue Stem Cell Regenerative Medicine Technology Co., Ltd, Guangzhou, China
| | - Jie Zheng
- Guangdong Xiangxue Stem Cell Regenerative Medicine Technology Co., Ltd, Guangzhou, China
| | - Yuanchen Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Feng-Juan Lyu
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Xu T, Zhang K, Hu Y, Yang R, Tang J, Fu W. Comparison of the Therapeutic Efficacy and Autophagy-Mediated Mechanisms of Action of Urine-Derived and Adipose-Derived Stem Cells in Osteoarthritis. Am J Sports Med 2024; 52:3130-3146. [PMID: 39311500 DOI: 10.1177/03635465241277176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent and disabling disease that affects a significant proportion of the global population. Urine-derived stem cells (USCs) have shown great prospects in the treatment of OA, but there is no study that has compared them with traditional stem cells. PURPOSE This study aimed to compare the therapeutic efficacy and mechanisms of USCs and adipose-derived stem cells (ADSCs) for OA treatment. STUDY DESIGN Controlled laboratory study. METHODS We compared the biological properties of USCs and ADSCs using CCK-8, colony formation, EdU, adhesion, and apoptosis assays. We evaluated the protective effects of USCs and ADSCs on IL-1β-treated OA chondrocytes by chemical staining, immunofluorescence, and Western blotting. We assessed the effects of USCs and ADSCs on chondrocyte autophagy by transmission electron microscopy, immunofluorescence, and Western blotting. We also compared the therapeutic efficacy of intra-articular injections of USCs and ADSCs by gross, histological, micro-computed tomography, and immunohistochemical analyses in an OA rat model induced by anterior cruciate ligament transection. RESULTS USCs showed higher proliferation, colony formation, DNA synthesis, adhesion, and anti-apoptotic abilities than ADSCs. Both USCs and ADSCs increased the expression of cartilage-specific proteins and decreased the expression of matrix degradation-related proteins and inflammatory factors in OA chondrocytes. USCs had a greater advantage in suppressing MMP-13 and inflammatory factors than ADSCs. Both USCs and ADSCs enhanced autophagy in OA chondrocytes, with USCs being more effective than ADSCs. The autophagy inhibitor 3-MA reduced the enhanced autophagy and protective effects of USCs and ADSCs on OA chondrocytes. CONCLUSION To our knowledge, this is the first study to explore the efficacy of USCs in the treatment of knee OA and to compare them with ADSCs. Considering the superior properties of USCs in terms of noninvasive acquisition, a high cost-benefit ratio, and low ethical concerns, our study suggests that they may be a more promising therapeutic option than ADSCs for OA treatment under rigorous regulatory pathways. CLINICAL RELEVANCE USCs may be a superior cell source for stem cells to treat knee OA, and this study strengthens the evidence for the application of USCs.
Collapse
Affiliation(s)
- Tianhao Xu
- Sports Medicine Center, Department of Orthopedic Surgery/Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kaibo Zhang
- Sports Medicine Center, Department of Orthopedic Surgery/Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunan Hu
- Sports Medicine Center, Department of Orthopedic Surgery/Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Runze Yang
- Sports Medicine Center, Department of Orthopedic Surgery/Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiexi Tang
- Sports Medicine Center, Department of Orthopedic Surgery/Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weili Fu
- Sports Medicine Center, Department of Orthopedic Surgery/Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Xu S, Zhang Y, Zheng Z, Sun J, Wei Y, Ding G. Mesenchymal stem cells and their extracellular vesicles in bone and joint diseases: targeting the NLRP3 inflammasome. Hum Cell 2024; 37:1276-1289. [PMID: 38985391 DOI: 10.1007/s13577-024-01101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
The nucleotide-binding oligomerization domain-like-receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a cytosolic multi-subunit protein complex, and recent studies have demonstrated the vital role of the NLRP3 inflammasome in the pathological and physiological conditions, which cleaves gasdermin D to induce inflammatory cell death called pyroptosis and mediates the release of interleukin-1 beta and interleukin-18 in response to microbial infection or cellular injury. Over-activation of the NLRP3 inflammasome is associated with the pathogenesis of many disorders affecting bone and joints, including gouty arthritis, osteoarthritis, rheumatoid arthritis, osteoporosis, and periodontitis. Moreover, mesenchymal stem cells (MSCs) have been discovered to facilitate the inhibition of NLRP3 and maybe ideal for treating bone and joint diseases. In this review, we implicate the structure and activation of the NLRP3 inflammasome along with the detail on the involvement of NLRP3 inflammasome in bone and joint diseases pathology. In addition, we focused on MSCs and MSC-extracellular vesicles targeting NLRP3 inflammasomes in bone and joint diseases. Finally, the existing problems and future direction are also discussed.
Collapse
Affiliation(s)
- Shuangshuang Xu
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Ying Zhang
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Zejun Zheng
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Jinmeng Sun
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Yanan Wei
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Gang Ding
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China.
| |
Collapse
|
8
|
Vadhan A, Gupta T, Hsu WL. Mesenchymal Stem Cell-Derived Exosomes as a Treatment Option for Osteoarthritis. Int J Mol Sci 2024; 25:9149. [PMID: 39273098 PMCID: PMC11395657 DOI: 10.3390/ijms25179149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Osteoarthritis (OA) is a leading cause of pain and disability worldwide in elderly people. There is a critical need to develop novel therapeutic strategies that can effectively manage pain and disability to improve the quality of life for older people. Mesenchymal stem cells (MSCs) have emerged as a promising cell-based therapy for age-related disorders due to their multilineage differentiation and strong paracrine effects. Notably, MSC-derived exosomes (MSC-Exos) have gained significant attention because they can recapitulate MSCs into therapeutic benefits without causing any associated risks compared with direct cell transplantation. These exosomes help in the transport of bioactive molecules such as proteins, lipids, and nucleic acids, which can influence various cellular processes related to tissue repair, regeneration, and immune regulation. In this review, we have provided an overview of MSC-Exos as a considerable treatment option for osteoarthritis. This review will go over the underlying mechanisms by which MSC-Exos may alleviate the pathological hallmarks of OA, such as cartilage degradation, synovial inflammation, and subchondral bone changes. Furthermore, we have summarized the current preclinical evidence and highlighted promising results from in vitro and in vivo studies, as well as progress in clinical trials using MSC-Exos to treat OA.
