1
|
Ma Z, Wan Q, Qin W, Qin W, Yan J, Zhu Y, Wang Y, Ma Y, Wan M, Han X, Zhao H, Hou Y, Tay FR, Niu L, Jiao K. Effect of regional crosstalk between sympathetic nerves and sensory nerves on temporomandibular joint osteoarthritic pain. Int J Oral Sci 2025; 17:3. [PMID: 39762209 PMCID: PMC11704193 DOI: 10.1038/s41368-024-00336-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/18/2024] [Accepted: 10/27/2024] [Indexed: 01/11/2025] Open
Abstract
Temporomandibular joint osteoarthritis (TMJ-OA) is a common disease often accompanied by pain, seriously affecting physical and mental health of patients. Abnormal innervation at the osteochondral junction has been considered as a predominant origin of arthralgia, while the specific mechanism mediating pain remains unclear. To investigate the underlying mechanism of TMJ-OA pain, an abnormal joint loading model was used to induce TMJ-OA pain. We found that during the development of TMJ-OA, the increased innervation of sympathetic nerve of subchondral bone precedes that of sensory nerves. Furthermore, these two types of nerves are spatially closely associated. Additionally, it was discovered that activation of sympathetic neural signals promotes osteoarthritic pain in mice, whereas blocking these signals effectively alleviates pain. In vitro experiments also confirmed that norepinephrine released by sympathetic neurons promotes the activation and axonal growth of sensory neurons. Moreover, we also discovered that through releasing norepinephrine, regional sympathetic nerves of subchondral bone were found to regulate growth and activation of local sensory nerves synergistically with other pain regulators. This study identified the role of regional sympathetic nerves in mediating pain in TMJ-OA. It sheds light on a new mechanism of abnormal innervation at the osteochondral junction and the regional crosstalk between peripheral nerves, providing a potential target for treating TMJ-OA pain.
Collapse
Affiliation(s)
- Zhangyu Ma
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Qianqian Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Wenpin Qin
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Wen Qin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Janfei Yan
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yina Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yuzhu Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yuxuan Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Meichen Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xiaoxiao Han
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Haoyan Zhao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yuxuan Hou
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, USA
| | - Lina Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China.
| | - Kai Jiao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
2
|
Florencio-Silva R, Sasso GRDS, Sasso-Cerri E, Cerri PS, Gil CD, de Jesus Simões M. Relationship between autophagy and NLRP3 inflammasome during articular cartilage degradation in oestrogen-deficient rats with streptozotocin-induced diabetes. Ann Anat 2025; 257:152318. [PMID: 39216675 DOI: 10.1016/j.aanat.2024.152318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/23/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Estrogen deficiency and Diabetes mellitus (DM) cause joint tissue deterioration, although the mechanisms are uncertain. This study evaluated the immunoexpression of autophagy and NLRP3-inflammasome markers, in rat articular cartilage with estrogen deficiency and DM. METHODS Twenty rats were sham-operated (SHAM) or ovariectomized (OVX) and equally allocated into four groups: SHAM and OVX groups administered with vehicle solution; SHAM and OVX groups treated with 60 mg/kg/body weight of streptozotocin, intraperitoneally, to induce DM (SHAM-DM and OVX-DM groups). After seven weeks, the rats were euthanized, and their joint knees were processed for paraffin embedding. Sections were stained with haematoxylin-eosin, toluidine blue, safranin-O/fast-green or subjected to picrosirius-red-polarisation method; immunohistochemistry to detect beclin-1 and microtubule-associated protein 1B-light chain 3 (autophagy markers), NLRP3 and interleukin-1β (IL-1β) (inflammasome activation markers), along with matrix metalloproteinase-9 (MMP-9), Nuclear factor-kappa B (NFκB), and Vascular endothelial growth factor A (VEGF-A) were performed. RESULTS Deterioration of articular cartilage and subchondral bone were greater in SHAM-DM and OVX-DM groups. Higher percentages of immunolabeled chondrocytes to NLRP3, IL-1β, MMP-9, NFκB, and VEGF-A, as well as lower percentages of chondrocytes immunolabeled to autophagy markers, were noticed in estrogen-deficient and diabetic groups. These differences were greater in the OVX-DM group. Percentages of immunolabeled chondrocytes showed negative correlation between autophagy markers v.s IL-1β, NLRP-3, MMP-9, NFκB, and VEGF-A, along with positive correlation between VEGF-A vs. MMP-9, NFκB, IL-1β, and NLRP3, and MMP-9 vs. NFκB. CONCLUSIONS In conclusion, autophagy reduction and NLRP3 inflammasome activation in chondrocytes may be implicated in articular cartilage degradation, under estrogen-deficient and DM conditions. Moreover, the combination of estrogen deficiency and DM may potentiate those effects.
