1
|
Morice A, de La Seiglière A, Kany A, Khonsari RH, Bensidhoum M, Puig-Lombardi ME, Legeai Mallet L. FGFR antagonists restore defective mandibular bone repair in a mouse model of osteochondrodysplasia. Bone Res 2025; 13:12. [PMID: 39837840 PMCID: PMC11751307 DOI: 10.1038/s41413-024-00385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 01/30/2025] Open
Abstract
Gain-of-function mutations in fibroblast growth factor receptor (FGFR) genes lead to chondrodysplasia and craniosynostoses. FGFR signaling has a key role in the formation and repair of the craniofacial skeleton. Here, we analyzed the impact of Fgfr2- and Fgfr3-activating mutations on mandibular bone formation and endochondral bone repair after non-stabilized mandibular fractures in mouse models of Crouzon syndrome (Crz) and hypochondroplasia (Hch). Bone mineralization of the calluses was abnormally high in Crz mice and abnormally low in Hch mice. The latter model presented pseudarthrosis and impaired chondrocyte differentiation. Spatial transcriptomic analyses of the Hch callus revealed abnormally low expression of Col11, Col1a, Dmp1 genes in mature chondrocytes. We found that the expression of genes involved in autophagy and apoptosis (Smad1, Comp, Birc2) was significantly perturbed and that the Dusp3, Dusp9, and Socs3 genes controlling the mitogen-activated protein kinase pathway were overexpressed. Lastly, we found that treatment with a tyrosine kinase inhibitor (BGJ398, infigratinib) or a C-type natriuretic peptide (BMN111, vosoritide) fully rescued the defective endochondral bone repair observed in Hch mice. Taken as a whole, our findings show that FGFR3 is a critical orchestrator of bone repair and provide a rationale for the development of potential treatments for patients with FGFR3-osteochondrodysplasia.
Collapse
Affiliation(s)
- Anne Morice
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Paris, France
| | - Amélie de La Seiglière
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Paris, France
| | - Alexia Kany
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Paris, France
| | - Roman H Khonsari
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Paris, France
| | | | - Maria-Emilia Puig-Lombardi
- Bioinformatics Core Platform, Imagine Institute, INSERM UMR1163 and Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, Université Paris Cité, Paris, France
| | - Laurence Legeai Mallet
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Paris, France.
| |
Collapse
|
2
|
McKinney LP, Singh R, Jordan IK, Varambally S, Dammer EB, Lillard JW. Transcriptome Analysis Identifies Tumor Immune Microenvironment Signaling Networks Supporting Metastatic Castration-Resistant Prostate Cancer. ONCO 2023; 3:81-95. [PMID: 38435029 PMCID: PMC10906979 DOI: 10.3390/onco3020007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Prostate cancer (PCa) is the second most common cause of cancer death in American men. Metastatic castration-resistant prostate cancer (mCRPC) is the most lethal form of PCa and preferentially metastasizes to the bones through incompletely understood molecular mechanisms. Herein, we processed RNA sequencing data from patients with mCRPC (n = 60) and identified 14 gene clusters (modules) highly correlated with mCRPC bone metastasis. We used a novel combination of weighted gene co-expression network analysis (WGCNA) and upstream regulator and gene ontology analyses of clinically annotated transcriptomes to identify the genes. The cyan module (M14) had the strongest positive correlation (0.81, p = 4 × 10-15) with mCRPC bone metastasis. It was associated with two significant biological pathways through KEGG enrichment analysis (parathyroid hormone synthesis, secretion, and action and protein digestion and absorption). In particular, we identified 10 hub genes (ALPL, PHEX, RUNX2, ENPP1, PHOSPHO1, PTH1R, COL11A1, COL24A1, COL22A1, and COL13A1) using cytoHubba of Cytoscape. We also found high gene expression for collagen formation, degradation, absorption, cell-signaling peptides, and bone regulation processes through Gene Ontology (GO) enrichment analysis.
