1
|
Shao E, Mei Q, Baker JS, Bíró I, Liu W, Gu Y. The effects of non-Newtonian fluid material midsole footwear on tibial shock acceleration and attenuation. Front Bioeng Biotechnol 2023; 11:1276864. [PMID: 38152288 PMCID: PMC10751308 DOI: 10.3389/fbioe.2023.1276864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/15/2023] [Indexed: 12/29/2023] Open
Abstract
Introduction: Given the possibility of higher ground temperatures in the future, the pursuit of a cushioning material that can effectively reduce sports injuries during exercise, particularly one that retains its properties at elevated temperatures, has emerged as a serious concern. Methods: A total of 18 man recreational runners were recruited from Ningbo University and local clubs for participation in this study. Frequency analysis was employed to investigate whether there is a distinction between non-Newtonian (NN) shoes and ethylene vinyl acetate (EVA) shoes. Results: The outcomes indicated that the utilization of NN shoes furnished participants with superior cushioning when engaging in a 90° cutting maneuver subsequent to an outdoor exercise, as opposed to the EVA material. Specifically, participants wearing NN shoes exhibited significantly lower peak resultant acceleration (p = 0.022) and power spectral density (p = 0.010) values at the distal tibia compared to those wearing EVA shoes. Moreover, shock attenuation was significantly greater in subjects wearing NN shoes (p = 0.023) in comparison to EVA shoes. Performing 90° cutting maneuver in NN shoes resulted in significantly lower peak ground reaction force (p = 0.010), vertical average loading rate (p < 0.010), and vertical instantaneous loading rate (p = 0.030) values compared to performing the same maneuvers in EVA shoes. Conclusion: The study found that the PRA and PSD of the distal tibia in NN footwear were significantly lower compared to EVA footwear. Additionally, participants exhibited more positive SA while using NN footwear compared to EVA. Furthermore, during the 90° CM, participants wearing NN shoes showed lower PGRF, VAIL, and VILR compared to those in EVA shoes. All these promising results support the capability of NN footwear to offer additional reductions in potential injury risk to runners, especially in high-temperature conditions.
Collapse
Affiliation(s)
- Enze Shao
- Faculty of Sport Science, Ningbo University, Ningbo, China
| | - Qichang Mei
- Faculty of Sport Science, Ningbo University, Ningbo, China
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Julien S. Baker
- Centre for Population Health and Medical Informatics, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - István Bíró
- Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - Wei Liu
- Faculty of Sport Science, Ningbo University, Ningbo, China
| | - Yaodong Gu
- Faculty of Sport Science, Ningbo University, Ningbo, China
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo, China
| |
Collapse
|
2
|
Su W, Zhang S, Ye D, Sun X, Zhang X, Fu W. Effects of Barefoot and Shod on the In Vivo Kinematics of Medial Longitudinal Arch During Running Based on a High-Speed Dual Fluoroscopic Imaging System. Front Bioeng Biotechnol 2022; 10:917675. [PMID: 35837546 PMCID: PMC9274304 DOI: 10.3389/fbioe.2022.917675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
Shoes affect the biomechanical properties of the medial longitudinal arch (MLA) and further influence the foot’s overall function. Most previous studies on the MLA were based on traditional skin-marker motion capture, and the observation of real foot motion inside the shoes is difficult. Thus, the effect of shoe parameters on the natural MLA movement during running remains in question. Therefore, this study aimed to investigate the differences in the MLA’s kinematics between shod and barefoot running by using a high-speed dual fluoroscopic imaging system (DFIS). Fifteen healthy habitual rearfoot runners were recruited. All participants ran at a speed of 3 m/s ± 5% along with an elevated runway in barefoot and shod conditions. High-speed DFIS was used to acquire the radiographic images of MLA movements in the whole stance phase, and the kinematics of the MLA were calculated. Paired sample t-tests were used to compare the kinematic characteristics of the MLA during the stance phase between shod and barefoot conditions. Compared with barefoot, shoe-wearing showed significant changes (p < 0.05) as follows: 1) the first metatarsal moved with less lateral direction at 80%, less anterior translation at 20%, and less superiority at 10–70% of the stance phase; 2) the first metatarsal moved with less inversion amounting to 20–60%, less dorsiflexion at 0–10% of the stance phase; 3) the inversion/eversion range of motion (ROM) of the first metatarsal relative to calcaneus was reduced; 4) the MLA angles at 0–70% of the stance phase were reduced; 5) the maximum MLA angle and MLA angle ROM were reduced in the shod condition. Based on high-speed DFIS, the above results indicated that shoe-wearing limited the movement of MLA, especially reducing the MLA angles, suggesting that shoes restricted the compression and recoil of the MLA, which further affected the spring-like function of the MLA.