Collapse
Affiliation(s)
- Anupama Vadhan
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin 632007, Taiwan;
| | - Tanvi Gupta
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan;
| | - Wen-Li Hsu
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin 632007, Taiwan;
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| |
Collapse
|
9
|
Tang X, Huang H, Hao L. Decadal analysis of efficacy and safety profiles of mesenchymal stem cells from varied sources in knee osteoarthritis patients: A systematic review and network meta-analysis. Exp Gerontol 2024; 192:112460. [PMID: 38772192 DOI: 10.1016/j.exger.2024.112460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
OBJECTIVE Knee Osteoarthritis (KOA) is a debilitating degenerative joint ailment afflicting millions of patients. Numerous studies have assessed the efficacy of mesenchymal stem cells (MSCs) derived from various sources for KOA treatment, yet direct comparisons are scarce and inconsistent. Furthermore, network meta-analysis (NMA) conclusions require updating, while the safety of MSCs therapy remains contentious. This study evaluates therapeutic approaches involving MSCs from different sources in patients with KOA through randomized controlled trials (RCTs) and cohort studies. The objective is to compare the effectiveness and safety of MSCs strategies from various sources for KOA treatment. METHODS A systematic literature review was conducted to identify RCTs and cohort studies comparing different sources of MSCs in KOA patients. A randomized effects network meta-analysis was used to concurrently evaluate both direct and indirect comparisons across all protocols. RESULTS The NMA included 16 RCTS and reported 1005 participants. Adipose-derived mesenchymal stem cells (AD-MSCs) were the most effective treatment, showing significant improvements in the Visual Analogue Scale (VAS), the Short Form 36 (SF-36 scale), the International Knee Literature Committee Knee Evaluation Scale (IKDC subjective scores), and the Knee Injury and OA Outcome Score (KOOS). The probabilities are P = 85.3, P = 70.5, P = 88 and P = 87, respectively. Compared with placebo, AD-MSCs resulted in a VAS Score (SMD 0.97; 95%CI 0.37, 1.57), IKDC subjective scores (SMD -0.71; 95%CI -1.20, -0.21) was significantly reduced. Umbilical cord-derived mesenchymal stem cells (UC-MSCs) showed significant improvements in the University of Western Ontario and McMaster University OA (WOMAC) (P = 91.4). Compared with placebo, UC-MSCs had a higher WOMAC Score (SMD 1.65; 95%CI 0.27, 3.03) and ranked first. Compared with MSCs, placebo emerged as the safer option (P = 74.9), with a notable reduction in AEs associated with HA treatment (RR 0.77; 95%CI 0.61, 0.97). AD-MSCs were found to have the least favorable impact on AEs with a probability of P = 13.3. CONCLUSIONS This network meta-analysis established that MSCs offer pain relief and enhance various knee scores in KOA patients compared to conventional treatment. It also identifies other therapeutic avenues warranting further exploration through high-quality studies. Nonetheless, it underscores the necessity to emphasize the potential complications and safety concerns associated with MSCs.
Collapse
Affiliation(s)
- Xiaofu Tang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Haiqiang Huang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, China
| | - Liang Hao
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
10
|
Ding QX, Wang X, Li TS, Li YF, Li WY, Gao JH, Liu YR, Zhuang W. Comparative Analysis of Short-Term and Long-Term Clinical Efficacy of Mesenchymal Stem Cells from Different Sources in Knee Osteoarthritis: A Network Meta-Analysis. Stem Cells Int 2024; 2024:2741681. [PMID: 38882598 PMCID: PMC11178400 DOI: 10.1155/2024/2741681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
Background Joint articular injection of mesenchymal stem cells (MSCs) has emerged as a novel treatment approach for osteoarthritis (OA). However, the effectiveness of MSCs derived from different sources in treating OA patients remains unclear. Therefore, this study aimed to explore the differences between the effectiveness and safety of different sources of MSCs. Materials and Methods For inclusion consideration, we searched trial registries and published databases, including PubMed, Cochrane Library, Embase, and Web of Science databases. Revman (V5.3), STATA (V16.0), and R (V4.0) were utilized for conducting data analysis, while the Cochrane Risk of Bias Tool was employed for assessing the quality of the studies. We derived outcome measures at 6 and 12 months based on the duration of study follow-up, including visual analog scale (VAS) score, WOMAC score, WOMAC pain, WOMAC Functional Limitation, and WOMAC stiffness. The evaluation time for short-term effectiveness is set at 6 months, while 12 months is utilized as the longest follow-up time for most studies to assess long-term effectiveness. Results The evaluation of literature quality showed that the included studies had excellent methodological quality. A meta-analysis revealed that different sources of MSCs improved knee function and pain more effectively among patients suffering from knee OA (KOA) than controls. The results of the network meta-analysis showed the following: short-term functional improvement (the indexes were evaluated after 6 months of follow-up) (WOMAC total score: bone marrow-derived MSC (BMMSC) vs. adipose-derived MSC (ADMSC) (mean difference (MD) = -20.12, 95% confidence interval (CI) -125.24 to 42.88), umbilical cord-derived MSC (UCMSC) (MD = -7.81, 95% CI -158.13 to 74.99); WOMAC stiffness: BMMSC vs. ADMSC (MD = -0.51, 95% CI -7.27 to 4.29), UCMSC (MD = -0.75, 95% CI -9.74 to 6.63); WOMAC functional limitation: BMMSC vs. ADMSC (MD = -12.22, 95% CI -35.05 to 18.86), UCMSC (MD = -9.31, 95% CI -44.26 to 35.27)). Long-term functional improvement (the indexes were evaluated after 12 months of follow-up) (WOMAC total: BMMSC vs. ADMSC (MD = -176.77, 95% CI -757.1 to 378.25), UCMSC (MD = -181.55, 95% CI -937.83 to 541.13); WOMAC stiffness: BMMSC vs. ADMSC (MD = -0.5, 95% CI -26.05 to 18.61), UCMSC (MD = -1.03, 95% CI -30.44 to 21.69); WOMAC functional limitation: BMMSC vs. ADMSC (MD = -5.18, 95% CI -316.72 to 177.1), UCMSC (MD = -8.33, 95% CI -358.78 to 218.76)). Short-term pain relief (the indexes were evaluated after 6 months of follow-up) (VAS score: UCMSC vs. BMMSC (MD = -10.92, 95% CI -31.79 to 12.03), ADMSC (MD = -14.02, 95% CI -36.01 to 9.81), PLMSC (MD = -17.09, 95% CI -46.31 to 13.17); WOMAC pain relief: BMMSC vs. ADMSC (MD = -11.42, 95% CI -39.52 to 11.77), UCMSC (MD = -6.73, 95% CI -47.36 to 29.15)). Long-term pain relief (the indexes were evaluated after 12 months of follow-up) (VAS score: BMMSC vs. UCMSC (MD = -4.33, 95% CI -36.81 to 27.08), ADMSC (MD = -11.43, 95% CI -37.5 to 13.42); WOMAC pain relief: UCMSC vs. ADMSC (MD = 0.23, 95% CI -37.87 to 38.11), BMMSC (MD = 5.89, 95% CI -25.39 to 51.41)). According to the GRADE scoring system, WOMAC, VAS, and AE scores were of low quality. Conclusion Meta-analysis suggests MSCs can effectively treat KOA by improving pain and knee function compared to control groups. In terms of functional improvement in KOA patients, both short-term (6-month follow-up) and long-term (12-month follow-up) results indicated that while the differences between most treatments were not statistically significant, bone marrow-derived MSCs may have some advantages over other sources of MSCs. Additionally, BM-MSCs and UC-MSCs may offer certain benefits over ADMSCs in terms of pain relief for KOA patients, although the variances between most studies were not statistically significant. Therefore, this study suggests that BM-MSCs may present clinical advantages over other sources of MSCs.