Collapse
Affiliation(s)
- Lawrence P. McKinney
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - I. King Jordan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sooryanarayana Varambally
- Division of Molecular and Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Eric B. Dammer
- Department of Biochemistry Emory, University School of Medicine, Atlanta, GA 30329, USA
| | - James W. Lillard
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
3
|
Tzvetkov J, Stephen LA, Dillon S, Millan JL, Roelofs AJ, De Bari C, Farquharson C, Larson T, Genever P. Spatial Lipidomic Profiling of Mouse Joint Tissue Demonstrates the Essential Role of PHOSPHO1 in Growth Plate Homeostasis. J Bone Miner Res 2023; 38:792-807. [PMID: 36824055 PMCID: PMC10946796 DOI: 10.1002/jbmr.4796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/19/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Lipids play a crucial role in signaling and metabolism, regulating the development and maintenance of the skeleton. Membrane lipids have been hypothesized to act as intermediates upstream of orphan phosphatase 1 (PHOSPHO1), a major contributor to phosphate generation required for bone mineralization. Here, we spatially resolve the lipid atlas of the healthy mouse knee and demonstrate the effects of PHOSPHO1 ablation on the growth plate lipidome. Lipids spanning 17 subclasses were mapped across the knee joints of healthy juvenile and adult mice using matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS), with annotation supported by shotgun lipidomics. Multivariate analysis identified 96 and 80 lipid ions with differential abundances across joint tissues in juvenile and adult mice, respectively. In both ages, marrow was enriched in phospholipid platelet activating factors (PAFs) and related metabolites, cortical bone had a low lipid content, whereas lysophospholipids were strikingly enriched in the growth plate, an active site of mineralization and PHOSPHO1 activity. Spatially-resolved profiling of PHOSPHO1-knockout (KO) mice across the resting, proliferating, and hypertrophic growth plate zones revealed 272, 306, and 296 significantly upregulated, and 155, 220, and 190 significantly downregulated features, respectively, relative to wild-type (WT) controls. Of note, phosphatidylcholine, lysophosphatidylcholine, sphingomyelin, lysophosphatidylethanolamine, and phosphatidylethanolamine derived lipid ions were upregulated in PHOSPHO1-KO versus WT. Our imaging pipeline has established a spatially-resolved lipid signature of joint tissues and has demonstrated that PHOSPHO1 ablation significantly alters the growth plate lipidome, highlighting an essential role of the PHOSPHO1-mediated membrane phospholipid metabolism in lipid and bone homeostasis. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Jordan Tzvetkov
- York Biomedical Research Institute and Department of BiologyUniversity of YorkYorkUK
| | | | - Scott Dillon
- Wellcome‐Medical Research Council (MRC) Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
| | - Jose Luis Millan
- Sanford Burnham Prebys, Medical Discovery InstituteLa JollaCAUSA
| | - Anke J. Roelofs
- Centre for Arthritis and Musculoskeletal HealthUniversity of AberdeenAberdeenUK
| | - Cosimo De Bari
- Centre for Arthritis and Musculoskeletal HealthUniversity of AberdeenAberdeenUK
| | | | - Tony Larson
- York Biomedical Research Institute and Department of BiologyUniversity of YorkYorkUK
| | - Paul Genever
- York Biomedical Research Institute and Department of BiologyUniversity of YorkYorkUK
| |
Collapse
|
4
|
Huang H, Wang X, Liao H, Ma L, Jiang C, Yao S, Liu H, Cao Z. Expression profile analysis of long noncoding
RNA
and messenger
RNA
during mouse cementoblast mineralization. J Periodontal Res 2022; 57:1159-1168. [DOI: 10.1111/jre.13053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Hantao Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology Wuhan University Wuhan China
| | - Xiaoxuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology Wuhan University Wuhan China
- Department of Periodontology, School and Hospital of Stomatology Wuhan University Wuhan China
| | - Haiqing Liao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology Wuhan University Wuhan China
- Department of Periodontics and Oral Medicine, College of Stomatology Guangxi Medical University Nanning China
| | - Li Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology Wuhan University Wuhan China
- Department of Periodontology, School and Hospital of Stomatology Wuhan University Wuhan China
| | - Chenxi Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology Wuhan University Wuhan China
| | - Siqi Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology Wuhan University Wuhan China