Collapse
Affiliation(s)
- Rinaldo Florencio-Silva
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Ginecologia, São Paulo, SP, Brazil; Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil.
| | - Gisela Rodrigues da Silva Sasso
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil
| | - Estela Sasso-Cerri
- São Paulo State University (UNESP), School of Dentistry, Araraquara - Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry - Laboratory of Histology and Embryology, Araraquara, SP, Brazil
| | - Paulo Sérgio Cerri
- São Paulo State University (UNESP), School of Dentistry, Araraquara - Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry - Laboratory of Histology and Embryology, Araraquara, SP, Brazil
| | - Cristiane Damas Gil
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil
| | - Manuel de Jesus Simões
- Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Ginecologia, São Paulo, SP, Brazil; Universidade Federal de São Paulo - UNIFESP, Escola Paulista de Medicina - EPM, Departamento de Morfologia e Genética, Disciplina de Histologia e Biologia Estrutural, São Paulo, SP, Brazil
| |
Collapse
|
3
|
Halabitska I, Oksenych V, Kamyshnyi O. Exploring the Efficacy of Alpha-Lipoic Acid in Comorbid Osteoarthritis and Type 2 Diabetes Mellitus. Nutrients 2024; 16:3349. [PMID: 39408316 PMCID: PMC11478474 DOI: 10.3390/nu16193349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives. The comorbidity of osteoarthritis and type 2 diabetes mellitus poses a complex clinical challenge, complicating patient management due to overlapping pathophysiological mechanisms. This research aims to analyze the exacerbation of clinical symptoms and biochemical markers in patients with OA and T2DM compared to those with OA alone. Methods. We employed various assessment methods to evaluate inflammation, oxidative stress, and glycemic control in both cohorts. This study includes the administration of alpha-lipoic acid (ALA) to patients with comorbid OA and T2DM, monitoring its effects on joint function, inflammatory markers, oxidative stress levels, and glycemic control. Results. The findings indicate that T2DM significantly worsens clinical symptoms and biochemical markers in OA patients. Those with both conditions exhibited elevated indicators of inflammation and oxidative stress compared to OA-only patients. Additionally, correlations among metabolic, psychological, and inflammatory factors were identified. Body mass index emerged as a potential predictor for the deterioration of evaluated parameters. The analysis revealed that ALA administration led to statistically significant improvements in WOMAC pain scores, the Lequesne Algofunctional Index, and the AIMS-P compared to the control group. Conclusions. Further research into ALA's effects on OA progression in patients with comorbidities is essential for developing personalized treatment approaches.
Collapse
Affiliation(s)
- Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
4
|
Halabitska I, Babinets L, Oksenych V, Kamyshnyi O. Diabetes and Osteoarthritis: Exploring the Interactions and Therapeutic Implications of Insulin, Metformin, and GLP-1-Based Interventions. Biomedicines 2024; 12:1630. [PMID: 39200096 PMCID: PMC11351146 DOI: 10.3390/biomedicines12081630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Diabetes mellitus (DM) and osteoarthritis (OA) are prevalent chronic conditions with shared pathophysiological links, including inflammation and metabolic dysregulation. This study investigates the potential impact of insulin, metformin, and GLP-1-based therapies on OA progression. Methods involved a literature review of clinical trials and mechanistic studies exploring the effects of these medications on OA outcomes. Results indicate that insulin, beyond its role in glycemic control, may modulate inflammatory pathways relevant to OA, potentially influencing joint health. Metformin, recognized for its anti-inflammatory properties via AMPK activation, shows promise in mitigating OA progression by preserving cartilage integrity and reducing inflammatory markers. GLP-1-based therapies, known for enhancing insulin secretion and improving metabolic profiles in DM, also exhibit anti-inflammatory effects that may benefit OA by suppressing cytokine-mediated joint inflammation and supporting cartilage repair mechanisms. Conclusions suggest that these medications, while primarily indicated for diabetes management, hold therapeutic potential in OA by targeting common underlying mechanisms. Further clinical trials are warranted to validate these findings and explore optimal therapeutic strategies for managing both DM and OA comorbidities effectively.