Collapse
Affiliation(s)
- Qi Xin Ding
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Xu Wang
- Henan University of Chinese Medicine, Zhengzhou, China
| | | | | | - Wan Yue Li
- First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jia Huan Gao
- Henan Provincial People's Hospital, Zhengzhou, China
| | - Yu Rong Liu
- Shandong First Medical University, Jinan, China
| | - WeiSheng Zhuang
- Henan Provincial People's Hospital, Zhengzhou, China
- Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
11
|
Lu YC, Ho TC, Huang CH, Yeh SI, Chen SL, Tsao YP. PEDF peptide plus hyaluronic acid stimulates cartilage regeneration in osteoarthritis via STAT3-mediated chondrogenesis. Bone Joint Res 2024; 13:137-148. [PMID: 38555936 PMCID: PMC10981997 DOI: 10.1302/2046-3758.134.bjr-2023-0179.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2024] Open
Abstract
Aims Pigment epithelium-derived factor (PEDF) is known to induce several types of tissue regeneration by activating tissue-specific stem cells. Here, we investigated the therapeutic potential of PEDF 29-mer peptide in the damaged articular cartilage (AC) in rat osteoarthritis (OA). Methods Mesenchymal stem/stromal cells (MSCs) were isolated from rat bone marrow (BM) and used to evaluate the impact of 29-mer on chondrogenic differentiation of BM-MSCs in culture. Knee OA was induced in rats by a single intra-articular injection of monosodium iodoacetate (MIA) in the right knees (set to day 0). The 29-mer dissolved in 5% hyaluronic acid (HA) was intra-articularly injected into right knees at day 8 and 12 after MIA injection. Subsequently, the therapeutic effect of the 29-mer/HA on OA was evaluated by the Osteoarthritis Research Society International (OARSI) histopathological scoring system and changes in hind paw weight distribution, respectively. The regeneration of chondrocytes in damaged AC was detected by dual-immunostaining of 5-bromo-2'-deoxyuridine (BrdU) and chondrogenic markers. Results The 29-mer promoted expansion and chondrogenic differentiation of BM-MSCs cultured in different defined media. MIA injection caused chondrocyte death throughout the AC, with cartilage degeneration thereafter. The 29-mer/HA treatment induced extensive chondrocyte regeneration in the damaged AC and suppressed MIA-induced synovitis, accompanied by the recovery of cartilage matrix. Pharmacological inhibitors of PEDF receptor (PEDFR) and signal transducer and activator of transcription 3 (STAT3) signalling substantially blocked the chondrogenic promoting activity of 29-mer on the cultured BM-MSCs and injured AC. Conclusion The 29-mer/HA formulation effectively induces chondrocyte regeneration and formation of cartilage matrix in the damaged AC.
Collapse
Affiliation(s)
- Yung-Chang Lu
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Tsung-Chuan Ho
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan
| | - Chang-Hung Huang
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shu-I Yeh
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yeou-Ping Tsao
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
12
|
Chen Y, Cheng RJ, Wu Y, Huang D, Li Y, Liu Y. Advances in Stem Cell-Based Therapies in the Treatment of Osteoarthritis. Int J Mol Sci 2023; 25:394. [PMID: 38203565 PMCID: PMC10779279 DOI: 10.3390/ijms25010394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Osteoarthritis (OA) is a chronic, degenerative joint disease presenting a significant global health threat. While current therapeutic approaches primarily target symptom relief, their efficacy in repairing joint damage remains limited. Recent research has highlighted mesenchymal stem cells (MSCs) as potential contributors to cartilage repair, anti-inflammatory modulation, and immune regulation in OA patients. Notably, MSCs from different sources and their derivatives exhibit variations in their effectiveness in treating OA. Moreover, pretreatment and gene editing techniques of MSCs can enhance their therapeutic outcomes in OA. Additionally, the combination of novel biomaterials with MSCs has shown promise in facilitating the repair of damaged cartilage. This review summarizes recent studies on the role of MSCs in the treatment of OA, delving into their advantages and exploring potential directions for development, with the aim of providing fresh insights for future research in this critical field.
Collapse
Affiliation(s)
- Ye Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (R.-J.C.); (Y.W.); (D.H.)
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu 610041, China
| | - Rui-Juan Cheng
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (R.-J.C.); (Y.W.); (D.H.)
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu 610041, China
| | - Yinlan Wu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (R.-J.C.); (Y.W.); (D.H.)
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu 610041, China
| | - Deying Huang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (R.-J.C.); (Y.W.); (D.H.)
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu 610041, China
| | - Yanhong Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (R.-J.C.); (Y.W.); (D.H.)
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu 610041, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (R.-J.C.); (Y.W.); (D.H.)
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu 610041, China
| |
Collapse
|
13
|
Wang S, Yang J, Xiang R, Li C, Li J, Shen X, Liu W, Xu X. Research and publication trends on knee osteoarthritis and cellular senescence: a bibliometric analysis. Front Physiol 2023; 14:1269338. [PMID: 38046948 PMCID: PMC10691380 DOI: 10.3389/fphys.2023.1269338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
Background: Cellular senescence is associated with age-related pathological changes, senescent cells promote the development of knee osteoarthritis. A better understanding between knee osteoarthritis and cellular senescence may enhance the effectiveness of therapies that aim to slow or stop the progression of this disease. Purpose: This study aimed to systematically analyze and visualize the publication trends, research frontiers and current research hotspots of knee osteoarthritis and cellular senescence by using bibliometrics. Methods: The publication search was performed on the Web of Science Core Collection database for documents published from 1992 to 2023. VOSviewer, Citespace, R package Bibliometrix and Microsoft Office Excel were used to study the characteristics of the publications. The publication number, countries, institutions, authors, journals, citations and co-citations, keywords were analyzed. Results: A total of 1,074 publications were analyzed, with an average annual growth rate of 29.89%. United States accounted for the biggest contributor, ranked first in publications and citations. Publications of this field were published in 420 journals, OSTEOARTHRITIS and CARTILAGE was the most influential. A total of 5,657 authors contributed to this research. The most productive author was Lotz, MK (n = 31, H-index = 22, Total citation = 2,619), followed by Loeser, R.F (n = 16, H-index = 14, Total citation = 2,825). However, the collaboration between authors was relatively weak. Out of the 1,556 institutions involved, 60% were from the United States. Scripps Research ranked first with 25 papers and a total of 2,538 citations. The hotspots of this field had focused on the pathomechanisms (e.g., expression, inflammation, apoptosis, autophagy, oxidative stress) and therapeutics (e.g., stem cell, platelet-rich plasma, transplantation, autologous chondrocytes, repair), and the exploration of Senolytics might be the important direction of future research. Conclusion: Research on the cross field of knee osteoarthritis and cellular senescence is flourishing. Age-related pathomechanism maps of various cells in the joint and the targeted medicines for the senescent cells may be the future trends. This bibliometric study provides a comprehensive analysis of this cross field and new insights into future research.