| | - Huan Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology Wuhan University Wuhan China
- Department of Periodontology, School and Hospital of Stomatology Wuhan University Wuhan China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology Wuhan University Wuhan China
- Department of Periodontology, School and Hospital of Stomatology Wuhan University Wuhan China
| |
Collapse
|
5
|
Affiliation(s)
- Susan A. Clarke
- School of Nursing and Midwifery, Faculty of Medicine, Health and Life Sciences, Queen’s University Belfast, Belfast, UK
| |
Collapse
|
6
|
In vitro and in vivo investigation of osteogenic properties of self-contained phosphate-releasing injectable purine-crosslinked chitosan-hydroxyapatite constructs. Sci Rep 2020; 10:11603. [PMID: 32665560 PMCID: PMC7360623 DOI: 10.1038/s41598-020-67886-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 05/18/2020] [Indexed: 01/05/2023] Open
Abstract
Bone fracture repair is a multifaceted, coordinated physiological process that requires new bone formation and resorption, eventually returning the fractured bone to its original state. Currently, a variety of different approaches are pursued to accelerate the repair of defective bones, which include the use of 'gold standard' autologous bone grafts. However, such grafts may not be readily available, and procedural complications may result in undesired outcomes. Considering the ease of use and tremendous customization potentials, synthetic materials may become a more suitable alternative of bone grafts. In this study, we examined the osteogenic potential of guanosine 5′-diphosphate-crosslinked chitosan scaffolds with the incorporation of hydroxyapatite, with or without pyrophosphatase activity, both in vitro and in vivo. First, scaffolds embedded with cells were characterized for cell morphology, viability, and attachment. The cell-laden scaffolds were found to significantly enhance proliferation for up to threefold, double alkaline phosphatase activity and osterix expression, and increase calcium phosphate deposits in vitro. Next, chitosan scaffolds were implanted at the fracture site in a mouse model of intramedullary rod-fixed tibial fracture. Our results showed increased callus formation at the fracture site with the scaffold carrying both hydroxyapatite and pyrophosphatase in comparison to the control scaffolds lacking both pyrophosphatase and hydroxyapatite, or pyrophosphatase alone. These results indicate that the pyrophosphatase-hydroxyapatite composite scaffold has a promising capacity to facilitate bone fracture healing.
Collapse
|
7
|
ROCHMAH MAWADDAHAR, WIJAYA YOGIKONKYSILVANA, HARAHAP NURIMMAFATIMAH, TODE CHISATO, TAKEUCHI ATSUKO, OHUCHI KAZUKI, SHIMAZAWA MASAMITSU, HARA HIDEAKI, FUNATO MICHINORI, SAITO TOSHIO, SAITO KAYOKO, LAI POHSAN, AWANO HIROYUKI, SHINOHARA MASAKAZU, NISHIO HISAHIDE, NIBA EMMATABEEKO. Phosphoethanolamine Elevation in Plasma of Spinal Muscular Atrophy Type 1 Patients. THE KOBE JOURNAL OF MEDICAL SCIENCES 2020; 66:E1-E11. [PMID: 32814752 PMCID: PMC7447103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/04/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder characterized by degeneration or loss of lower motor neurons. The survival of motor neuron (SMN) 1 gene, which produces the SMN protein, has been identified as a responsible gene for the disease. SMN is ubiquitously expressed in any tissue and may play an important role on the metabolism in the human body. However, no appropriate biomarkers reflecting the alteration in the metabolism in SMA have been identified. METHODS Low-molecular-weight metabolites were extracted from plasma of 20 human infants (9 SMA type 1 patients and 11 controls) and 9 infant mice (5 SMA-model mice, 4 control mice), and derivatized with N-methyl-N-trimethylsilyltrifluoroacetamide. Finally, the derivatized products were applied to Gas Chromatography/Mass Spectrometry apparatus. To confirm the metabolite abnormality in SMA type 1 patients, we performed SMN-silencing experiment using a hepatocyte-derived cell line (HepG2). RESULTS We performed a comprehensive metabolomics analysis of plasma from the patients with SMA type 1 and controls, and found that phosphoethanolamine (PEA) was significantly higher in the patients than in the controls. HepG2 experiment also showed that SMN-silencing increased PEA levels. However, comprehensive metabolomics analysis of plasma from SMA-model mice and control mice showed different profile compared to human plasma; there was no increase of PEA even in the SMA-model mice plasma. CONCLUSION Our data suggested that PEA was one of the possible biomarkers of human SMA reflecting metabolic abnormalities due to the SMN protein deficiency.