Collapse
Affiliation(s)
- Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Voli Square, 1, 46001 Ternopil, Ukraine
| | - Liliia Babinets
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Voli Square, 1, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
5
|
Wan C, Li Z, Zhou Y. Effect of type 2 diabetes mellitus on the microstructural, compositional and mechanical properties of cartilages. Ann Anat 2024; 254:152259. [PMID: 38492655 DOI: 10.1016/j.aanat.2024.152259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 02/20/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a chronic and complicated degenerative disorder of joints, including several phenotypes. Type 2 diabetes mellitus (T2DM) is one of the major causes of OA. However, few studies on the mechanical behavior of diabetic cartilages have been conducted. METHODS This study evaluated the microstructural, compositional, and mechanical properties of healthy and diabetic rat cartilages using scanning electronic microscopy, X-ray energy spectroscopy, histology staining, and microindentation tests. RESULTS Our results indicated that the diabetic cartilages had a significantly higher elastic modulus and similar permeability (95%CI: 3.72-8.56 MPa and 3.16×10-6-1.83×10-5 mm4/N·s) compared to the healthy cartilages (95%CI: 0.741-3.58 MPa and 3.15×10-6-1.14×10-5 mm4/N·s). Their stress relaxation behaviors were similar regardless of the loading rate except for the stretching parameter under the fast loading. Furthermore, the stress relaxation behaviors of the diabetic cartilages were significantly affected by the loading rate, especially the equilibrium force ratio and time constant. These mechanical outcomes could be attributed to the increase of fibril diameters and calcium aggregation in the cartilage. CONCLUSIONS This study deepens our understanding of how T2DM might facilitate OA in cartilages, which could contribute to the development of more scientific diagnosis and therapies for patients with diabetes.
Collapse
Affiliation(s)
- Chao Wan
- Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, China; Tangshan Research Institute, Beijing Institute of Technology, China.
| | - Zhongjie Li
- Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, China
| | - Yizun Zhou
- Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, China
| |
Collapse
|
6
|
Yang J, Li S, Li Z, Yao L, Liu M, Tong K, Xu Q, Yu B, Peng R, Gui T, Tang W, Xu Y, Chen J, He J, Zhao K, Wang X, Wang X, Zha Z, Zhang H. Targeting YAP1-regulated Glycolysis in Fibroblast-Like Synoviocytes Impairs Macrophage Infiltration to Ameliorate Diabetic Osteoarthritis Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304617. [PMID: 38044289 PMCID: PMC10837355 DOI: 10.1002/advs.202304617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/03/2023] [Indexed: 12/05/2023]
Abstract
The interplay between immune cells/macrophages and fibroblast-like synoviocytes (FLSs) plays a pivotal role in initiating synovitis; however, their involvement in metabolic disorders, including diabetic osteoarthritis (DOA), is largely unknown. In this study, single-cell RNA sequencing (scRNA-seq) is employed to investigate the synovial cell composition of DOA. A significant enrichment of activated macrophages within eight distinct synovial cell clusters is found in DOA synovium. Moreover, it is demonstrated that increased glycolysis in FLSs is a key driver for DOA patients' synovial macrophage infiltration and polarization. In addition, the yes-associated protein 1 (YAP1)/thioredoxin-interacting protein (TXNIP) signaling axis is demonstrated to play a crucial role in regulating glucose transporter 1 (GLUT1)-dependent glycolysis in FLSs, thereby controlling the expression of a series of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) which may subsequently fine-tune the infiltration of M1-polarized synovial macrophages in DOA patients and db/db diabetic OA mice. For treatment, M1 macrophage membrane-camouflaged Verteporfin (Vt)-loaded PLGA nanoparticles (MVPs) are developed to ameliorate DOA progression by regulating the YAP1/TXNIP signaling axis, thus suppressing the synovial glycolysis and the infiltration of M1-polarized macrophages. The results provide several novel insights into the pathogenesis of DOA and offer a promising treatment approach for DOA.