Collapse
Affiliation(s)
- Shuai Wang
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiyong Yang
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruian Xiang
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Congcong Li
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junyi Li
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingxing Shen
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wengang Liu
- Department of Orthopedics, Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Xuemeng Xu
- Department of Orthopedics, Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
14
|
Tomiyama Y, Mochizuki T, Koga H, Omori G, Koga Y, Tanifuji O, Nishino K, Endo K, Endo N, Kawashima H. The Matsudai Knee Osteoarthritis Survey showed the longitudinal changes of knee phenotypes in alignment and structure during 23-28 years. Knee Surg Sports Traumatol Arthrosc 2023; 31:5034-5047. [PMID: 37682319 DOI: 10.1007/s00167-023-07554-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023]
Abstract
PURPOSE The longitudinal changes in alignment and structure, including the joint line and cortical bone thickness (CBT) of the femur and tibia, and knee phenotype in patients with knee osteoarthritis (OA) remain unknown. The aim of this retrospective study was to clarify the longitudinal changes in matched healthy subjects. METHODS The follow-up Matsudai Knee Osteoarthritis Survey was administered between 23 and 28 years. This study included 285 healthy knees from 235 females with an average age of 53 ± 6 years at baseline. The non-OA individuals, with an average age of 79 ± 4 years, were divided into three groups at baseline according to their follow-up radiographic results [the non-OA (n = 52), early OA (n = 131), and advanced OA groups (n = 102)]. Changes in alignment, joint line, CBT, and knee phenotype were assessed at baseline and at follow-up using standing anteroposterior radiographs. RESULTS This study showed significant varus changes in the alignment (p < 0.001) and tibial and femoral joint line parameters (p < 0.05) in the OA group. Decreased CBT and increased mediolateral CBT ratios were observed in all groups (p < 0.001). The knee phenotypes in the OA groups were changed to varus angles, especially in the alignment and tibial joint line. CONCLUSIONS The longitudinal changes of knee phenotypes in alignment and structure (CBT and joint line) from baseline to follow-up were shown in the OA groups. In addition, alignment and tibial structural factors at baseline are useful in predicting the incidence of knee OA in daily practice. LEVELS OF EVIDENCE III.
Collapse
Affiliation(s)
- Yasuyuki Tomiyama
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori Chuo-Ku, Niigata, 951-8510, Japan
- Department of Orthopedic Surgery, Niigata Rehabilitation Hospital, Niigata, Japan
| | - Tomoharu Mochizuki
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori Chuo-Ku, Niigata, 951-8510, Japan.
| | - Hiroshi Koga
- Division of Musculoskeletal Science for Frailty, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Go Omori
- Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
| | | | - Osamu Tanifuji
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori Chuo-Ku, Niigata, 951-8510, Japan
| | | | - Kazuo Endo
- Department of Health & Nutrition, Niigata University of Health and Welfare, Niigata, Japan
| | - Naoto Endo
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori Chuo-Ku, Niigata, 951-8510, Japan
- Deputy Hospital Director, orthopedic department, Tsubame Rosai Hospital, Niigata, Japan
| | - Hiroyuki Kawashima
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-Dori Chuo-Ku, Niigata, 951-8510, Japan
| |
Collapse
|
15
|
Zhang P, Dong B, Yuan P, Li X. Human umbilical cord mesenchymal stem cells promoting knee joint chondrogenesis for the treatment of knee osteoarthritis: a systematic review. J Orthop Surg Res 2023; 18:639. [PMID: 37644595 PMCID: PMC10466768 DOI: 10.1186/s13018-023-04131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
PURPOSE The onset of OA is affected by a variety of factors, which eventually lead to the loss of cartilage in the joints, the formation of osteophytes, the loss of normal knee mobility, and pain and discomfort, which seriously affects the quality of life. HUC-MSCs can promote cartilage production and have been widely used in research in the past decade. This article systematically summarizes that it is well used in basic research and clinical studies to promote inflammatory chondrogenesis in the treatment of OA. Provide a theoretical basis for clinical treatment. PATIENTS AND METHODS This study collected CNKI, Wanfang, PubMed, and articles related to the treatment of OA with HUC-MSCs since their publication, excluding non-basic and clinical studies such as reviews and meta-analysis. A total of 31 basic experimental studies and 12 clinical studies were included. Systematically analyze the effects of HUC-MSCs on inhibiting inflammatory factors, promoting chondrocyte production, and current clinical treatment. RESULTS HUC-MSCs can reduce inflammatory factors such as MMP-13, ADAMTS-5, IL-1β, IL-1, IL-6, TNF-α, induced conversion from M1 to M2 in OA to protect cartilage damage and reduce OA inflammation. Synthesize ColII, SOX9, and aggrecan at the same time to promote cartilage synthesis. CONCLUSION HUC-MSCs not only have typical stem cell biological characteristics, but also have rich sources and convenient material extraction. Compared with stem cells from other sources, HUC-MSCs have stronger proliferation, differentiation, and immune regulation abilities. Furthermore, there are no ethical issues associated with their use. SAFETY Primarily attributed to pain, the majority of individuals experience recovery within 24 h following injection. HUC-MSCs possess the ability to alleviate pain, enhance knee joint function, and potentially postpone the need for surgical intervention in both non-surgical and other cases, making them highly deserving of clinical promotion and application.
Collapse
Affiliation(s)
| | - Bo Dong
- Xi'an Hong Hui Hospital, Xi'an, Shaanxi, China.
| | - Puwei Yuan
- Xi'an Hong Hui Hospital, Xi'an, Shaanxi, China
| | - Xun Li
- Xi'an Hong Hui Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
16
|
Zhang Y, Zhuang H, Ren X, Jiang F, Zhou P. Therapeutic effects of different intervention forms of human umbilical cord mesenchymal stem cells in the treatment of osteoarthritis. Front Cell Dev Biol 2023; 11:1246504. [PMID: 37635870 PMCID: PMC10448389 DOI: 10.3389/fcell.2023.1246504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
Osteoarthritis (OA) is a common and disabling disease. For advanced OA, surgical treatment is still the main treatment. Human umbilical cord mesenchymal stem cells (hUC-MSCs) are self-regenerative pluripotent cells, that coordinate cartilage regeneration by secreting various trophic factors, which adjust the injured tissue environment. hUC-MSCs secret extracellular vesicles and participates in OA treatment by transmitting bioactive molecules related to migration, proliferation, apoptosis, inflammatory reaction, extracellular matrix synthesis and cartilage repair. In addition, the combination of multiple substances represented by cartilage matrix and hUC-MSCs also have a significant synergistic effect on OA treatment. Because hUC-MSCs have shown considerable promise in cartilage repair, some scholars have proposed transplanting mesenchymal stem cells into damaged cartilage to delay OA progression. This article reviews the application of hUC-MSCs as a treatment for OA. With the continuous development of routine clinical applications, more reliable intervention modalities for hUC-MSCs in OA treatment will be discovered for the time to come.