Collapse
Affiliation(s)
- MAWADDAH AR ROCHMAH
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Neurology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - YOGIK ONKY SILVANA WIJAYA
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - NUR IMMA FATIMAH HARAHAP
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Clinical Pathology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - CHISATO TODE
- Instrumental Analysis Center, Kobe Pharmaceutical University, Kobe, Japan
| | - ATSUKO TAKEUCHI
- Instrumental Analysis Center, Kobe Pharmaceutical University, Kobe, Japan
| | - KAZUKI OHUCHI
- Department of Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - MASAMITSU SHIMAZAWA
- Department of Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - HIDEAKI HARA
- Department of Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - MICHINORI FUNATO
- Department of Clinical Research, National Hospital Organization, Nagara Medical Center, Gifu, Japan
| | - TOSHIO SAITO
- Division of Child Neurology, Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Japan
| | - KAYOKO SAITO
- Institute of Medical Genetics, Tokyo Women’s Medical University, Tokyo, Japan
| | - POH SAN LAI
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - HIROYUKI AWANO
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - MASAKAZU SHINOHARA
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - HISAHIDE NISHIO
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan
- Faculty of Medical Rehabilitation, Kobe Gakuin University, Kobe, Japan
| | - EMMA TABE EKO NIBA
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
8
|
Hepp N, Frederiksen AL, Dunø M, Jørgensen NR, Langdahl B, Vedtofte P, Hove HB, Hindsø K, Jensen JEB. Multiple Fractures and Impaired Bone Fracture Healing in a Patient with Pycnodysostosis and Hypophosphatasia. Calcif Tissue Int 2019; 105:681-686. [PMID: 31489468 DOI: 10.1007/s00223-019-00605-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023]
Abstract
Pycnodysostosis (PYCD) is a rare recessive inherited skeletal disease, characterized by short stature, brittle bones, and recurrent fractures, caused by variants in the Cathepsin K encoding gene that leads to impaired osteoclast-mediated bone resorption. Hypophosphatasia (HPP) is a dominant or recessive inherited condition representing a heterogeneous phenotype with dental symptoms, recurrent fractures, and musculoskeletal problems. The disease results from mutation(s) in the tissue non-specific alkaline phosphate encoding gene with reduced activity of alkaline phosphatase and secondarily defective mineralization of bone and teeth. Here, we present the first report of a patient with the coexistence of PYCD and HPP. This patient presented typical clinical findings of PYCD, including short stature, maxillary hypoplasia, and sleep apnoea. However, the burden of disease was caused by over 30 fractures, whereupon most showed delayed healing and non-union. Biochemical analysis revealed suppressed bone resorption and low bone formation capacity. We suggest that the coexistence of impaired bone resorption and mineralization may explain the severe bone phenotype with poor fracture healing.