Collapse
Affiliation(s)
- Jie Yang
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Shanshan Li
- State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Zhenyan Li
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Lutian Yao
- Department of OrthopedicsThe First Hospital of China Medical UniversityShenyang110001China
| | - Meijing Liu
- Key Laboratory of Big Data‐Based Precision MedicineSchool of Engineering MedicineBeihang UniversityBeijing100191China
- Clinical Research Platform for Interdisciplinary of Stomatologythe First Affiliated Hospital of Jinan University and Department of StomatologyJinan UniversityGuangzhou510632China
| | - Kui‐Leung Tong
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Qiutong Xu
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Bo Yu
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Rui Peng
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Tao Gui
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Wang Tang
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Yidi Xu
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula‐Pattern Research CenterSchool of Traditional Chinese MedicineJinan UniversityGuangzhou510640China
| | - Jun He
- Institute of Laboratory Animal ScienceJinan UniversityGuangzhou510632China
| | - Kewei Zhao
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosisthe Third Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou510375China
| | - Xiaogang Wang
- Key Laboratory of Big Data‐Based Precision MedicineSchool of Engineering MedicineBeihang UniversityBeijing100191China
- Clinical Research Platform for Interdisciplinary of Stomatologythe First Affiliated Hospital of Jinan University and Department of StomatologyJinan UniversityGuangzhou510632China
| | - Xiaoying Wang
- State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Zhengang Zha
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Huan‐Tian Zhang
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosisthe Third Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou510375China
| |
Collapse
|
7
|
Lu R, Wang YG, Qu Y, Wang SX, Peng C, You H, Zhu W, Chen A. Dihydrocaffeic acid improves IL-1β-induced inflammation and cartilage degradation via inhibiting NF-κB and MAPK signalling pathways. Bone Joint Res 2023; 12:259-273. [PMID: 37492935 PMCID: PMC10076109 DOI: 10.1302/2046-3758.124.bjr-2022-0384.r1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Aims Osteoarthritis (OA) is a prevalent joint disorder with inflammatory response and cartilage deterioration as its main features. Dihydrocaffeic acid (DHCA), a bioactive component extracted from natural plant (gynura bicolor), has demonstrated anti-inflammatory properties in various diseases. We aimed to explore the chondroprotective effect of DHCA on OA and its potential mechanism. Methods In vitro, interleukin-1 beta (IL-1β) was used to establish the mice OA chondrocytes. Cell counting kit-8 evaluated chondrocyte viability. Western blotting analyzed the expression levels of collagen II, aggrecan, SOX9, inducible nitric oxide synthase (iNOS), IL-6, matrix metalloproteinases (MMPs: MMP1, MMP3, and MMP13), and signalling molecules associated with nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Immunofluorescence analysis assessed the expression of aggrecan, collagen II, MMP13, and p-P65. In vivo, a destabilized medial meniscus (DMM) surgery was used to induce mice OA knee joints. After injection of DHCA or a vehicle into the injured joints, histological staining gauged the severity of cartilage damage. Results DHCA prevented iNOS and IL-6 from being upregulated by IL-1β. Moreover, the IL-1β-induced upregulation of MMPs could be inhibited by DHCA. Additionally, the administration of DHCA counteracted IL-1β-induced downregulation of aggrecan, collagen II, and SOX9. DHCA protected articular cartilage by blocking the NF-κB and MAPK pathways. Furthermore, DHCA mitigated the destruction of articular cartilage in vivo. Conclusion We present evidence that DHCA alleviates inflammation and cartilage degradation in OA chondrocytes via suppressing the NF-κB and MAPK pathways, indicating that DHCA may be a potential agent for OA treatment.