Collapse
Affiliation(s)
| | | | | | | | - Panghu Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Gao F, Mao X, Wu X. Mesenchymal stem cells in osteoarthritis: The need for translation into clinical therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:199-225. [PMID: 37678972 DOI: 10.1016/bs.pmbts.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Widely used for cell-based therapy in various medical fields, mesenchymal stem cells (MSCs) show capacity for anti-inflammatory effects, anti-apoptotic activity, immunomodulation, and tissue repair and regeneration. As such, they can potentially be used to treat osteoarthritis (OA). However, MSCs from different sources have distinct advantages and disadvantages, and various animal models and clinical trials using different sources of MSCs are being conducted in OA regenerative medicine. It is now widely believed that the primary tissue regeneration impact of MSCs is via paracrine effects, rather than direct differentiation and replacement. Cytokines and molecules produced by MSCs, including extracellular vesicles with mRNAs, microRNAs, and bioactive substances, play a significant role in OA repair. This chapter outlines the properties of MSCs and recent animal models and clinical trials involving MSCs-based OA therapy, as well as how the paracrine effect of MSCs acts in OA cartilage repair. Additionally, it discusses challenges and controversies in MSCs-based OA therapy. Despite its limits and unanticipated hazards, MSCs have the potential to be translated into therapeutic therapy for future OA treatment.
Collapse
Affiliation(s)
- Feng Gao
- Department of Orthopaedic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xinzhan Mao
- Department of Orthopaedic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xiaoxin Wu
- Department of Orthopaedic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
18
|
Lin J, Jia S, Zhang W, Nian M, Liu P, Yang L, Zuo J, Li W, Zeng H, Zhang X. Recent Advances in Small Molecule Inhibitors for the Treatment of Osteoarthritis. J Clin Med 2023; 12:1986. [PMID: 36902773 PMCID: PMC10004353 DOI: 10.3390/jcm12051986] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Osteoarthritis refers to a degenerative disease with joint pain as the main symptom, and it is caused by various factors, including fibrosis, chapping, ulcers, and loss of articular cartilage. Traditional treatments can only delay the progression of osteoarthritis, and patients may need joint replacement eventually. As a class of organic compound molecules weighing less than 1000 daltons, small molecule inhibitors can target proteins as the main components of most drugs clinically. Small molecule inhibitors for osteoarthritis are under constant research. In this regard, by reviewing relevant manuscripts, small molecule inhibitors targeting MMPs, ADAMTS, IL-1, TNF, WNT, NF-κB, and other proteins were reviewed. We summarized these small molecule inhibitors with different targets and discussed disease-modifying osteoarthritis drugs based on them. These small molecule inhibitors have good inhibitory effects on osteoarthritis, and this review will provide a reference for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Jianjing Lin
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Shicheng Jia
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Shantou University Medical College, Shantou 515041, China
| | - Weifei Zhang
- Department of Bone and Joint, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Mengyuan Nian
- Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Peng Liu
- Department of Bone and Joint, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Li Yang
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jianwei Zuo
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Wei Li
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hui Zeng
- Department of Bone and Joint, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Xintao Zhang
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
19
|
Piñeiro-Ramil M, Sanjurjo-Rodríguez C, Rodríguez-Fernández S, Hermida-Gómez T, Blanco-García FJ, Fuentes-Boquete I, Vaamonde-García C, Díaz-Prado S. Generation of human immortalized chondrocytes from osteoarthritic and healthy cartilage : a new tool for cartilage pathophysiology studies. Bone Joint Res 2023; 12:46-57. [PMID: 36647698 PMCID: PMC9872042 DOI: 10.1302/2046-3758.121.bjr-2022-0207.r1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AIMS After a few passages of in vitro culture, primary human articular chondrocytes undergo senescence and loss of their phenotype. Most of the available chondrocyte cell lines have been obtained from cartilage tissues different from diarthrodial joints, and their utility for osteoarthritis (OA) research is reduced. Thus, the goal of this research was the development of immortalized chondrocyte cell lines proceeded from the articular cartilage of patients with and without OA. METHODS Using telomerase reverse transcriptase (hTERT) and SV40 large T antigen (SV40LT), we transduced primary OA articular chondrocytes. Proliferative capacity, degree of senescence, and chondrocyte surface antigen expression in transduced chondrocytes were evaluated. In addition, the capacity of transduced chondrocytes to synthesize a tissue similar to cartilage and to respond to interleukin (IL)-1β was assessed. RESULTS Coexpression of both transgenes (SV40 and hTERT) were observed in the nuclei of transduced chondrocytes. Generated chondrocyte cell lines showed a high proliferation capacity and less than 2% of senescent cells. These cell lines were able to form 3D aggregates analogous to those generated by primary articular chondrocytes, but were unsuccessful in synthesizing cartilage-like tissue when seeded on type I collagen sponges. However, generated chondrocyte cell lines maintained the potential to respond to IL-1β stimulation. CONCLUSION Through SV40LT and hTERT transduction, we successfully immortalized chondrocytes. These immortalized chondrocytes were able to overcome senescence in vitro, but were incapable of synthesizing cartilage-like tissue under the experimental conditions. Nonetheless, these chondrocyte cell lines could be advantageous for OA investigation since, similarly to primary articular chondrocytes, they showed capacity to upregulate inflammatory mediators in response to the IL-1β cytokine.Cite this article: Bone Joint Res 2023;12(1):46-57.