Collapse
Affiliation(s)
- Nicola Hepp
- Department of Endocrinology, Hvidovre University Hospital Copenhagen, Kettegård Alle 30, 2650, Hvidovre, Denmark.
| | - Anja Lisbeth Frederiksen
- Department of Clinical Genetics, Odense University Hospital, Winsløws Vej 4, 5000, Odense C, Denmark
- Department of Clinical Research, Faculty of Health, University of Southern Denmark, Winsløwparken 19. 3, 5000, Odense C, Denmark
| | - Morten Dunø
- Department of Clinical Genetics, University Hospital Copenhagen Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Niklas Rye Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet, Valdemar Hansens Vej 13, 2600, Glostrup, Denmark
- OPEN, Odense Patient Data Explorative Network, Odense University Hospital/Institute of Clinical Research, University of Southern Denmark, J.B.Winsløws Vej 9, 5000, Odense C, Denmark
| | - Bente Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Palle Juul Jensens Boulevard 99, G317, 8200, Aarhus N, Denmark
| | - Poul Vedtofte
- Department of Oral and Maxillofacial Surgery, University Hospital Copenhagen Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Hanne B Hove
- Center for Rare Diseases, Department of Pediatrics, University Hospital Copenhagen, Juliane Maries Vej 6, 2100, Copenhagen, Denmark
| | - Klaus Hindsø
- Paediatric Section, Department of Orthopedic Surgery, University Hospital Copenhagen Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Jens-Erik Beck Jensen
- Department of Endocrinology, Hvidovre University Hospital Copenhagen, Kettegård Alle 30, 2650, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| |
Collapse
|
9
|
Hjorthaug GA, Søreide E, Nordsletten L, Madsen JE, Reinholt FP, Niratisairak S, Dimmen S. Short-term perioperative parecoxib is not detrimental to shaft fracture healing in a rat model. Bone Joint Res 2019; 8:472-480. [PMID: 31728186 PMCID: PMC6825043 DOI: 10.1302/2046-3758.810.bjr-2018-0341.r1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objectives Experimental studies indicate that non-steroidal anti-inflammatory drugs (NSAIDs) may have negative effects on fracture healing. This study aimed to assess the effect of immediate and delayed short-term administration of clinically relevant parecoxib doses and timing on fracture healing using an established animal fracture model. Methods A standardized closed tibia shaft fracture was induced and stabilized by reamed intramedullary nailing in 66 Wistar rats. A ‘parecoxib immediate’ (Pi) group received parecoxib (3.2 mg/kg bodyweight twice per day) on days 0, 1, and 2. A ‘parecoxib delayed’ (Pd) group received the same dose of parecoxib on days 3, 4, and 5. A control group received saline only. Fracture healing was evaluated by biomechanical tests, histomorphometry, and dual-energy x-ray absorptiometry (DXA) at four weeks. Results For ultimate bending moment, the median ratio between fractured and non-fractured tibia was 0.61 (interquartile range (IQR) 0.45 to 0.82) in the Pi group, 0.44 (IQR 0.42 to 0.52) in the Pd group, and 0.50 (IQR 0.41 to 0.75) in the control group (n = 44; p = 0.068). There were no differences between the groups for stiffness, energy, deflection, callus diameter, DXA measurements (n = 64), histomorphometrically osteoid/bone ratio, or callus area (n = 20). Conclusion This study demonstrates no negative effect of immediate or delayed short-term administration of parecoxib on diaphyseal fracture healing in rats. Cite this article: G. A. Hjorthaug, E. Søreide, L. Nordsletten, J. E. Madsen, F. P. Reinholt, S. Niratisairak, S. Dimmen. Short-term perioperative parecoxib is not detrimental to shaft fracture healing in a rat model. Bone Joint Res 2019;8:472–480. DOI: 10.1302/2046-3758.810.BJR-2018-0341.R1.