Collapse
Affiliation(s)
- Rui Lu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying-Guang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunkun Qu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan-Xi Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Peng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo You
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wentao Zhu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anmin Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Lv G, Wang B, Li L, Li Y, Li X, He H, Kuang L. Exosomes from dysfunctional chondrocytes affect osteoarthritis in Sprague-Dawley rats through FTO-dependent regulation of PIK3R5 mRNA stability. Bone Joint Res 2022; 11:652-668. [PMID: 36066338 PMCID: PMC9533253 DOI: 10.1302/2046-3758.119.bjr-2021-0443.r2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims Exosomes (exo) are involved in the progression of osteoarthritis (OA). This study aimed to investigate the function of dysfunctional chondrocyte-derived exo (DC-exo) on OA in rats and rat macrophages. Methods Rat-derived chondrocytes were isolated, and DCs induced with interleukin (IL)-1β were used for exo isolation. Rats with OA (n = 36) or macrophages were treated with DC-exo or phosphate-buffered saline (PBS). Macrophage polarization and autophagy, and degradation and chondrocyte activity of cartilage tissues, were examined. RNA sequencing was used to detect genes differentially expressed in DC-exo, followed by RNA pull-down and ribonucleoprotein immunoprecipitation (RIP). Long non-coding RNA osteoarthritis non-coding transcript (OANCT) and phosphoinositide-3-kinase regulatory subunit 5 (PIK3R5) were depleted in DC-exo-treated macrophages and OA rats, in order to observe macrophage polarization and cartilage degradation. The PI3K/AKT/mammalian target of rapamycin (mTOR) pathway activity in cells and tissues was measured using western blot. Results DC-exo inhibited macrophage autophagy (p = 0.002) and promoted M1 macrophage polarization (p = 0.002). DC-exo at 20 μg/ml induced collagen degradation (p < 0.001) and inflammatory cell infiltration (p = 0.023) in rats. OANCT was elevated in DC (p < 0.001) and in cartilage tissues of OA patients (p < 0.001), and positively correlated with patients’ Kellgren-Lawrence grade (p < 0.001). PIK3R5 was increased in DC-exo-treated cartilage tissues (p < 0.001), and OANCT bound to fat mass and obesity-associated protein (FTO) (p < 0.001). FTO bound to PIK3R5 (p < 0.001) to inhibit the stability of PIK3R5 messenger RNA (mRNA) (p < 0.001) and disrupt the PI3K/AKT/mTOR pathway (p < 0.001). Conclusion Exosomal OANCT from DC could bind to FTO protein, thereby maintaining the mRNA stability of PIK3R5, further activating the PI3K/AKT/mTOR pathway to exacerbate OA. Cite this article: Bone Joint Res 2022;11(9):652–668.
Collapse
Affiliation(s)
- Guohua Lv
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bing Wang
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lei Li
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yunchao Li
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xinyi Li
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haoyu He
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lei Kuang
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
9
|
Sun Q, Li G, Liu D, Xie W, Xiao W, Li Y, Cai M. Peripheral nerves in the tibial subchondral bone : the role of pain and homeostasis in osteoarthritis. Bone Joint Res 2022; 11:439-452. [PMID: 35775136 PMCID: PMC9350689 DOI: 10.1302/2046-3758.117.bjr-2021-0355.r1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Osteoarthritis (OA) is a highly prevalent degenerative joint disorder characterized by joint pain and physical disability. Aberrant subchondral bone induces pathological changes and is a major source of pain in OA. In the subchondral bone, which is highly innervated, nerves have dual roles in pain sensation and bone homeostasis regulation. The interaction between peripheral nerves and target cells in the subchondral bone, and the interplay between the sensory and sympathetic nervous systems, allow peripheral nerves to regulate subchondral bone homeostasis. Alterations in peripheral innervation and local transmitters are closely related to changes in nociception and subchondral bone homeostasis, and affect the progression of OA. Recent literature has substantially expanded our understanding of the physiological and pathological distribution and function of specific subtypes of neurones in bone. This review summarizes the types and distribution of nerves detected in the tibial subchondral bone, their cellular and molecular interactions with bone cells that regulate subchondral bone homeostasis, and their role in OA pain. A comprehensive understanding and further investigation of the functions of peripheral innervation in the subchondral bone will help to develop novel therapeutic approaches to effectively prevent OA, and alleviate OA pain. Cite this article: Bone Joint Res 2022;11(7):439–452.