Collapse
Affiliation(s)
- María Piñeiro-Ramil
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Universidade da Coruña (UDC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), A Coruña, Spain,Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - Clara Sanjurjo-Rodríguez
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Universidade da Coruña (UDC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), A Coruña, Spain,Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Silvia Rodríguez-Fernández
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Universidade da Coruña (UDC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), A Coruña, Spain,Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain,Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), A Coruña, Spain
| | - Tamara Hermida-Gómez
- Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain,Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario da Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), A Coruña, Spain
| | - Francisco J. Blanco-García
- Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain,Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), A Coruña, Spain,Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario da Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), A Coruña, Spain
| | - Isaac Fuentes-Boquete
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Universidade da Coruña (UDC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), A Coruña, Spain,Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain,Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), A Coruña, Spain
| | - Carlos Vaamonde-García
- Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain,Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario da Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), A Coruña, Spain,Departamento de Biología, Facultad de Ciencias, Universidade da Coruña (UDC), A Coruña, Spain
| | - Silvia Díaz-Prado
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Universidade da Coruña (UDC), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), A Coruña, Spain,Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain,Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidade da Coruña (UDC), A Coruña, Spain, Silvia Díaz-Prado. E-mail:
| |
Collapse
|
20
|
Dou H, Wang S, Hu J, Song J, Zhang C, Wang J, Xiao L. Osteoarthritis models: From animals to tissue engineering. J Tissue Eng 2023; 14:20417314231172584. [PMID: 37223125 PMCID: PMC10201005 DOI: 10.1177/20417314231172584] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/13/2023] [Indexed: 05/25/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative osteoarthropathy. Although it has been revealed that a variety of factors can cause or aggravate the symptoms of OA, the pathogenic mechanisms of OA remain unknown. Reliable OA models that accurately reflect human OA disease are crucial for studies on the pathogenic mechanism of OA and therapeutic drug evaluation. This review first demonstrated the importance of OA models by briefly introducing the OA pathological features and the current limitations in the pathogenesis and treatment of OA. Then, it mainly discusses the development of different OA models, including animal and engineered models, highlighting their advantages and disadvantages from the perspective of pathogenesis and pathology analysis. In particular, the state-of-the-art engineered models and their potential were emphasized, as they may represent the future direction in the development of OA models. Finally, the challenges in obtaining reliable OA models are also discussed, and possible future directions are outlined to shed some light on this area.
Collapse
Affiliation(s)
- Hongyuan Dou
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Shuhan Wang
- Shenzhen Institute for Drug Control, Shenzhen Testing Center of Medical Devices, Shenzhen, China
| | - Jiawei Hu
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Jian Song
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Chao Zhang
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Jiali Wang
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| | - Lin Xiao
- School of Biomedical Engineering, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
21
|
He S, Zhang J, Chen W, Yan Y, Lin Y, Zhang Y, Lei S, Huang C, Chen S, Chen Z, Liu C, Bai Y, Ji H, Ruan H, Li D, Ye C, Wang C, Zhan X, Wang B. Umbilical cord mesenchymal stem cells promote the repair of trochlear groove reconstruction in dogs. Front Vet Sci 2022; 9:922390. [PMID: 36090163 PMCID: PMC9450860 DOI: 10.3389/fvets.2022.922390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Trochlear groove reconstruction (TGR) is a common treatment for patellar luxation (PL) in dogs. Nevertheless, the prognosis of TGR is poor due to the cartilage damage and secondary inflammation. To study the repair effect of canine umbilical cord mesenchymal stem cells (UC–MSCs) after TGR, 10 experimental dogs were given TGR surgery and then randomized into two groups: Treatment group (1 ml suspension allogeneic UC–MSCs (106 cells/kg) was injected into the cavum articulare on days 0, 7, and 14 after TGR); and the Model group (injected with 1 ml of physiological saline as negative control). The therapeutic effect of UC–MSCs was studied by blood routine examination, inflammatory factor index detection, double-blind knee score, histopathology, and computed tomography (CT) scans. The results showed that the total number of white blood cells and neutrophils in the model group were significantly higher than those in the treatment group on both 7 days and 21 days, postoperatively (P < 0.05); there were no significant changes in the levels of IL-6, MMP-13, and TGF-β1 between the model group and the treatment group throughout the days of testing. The double-blind knee scores of the treatment group were significantly lower than the model group on 1st, 4th, and 5th days postoperatively (P < 0.05). The treatment group showed low-pain sensation, stable gait, and fast recovery of muscle strength in the knee score, and the wound healing of the treatment group returned to normal on the 5th day after surgery; CT scans and gross observation showed that the cartilage growth in the treatment group was faster than that in the model group. Histological observation of cases showed that fibro chondrocytes were predominantly found in the treatment group, and the distribution of chondrocytes was uneven, while the model group showed a large number of fibrous tissue hyperplasia, fissures, and unequal matrix staining. Intra-articular injection of UC–MSCs after TGR has the effect of relieving pain and promoting the repair of bone defects, making the operative limb recover function earlier, making up for the deficiency of TGR, and improving the effect of PL treatment. Future studies should furthermore explore the dose and frequency of therapy based on the multiple advantages of UC–MSCs and the mechanism of cartilage repair in dogs.
Collapse
Affiliation(s)
- Shi He
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jun Zhang
- Guangdong Polytechnic of Science and Trade, Guangzhou, China
| | - Wojun Chen
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yanyao Yan
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yuhong Lin
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yicheng Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Shirui Lei
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Chuyin Huang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Shengfeng Chen
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zhisheng Chen
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Canying Liu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yinshan Bai
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Huiqin Ji
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Huimin Ruan
- Guangdong VetCell Biological Technology Co., Ltd., Foshan, China
| | - Dongsheng Li
- Guangdong VetCell Biological Technology Co., Ltd., Foshan, China
| | - Cailing Ye
- Guangdong VetCell Biological Technology Co., Ltd., Foshan, China
| | - Cuilin Wang
- Guangdong VetCell Biological Technology Co., Ltd., Foshan, China
| | - Xiaoshu Zhan
- School of Life Science and Engineering, Foshan University, Foshan, China
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Xiaoshu Zhan
| | - Bingyun Wang
- School of Life Science and Engineering, Foshan University, Foshan, China
- *Correspondence: Bingyun Wang
| |
Collapse
|
22
|
Phenotype Diversity of Macrophages in Osteoarthritis: Implications for Development of Macrophage Modulating Therapies. Int J Mol Sci 2022; 23:ijms23158381. [PMID: 35955514 PMCID: PMC9369350 DOI: 10.3390/ijms23158381] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/23/2022] [Accepted: 07/23/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic inflammation is implicated in numerous human pathologies. In particular, low-grade inflammation is currently recognized as an important mechanism of osteoarthritis (OA), at least in some patients. Among the signs of the inflammatory process are elevated macrophage numbers detected in the OA synovium compared to healthy controls. High macrophage counts also correlate with clinical symptoms of the disease. Macrophages are central players in the development of chronic inflammation, pain, cartilage destruction, and bone remodeling. However, macrophages are also involved in tissue repair and remodeling, including cartilage. Therefore, reduction of macrophage content in the joints correlates with deleterious effects in OA models. Macrophage population is heterogeneous and dynamic, with phenotype transitions being induced by a variety of stimuli. In order to effectively use the macrophage inflammatory circuit for treatment of OA, it is important to understand macrophage heterogeneity and interactions with surrounding cells and tissues in the joint. In this review, we discuss functional phenotypes of macrophages and specific targeting approaches relevant for OA treatment development.