Collapse
Affiliation(s)
- G A Hjorthaug
- Department of Orthopedic Surgery, Martina Hansens Hospital, Sandvika, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo (UIO), Oslo, Norway; Experimental Orthopedic Research, Institute for Surgical Research, Oslo University Hospital (OUS), Oslo, Norway
| | - E Søreide
- Division of Orthopedic Surgery, OUS, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, UIO, Oslo, Norway; Experimental Orthopedic Research, Institute for Surgical Research, OUS, Oslo, Norway
| | - L Nordsletten
- Division of Orthopedic Surgery, OUS, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, UIO, Oslo, Norway; Experimental Orthopedic Research, Institute for Surgical Research, OUS, Oslo, Norway
| | - J E Madsen
- Division of Orthopedic Surgery, OUS, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, UIO, Oslo, Norway; Experimental Orthopedic Research, Institute for Surgical Research, OUS, Oslo, Norway
| | | | - S Niratisairak
- Institute of Clinical Medicine, Faculty of Medicine, UIO, Oslo, Norway; Biomechanics Lab, Division of Orthopedic Surgery, OUS, Oslo, Norway
| | - S Dimmen
- Department of Orthopedic Surgery, Lovisenberg Diaconal Hospital, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, UIO, Oslo, Norway; Experimental Orthopedic Research, Institute for Surgical Research, OUS, Oslo, Norway
| |
Collapse
|
10
|
Dillon S, Staines KA, Millán JL, Farquharson C. How To Build a Bone: PHOSPHO1, Biomineralization, and Beyond. JBMR Plus 2019; 3:e10202. [PMID: 31372594 PMCID: PMC6659447 DOI: 10.1002/jbm4.10202] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/15/2019] [Accepted: 05/05/2019] [Indexed: 12/11/2022] Open
Abstract
Since its characterization two decades ago, the phosphatase PHOSPHO1 has been the subject of an increasing focus of research. This work has elucidated PHOSPHO1's central role in the biomineralization of bone and other hard tissues, but has also implicated the enzyme in other biological processes in health and disease. During mineralization PHOSPHO1 liberates inorganic phosphate (Pi) to be incorporated into the mineral phase through hydrolysis of its substrates phosphocholine (PCho) and phosphoethanolamine (PEA). Localization of PHOSPHO1 within matrix vesicles allows accumulation of Pi within a protected environment where mineral crystals may nucleate and subsequently invade the organic collagenous scaffold. Here, we examine the evidence for this process, first discussing the discovery and characterization of PHOSPHO1, before considering experimental evidence for its canonical role in matrix vesicle–mediated biomineralization. We also contemplate roles for PHOSPHO1 in disorders of dysregulated mineralization such as vascular calcification, along with emerging evidence of its activity in other systems including choline synthesis and homeostasis, and energy metabolism. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Scott Dillon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies University of Edinburgh, Easter Bush Midlothian UK
| | | | - José Luis Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA USA
| | - Colin Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies University of Edinburgh, Easter Bush Midlothian UK
| |
Collapse
|
11
|
Tassone E, Bradaschia-Correa V, Xiong X, Sastre-Perona A, Josephson AM, Khodadadi-Jamayran A, Melamed J, Bu L, Kahler DJ, Ossowski L, Leucht P, Schober M, Wilson EL. KLF4 as a rheostat of osteolysis and osteogenesis in prostate tumors in the bone. Oncogene 2019; 38:5766-5777. [PMID: 31239516 PMCID: PMC6639130 DOI: 10.1038/s41388-019-0841-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022]
Abstract
We previously showed that KLF4, a gene highly expressed in murine prostate stem cells, blocks the progression of indolent intraepithelial prostatic lesions into aggressive and rapidly growing tumors. Here, we show that the anti-tumorigenic effect of KLF4 extends to PC3 human prostate cancer cells growing in the bone. We compared KLF4 null cells with cells transduced with a DOX-inducible KLF4 expression system, and find KLF4 function inhibits PC3 growth in monolayer and soft agar cultures. Furthermore, KLF4 null cells proliferate rapidly, forming large, invasive, and osteolytic tumors when injected into mouse femurs, whereas KLF4 re-expression immediately after their intra-femoral inoculation blocks tumor development and preserves a normal bone architecture. KLF4 re-expression in established KLF4 null bone tumors inhibits their osteolytic effects, preventing bone fractures and inducing an osteogenic response with new bone formation. In addition to these profound biological changes, KLF4 also induces a transcriptional shift from an osteolytic program in KLF4 null cells to an osteogenic program. Importantly, bioinformatic analysis shows that genes regulated by KLF4 overlap significantly with those expressed in metastatic prostate cancer patients and in three individual cohorts with bone metastases, strengthening the clinical relevance of the findings in our xenograft model.