Collapse
Affiliation(s)
- Qi Sun
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Gen Li
- Department of Orthopedics, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Di Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ming Cai
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| |
Collapse
|
10
|
He CP, Chen C, Jiang XC, Li H, Zhu LX, Wang PX, Xiao T. The role of AGEs in pathogenesis of cartilage destruction in osteoarthritis. Bone Joint Res 2022; 11:292-300. [PMID: 35549515 PMCID: PMC9130677 DOI: 10.1302/2046-3758.115.bjr-2021-0334.r1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative disease resulting from progressive joint destruction caused by many factors. Its pathogenesis is complex and has not been elucidated to date. Advanced glycation end products (AGEs) are a series of irreversible and stable macromolecular complexes formed by reducing sugar with protein, lipid, and nucleic acid through a non-enzymatic glycosylation reaction (Maillard reaction). They are an important indicator of the degree of ageing. Currently, it is considered that AGEs accumulation in vivo is a molecular basis of age-induced OA, and AGEs production and accumulation in vivo is one of the important reasons for the induction and acceleration of the pathological changes of OA. In recent years, it has been found that AGEs are involved in a variety of pathological processes of OA, including extracellular matrix degradation, chondrocyte apoptosis, and autophagy. Clearly, AGEs play an important role in regulating the expression of OA-related genes and maintaining the chondrocyte phenotype and the stability of the intra-articular environment. This article reviews the latest research results of AGEs in a variety of pathological processes of OA, to provide a new direction for the study of OA pathogenesis and a new target for prevention and treatment. Cite this article: Bone Joint Res 2022;11(5):292–300.
Collapse
Affiliation(s)
- Chao-Peng He
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Cheng Chen
- Department of Orthopedics, Second Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Xin-Chen Jiang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan Provincial Key Laboratory of Neurorestoratology, Second Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Hui Li
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li-Xin Zhu
- Department of Orthopedics, Second Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Ping-Xiao Wang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tao Xiao
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
11
|
Kitaura H, Ogawa S, Ohori F, Noguchi T, Marahleh A, Nara Y, Pramusita A, Kinjo R, Ma J, Kanou K, Mizoguchi I. Effects of Incretin-Related Diabetes Drugs on Bone Formation and Bone Resorption. Int J Mol Sci 2021; 22:ijms22126578. [PMID: 34205264 PMCID: PMC8234693 DOI: 10.3390/ijms22126578] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Patients with type 2 diabetes have an increased risk of fracture compared to the general population. Glucose absorption is accelerated by incretin hormones, which induce insulin secretion from the pancreas. The level of the incretin hormone, glucagon-like peptide-1 (GLP-1), shows an immediate postprandial increase, and the circulating level of intact GLP-1 is reduced rapidly by dipeptidyl peptidase-4 (DPP-4)-mediated inactivation. Therefore, GLP-1 receptor agonists and DPP-4 inhibitors are effective in the treatment of type 2 diabetes. However, these incretin-related diabetic agents have been reported to affect bone metabolism, including bone formation and resorption. These agents enhance the expression of bone markers, and have been applied to improve bone quality and bone density. In addition, they have been reported to suppress chronic inflammation and reduce the levels of inflammatory cytokine expression. Previously, we reported that these incretin-related agents inhibited both the expression of inflammatory cytokines and inflammation-induced bone resorption. This review presents an overview of current knowledge regarding the effects of incretin-related diabetes drugs on osteoblast differentiation and bone formation as well as osteoclast differentiation and bone resorption. The mechanisms by which incretin-related diabetes drugs regulate bone formation and bone resorption are also discussed.
Collapse
|