Collapse
|
23
|
Zhou H, Shen X, Yan C, Xiong W, Ma Z, Tan Z, Wang J, Li Y, Liu J, Duan A, Liu F. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells alleviate osteoarthritis of the knee in mice model by interacting with METTL3 to reduce m6A of NLRP3 in macrophage. Stem Cell Res Ther 2022; 13:322. [PMID: 35842714 PMCID: PMC9288728 DOI: 10.1186/s13287-022-03005-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/04/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent degenerative joint disease that not only significantly impairs the quality of life of middle-aged and elderly individuals but also imposes a significant financial burden on patients and society. Due to their significant biological properties, extracellular vesicles (EVs) have steadily received great attention in OA treatment. This study aimed to investigate the influence of EVs on chondrocyte proliferation, migration, and apoptosis and their protective efficacy against OA in mice. METHODS The protective impact of EVs derived from human umbilical cord mesenchymal stem cells (hucMSCs-EVs) on OA in mice was investigated by establishing a mouse OA model by surgically destabilizing the medial meniscus (DMM). Human chondrocytes were isolated from the cartilage of patients undergoing total knee arthroplasty (TKA) and cultured with THP-1 cells to mimic the in vivo inflammatory environment. Levels of inflammatory factors were then determined in different groups, and the impacts of EVs on chondrocyte proliferation, migration, apoptosis, and cartilage extracellular matrix (ECM) metabolism were explored. N6-methyladenosine (m6A) level of mRNA and methyltransferase-like 3 (METTL3) protein expression in the cells was also measured in addition to microRNA analysis to elucidate the molecular mechanism of exosomal therapy. RESULTS The results indicated that hucMSCs-EVs slowed OA progression, decreased osteophyte production, increased COL2A1 and Aggrecan expression, and inhibited ADAMTS5 and MMP13 overexpression in the knee joint of mice via decreasing pro-inflammatory factor secretion. The in vitro cell line analysis revealed that EVs enhanced chondrocyte proliferation and migration while inhibiting apoptosis. METTL3 is responsible for these protective effects. Further investigations revealed that EVs decreased the m6A level of NLRP3 mRNA following miR-1208 targeted binding to METTL3, resulting in decreased inflammatory factor release and preventing OA progression. CONCLUSION This study concluded that hucMSCs-EVs inhibited the secretion of pro-inflammatory factors and the degradation of cartilage ECM after lowering the m6A level of NLRP3 mRNA with miR-1208 targeting combined with METTL3, thereby alleviating OA progression in mice and providing a novel therapy for clinical OA treatment.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xun Shen
- Department of Orthopedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Chen Yan
- Department of Orthopedics, the First People's Hospital of Lianyungang, Nanjing Medical University, Lianyungang,, 222002, Jiangsu, China
| | - Wu Xiong
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zemeng Ma
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, 211100, China
| | - Zhenggang Tan
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jinwen Wang
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yao Li
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jiuxiang Liu
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Ao Duan
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Feng Liu
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
24
|
Jun Z, Yuping W, Yanran H, Ziming L, Yuwan L, Xizhong Z, Zhilin W, Xiaoji L. Human acellular amniotic membrane scaffolds encapsulating juvenile cartilage fragments accelerate the repair of rabbit osteochondral defects. Bone Joint Res 2022; 11:349-361. [PMID: 35678202 PMCID: PMC9233407 DOI: 10.1302/2046-3758.116.bjr-2021-0490.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aims The purpose of this study was to explore a simple and effective method of preparing human acellular amniotic membrane (HAAM) scaffolds, and explore the effect of HAAM scaffolds with juvenile cartilage fragments (JCFs) on osteochondral defects. Methods HAAM scaffolds were constructed via trypsinization from fresh human amniotic membrane (HAM). The characteristics of the HAAM scaffolds were evaluated by haematoxylin and eosin (H&E) staining, picrosirius red staining, type II collagen immunostaining, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Human amniotic mesenchymal stem cells (hAMSCs) were isolated, and stemness was verified by multilineage differentiation. Then, third-generation (P3) hAMSCs were seeded on the HAAM scaffolds, and phalloidin staining and SEM were used to detect the growth of hAMSCs on the HAAM scaffolds. Osteochondral defects (diameter: 3.5 mm; depth: 3 mm) were created in the right patellar grooves of 20 New Zealand White rabbits. The rabbits were randomly divided into four groups: the control group (n = 5), the HAAM scaffolds group (n = 5), the JCFs group (n = 5), and the HAAM + JCFs group (n = 5). Macroscopic and histological assessments of the regenerated tissue were evaluated to validate the treatment results at 12 weeks. Results In vitro, the HAAM scaffolds had a network structure and possessed abundant collagen. The HAAM scaffolds had good cytocompatibility, and hAMSCs grew well on the HAAM scaffolds. In vivo, the macroscopic scores of the HAAM + JCFs group were significantly higher than those of the other groups. In addition, histological assessments demonstrated that large amounts of hyaline-like cartilage formed in the osteochondral defects in the HAAM + JCFs group. Integration with surrounding normal cartilage and regeneration of subchondral bone in the HAAM + JCFs group were better than those in the other groups. Conclusion HAAM scaffolds combined with JCFs promote the regenerative repair of osteochondral defects. Cite this article: Bone Joint Res 2022;11(6):349–361.
Collapse
Affiliation(s)
- Zhang Jun
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wang Yuping
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huang Yanran
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liu Ziming
- Peking University Third Hospital, Beijing, China.,Zunyi Medical University, Zunyi, China
| | - Li Yuwan
- Peking University Third Hospital, Beijing, China.,Zunyi Medical University, Zunyi, China
| | - Zhu Xizhong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wu Zhilin
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Luo Xiaoji
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
25
|
Song Y, Jorgensen C. Mesenchymal Stromal Cells in Osteoarthritis: Evidence for Structural Benefit and Cartilage Repair. Biomedicines 2022; 10:biomedicines10061278. [PMID: 35740299 PMCID: PMC9219878 DOI: 10.3390/biomedicines10061278] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis (OA) presents a major clinical challenge to rheumatologists and orthopedists due to the lack of available drugs reducing structural degradation. Mesenchymal stromal cells (MSCs) may represent new therapeutic approaches in cartilage regeneration. In this review, we highlight the latest knowledge on the biological properties of MSC, such as their chondrogenic and immunomodulatory potential, and we give a brief overview of the effects of MSCs in preclinical and clinical studies of OA treatment and also compare different MSC sources, with the adipose tissue-derived MSCs being promising. Then, we focus on their structural benefit in treating OA and summarize the current evidence for the assessment of cartilage in OA according to magnetic resonance imaging (MRI) and second-look arthroscopy after MSC therapy. Finally, this review provides a brief perspective on enhancing the activity of MSCs.