Collapse
Affiliation(s)
- Evelyne Tassone
- Department of Cell Biology, NYU School of Medicine, New York, NY, 10016, USA
| | - Vivian Bradaschia-Correa
- Department of Cell Biology, NYU School of Medicine, New York, NY, 10016, USA
- Department of Orthopedic Surgery, NYU School of Medicine, New York, NY, 10016, USA
| | - Xiaozhong Xiong
- Department of Cell Biology, NYU School of Medicine, New York, NY, 10016, USA
| | - Ana Sastre-Perona
- The Ronald O. Perelman Department of Dermatology, NYU School of Medicine, New York, NY, 10016, USA
| | - Anne Marie Josephson
- Department of Cell Biology, NYU School of Medicine, New York, NY, 10016, USA
- Department of Orthopedic Surgery, NYU School of Medicine, New York, NY, 10016, USA
| | - Alireza Khodadadi-Jamayran
- Department of Pathology, NYU School of Medicine, New York, NY, 10016, USA
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY, 10016, USA
| | - Jonathan Melamed
- Department of Pathology, NYU School of Medicine, New York, NY, 10016, USA
| | - Lei Bu
- Department of Medicine, NYU School of Medicine, New York, NY, 10016, USA
| | - David J Kahler
- High Throughput Biology Laboratory, NYU School of Medicine, New York, NY, 10016, USA
| | - Liliana Ossowski
- Department of Medicine, Mt Sinai School of Medicine, New York, NY, 10029, USA
| | - Philipp Leucht
- Department of Cell Biology, NYU School of Medicine, New York, NY, 10016, USA
- Department of Orthopedic Surgery, NYU School of Medicine, New York, NY, 10016, USA
| | - Markus Schober
- Department of Cell Biology, NYU School of Medicine, New York, NY, 10016, USA.
- The Ronald O. Perelman Department of Dermatology, NYU School of Medicine, New York, NY, 10016, USA.
| | - Elaine L Wilson
- Department of Cell Biology, NYU School of Medicine, New York, NY, 10016, USA.
- Department of Urology, NYU School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
12
|
Role of SMPD3 during Bone Fracture Healing and Regulation of Its Expression. Mol Cell Biol 2019; 39:MCB.00370-18. [PMID: 30530524 DOI: 10.1128/mcb.00370-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/06/2018] [Indexed: 01/08/2023] Open
Abstract
Sphingomyelin phosphodiesterase 3 (SMPD3), a lipid-metabolizing enzyme present in bone and cartilage, has important roles in the developing skeleton. We previously showed that SMPD3 deficiency results in delayed extracellular matrix (ECM) mineralization and severe skeletal deformities in an inducible knockout mouse model, Smpd3flox/flox ; Osx-Cre mice, in which Smpd3 was ablated in Osx-expressing chondrocytes and osteoblasts during early skeletogenesis. However, as shown in the current study, ablation of Smpd3 postnatally in 3-month-old Smpd3flox/flox ; Osx-Cre mice resulted in only a mild bone mineralization defect. Interestingly, though, there was a marked increase of unmineralized osteoid in the fractured tibiae of 3-month-old Smpd3flox/flox ; Osx-Cre mice. As was the case in the embryonic bones, we also observed impaired chondrocyte apoptosis at the fracture sites of Smpd3flox/flox ; Osx-Cre mice. We further examined how Smpd3 expression is regulated in ATDC5 chondrogenic cells by two major regulators of chondrogenesis, bone morphogenetic protein 2 (BMP-2) and PTHrP. Our data show that BMP-2 positively regulates Smpd3 expression via p38 mitogen-activated protein kinase. Taken together, our findings show that SMPD3 plays a significant role in ECM mineralization and chondrocyte apoptosis during fracture healing. Furthermore, our gene expression analyses suggest that BMP-2 and PTHrP exert opposing effects on the regulation of Smpd3 expression in chondrocytes.
Collapse
|