Collapse
|
26
|
Xia P, Wang Q, Song J, Wang X, Wang X, Lin Q, Cheng K, Chen A, Li X. Low-Intensity Pulsed Ultrasound Enhances the Efficacy of Bone Marrow-Derived MSCs in Osteoarthritis Cartilage Repair by Regulating Autophagy-Mediated Exosome Release. Cartilage 2022; 13:19476035221093060. [PMID: 35438034 PMCID: PMC9137322 DOI: 10.1177/19476035221093060] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The present study explored whether low-intensity pulsed ultrasound (LIPUS) enhances the therapeutic efficacy of mesenchymal stem cells (MSCs) in osteoarthritis (OA) cartilage repair by regulating autophagy-mediated exosome release. DESIGN MSCs were isolated from the rat bone marrow and treated with rapamycin, 3-methyladenine, or LIPUS. The mechanism of the LIPUS-stimulated exosome release by MSCs was analyzed by inhibiting autophagy. In addition, the MSCs were co-cultured with OA chondrocytes and stimulated by LIPUS, with or without exosome release inhibitor intervention. The exosome release was detected through transmission electron microscopy (TEM), nanoparticle tracking analysis, and biomarker expression analysis. Autophagy was analyzed through TEM, autophagy-related gene expression analysis, and immunofluorescence analysis in vitro. Furthermore, a rat knee OA model was constructed and treated with MSCs, GW4869, and LIPUS. The cartilage repair was assessed through histopathological analysis and extracellular matrix protein expression analysis. RESULTS The in vitro results indicated that LIPUS promoted MSC exosome release by activating autophagy. The in vivo results demonstrated that LIPUS significantly enhanced the positive effects of MSCs on OA cartilage. These effects were significantly blocked by GW4869, an inhibitor of exosome release. CONCLUSIONS LIPUS can enhance the therapeutic efficacy of MSCs in OA cartilage repair, and the underlying mechanism is related to the increase in autophagy-mediated exosome release.
Collapse
Affiliation(s)
- Peng Xia
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qi Wang
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jiulong Song
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaoju Wang
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xinwei Wang
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qiang Lin
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Kai Cheng
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Anliang Chen
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xueping Li
- Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China,Xueping Li, Department of Rehabilitation Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210012, China.
| |
Collapse
|
27
|
Umbilical Cord Mesenchymal Stromal Cells for Cartilage Regeneration Applications. Stem Cells Int 2022; 2022:2454168. [PMID: 35035489 PMCID: PMC8758292 DOI: 10.1155/2022/2454168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/13/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022] Open
Abstract
Chondropathies are increasing worldwide, but effective treatments are currently lacking. Mesenchymal stromal cell (MSCs) transplantation represents a promising approach to counteract the degenerative and inflammatory environment characterizing those pathologies, such as osteoarthritis (OA) and rheumatoid arthritis (RA). Umbilical cord- (UC-) MSCs gained increasing interest due to their multilineage differentiation potential, immunomodulatory, and anti-inflammatory properties as well as higher proliferation rates, abundant supply along with no risks for the donor compared to adult MSCs. In addition, UC-MSCs are physiologically adapted to survive in an ischemic and nutrient-poor environment as well as to produce an extracellular matrix (ECM) similar to that of the cartilage. All these characteristics make UC-MSCs a pivotal source for a stem cell-based treatment of chondropathies. In this review, the regenerative potential of UC-MSCs for the treatment of cartilage diseases will be discussed focusing on in vitro, in vivo, and clinical studies.
Collapse
|
28
|
Xiang XN, Zhu SY, He HC, Yu X, Xu Y, He CQ. Mesenchymal stromal cell-based therapy for cartilage regeneration in knee osteoarthritis. Stem Cell Res Ther 2022; 13:14. [PMID: 35012666 PMCID: PMC8751117 DOI: 10.1186/s13287-021-02689-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/07/2021] [Indexed: 02/08/2023] Open
Abstract
Osteoarthritis, as a degenerative disease, is a common problem and results in high socioeconomic costs and rates of disability. The most commonly affected joint is the knee and characterized by progressive destruction of articular cartilage, loss of extracellular matrix, and progressive inflammation. Mesenchymal stromal cell (MSC)-based therapy has been explored as a new regenerative treatment for knee osteoarthritis in recent years. However, the detailed functions of MSC-based therapy and related mechanism, especially of cartilage regeneration, have not been explained. Hence, this review summarized how to choose, authenticate, and culture different origins of MSCs and derived exosomes. Moreover, clinical application and the latest mechanistical findings of MSC-based therapy in cartilage regeneration were also demonstrated.
Collapse
Affiliation(s)
- Xiao-Na Xiang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Si-Yi Zhu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Hong-Chen He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xi Yu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yang Xu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Cheng-Qi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China. .,Rehabilitation Medicine Centre, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
29
|
Hu Z, Xiao M, Cai H, Li W, Fang W, Long X. Glycyrrhizin regulates rat TMJOA progression by inhibiting the HMGB1-RAGE/TLR4-NF-κB/AKT pathway. J Cell Mol Med 2021; 26:925-936. [PMID: 34953035 PMCID: PMC8817133 DOI: 10.1111/jcmm.17149] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/06/2021] [Accepted: 12/12/2021] [Indexed: 11/26/2022] Open
Abstract
To investigate the role of glycyrrhizin on the progression of temporomandibular joint osteoarthritis (TMJOA) and the underlying mechanism by regulation of the high‐mobility group box 1 (HMGB1) receptor for advanced glycation end products (RAGE)/toll‐like receptor 4 (TLR4)‐nuclear factor kappa B (NF‐κB)/protein kinase B (AKT) pathway. After a rat model of TMJOA was built by intra‐articular injection of monosodium iodoacetate, glycyrrhizin was intragastrically administered at low concentration (20 mg/kg) or high concentration (50 mg/kg). Micro‐computed tomography, histological and immunohistochemical analysis were used to reveal the progression of TMJOA. Rat TMJ chondrocytes and disc cells were cultured in inflammatory condition with different doses of glycyrrhizin. Western blot was used to evaluate the effect of glycyrrhizin on the HMGB1‐RAGE/TLR4‐NF‐κB/AKT pathway. Administration of glycyrrhizin alleviated cartilage degeneration, lowered the levels of inflammatory and catabolic mediators and reduced the production of HMGB1, RAGE and TLR4 in TMJOA animal model. Increased production of RAGE and TLR4, and activated intracellular NF‐κB and/or AKT signalling pathways in chondrocytes and disc cells were found in inflammatory condition. Upon activation, matrix metalloprotease‐3 and interleukin‐6 were upregulated. Glycyrrhizin inhibited not only HMGB1 release but also RAGE and TLR4 in inflammatory condition. Glycyrrhizin alleviated the pathological changes of TMJOA by regulating the HMGB1‐RAGE/TLR4‐NF‐kB/AKT signalling pathway. This study revealed the potential of glycyrrhizin as a novel therapeutic drug to suppress TMJ cartilage degradation.
Collapse
Affiliation(s)
- Zhihui Hu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Mian Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Hengxing Cai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Fang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xing Long
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|