Collapse
Affiliation(s)
- Wanyan Su
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Shen Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- School of Physical Education and Training, Shanghai University of Sport, Shanghai, China
- *Correspondence: Shen Zhang, ; Weijie Fu,
| | - Dongqiang Ye
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xiaole Sun
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xini Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Weijie Fu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- *Correspondence: Shen Zhang, ; Weijie Fu,
| |
Collapse
|
3
|
Phan CB, Lee KM, Kwon SS, Koo S. Kinematic instability in the joints of flatfoot subjects during walking: A biplanar fluoroscopic study. J Biomech 2021; 127:110681. [PMID: 34438290 DOI: 10.1016/j.jbiomech.2021.110681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/20/2021] [Accepted: 08/01/2021] [Indexed: 11/30/2022]
Abstract
Abnormal foot kinematics is observed in flatfoot subjects with postural foot deformity. We aimed to investigate joint instability in flatfoot subjects by analyzing the abnormal rotational position and speed of their joints while walking. Five flatfoot subjects participated in our study. Three-dimensional motions of the tibia, talus, calcaneus, navicular, and cuboid were obtained during walking using the biplanar fluoroscopic motion analyses. An anatomical coordinate system was established for each bone. The rotations and ranges of motion (ROMs) of the joints from heel-strike to toe-off were quantified. The relative movements on the articular surfaces were quantified by surface relative velocity vector analysis. The data from flat foot subjects were compared with the data from normal foot subjects in previous studies. The average relative speed on the articular surface of the tibiotalar, subtalar, and calcaneocuboid joints for the flatfoot subjects was significantly higher (p < 0.05) than that for the normal foot subjects. The flatfoot subjects exhibited increased movements toward plantar flexion in the tibiotalar joint, and eversion and external rotations in the talonavicular joint during the stance phase, compared to the normal subjects (p < 0.01). Furthermore, the flatfoot subjects had a significantly larger ROM along with the inversion/eversion rotations (5.6 ± 1.8° vs. 10.7 ± 4.0°) and internal/external rotations (7.1 ± 1.5° vs. 10.5 ± 3.5°) in the tibiotalar joint. The flatfoot subjects demonstrated abnormal kinematics and larger joint movements in multiple joints during the mid-stance and terminal stance phases of walking. This demonstrates their high instability levels.
Collapse
Affiliation(s)
- Cong-Bo Phan
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Kyoung Min Lee
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Soon-Sun Kwon
- Department of Mathematics and Department of AI and Data Science, Ajou University, Gyeonggi, Republic of Korea
| | - Seungbum Koo
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
4
|
Ye D, Sun X, Zhang C, Zhang S, Zhang X, Wang S, Fu W. In Vivo Foot and Ankle Kinematics During Activities Measured by Using a Dual Fluoroscopic Imaging System: A Narrative Review. Front Bioeng Biotechnol 2021; 9:693806. [PMID: 34350162 PMCID: PMC8327092 DOI: 10.3389/fbioe.2021.693806] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/05/2021] [Indexed: 12/26/2022] Open
Abstract
Foot and ankle joints are complicated anatomical structures that combine the tibiotalar and subtalar joints. They play an extremely important role in walking, running, jumping and other dynamic activities of the human body. The in vivo kinematic analysis of the foot and ankle helps deeply understand the movement characteristics of these structures, as well as identify abnormal joint movements and treat related diseases. However, the technical deficiencies of traditional medical imaging methods limit studies on in vivo foot and ankle biomechanics. During the last decade, the dual fluoroscopic imaging system (DFIS) has enabled the accurate and noninvasive measurements of the dynamic and static activities in the joints of the body. Thus, this method can be utilised to quantify the movement in the single bones of the foot and ankle and analyse different morphological joints and complex bone positions and movement patterns within these organs. Moreover, it has been widely used in the field of image diagnosis and clinical biomechanics evaluation. The integration of existing single DFIS studies has great methodological reference value for future research on the foot and ankle. Therefore, this review evaluated existing studies that applied DFIS to measure the in vivo kinematics of the foot and ankle during various activities in healthy and pathologic populations. The difference between DFIS and traditional biomechanical measurement methods was shown. The advantages and shortcomings of DFIS in practical application were further elucidated, and effective theoretical support and constructive research direction for future studies on the human foot and ankle were provided.
Collapse
Affiliation(s)
- Dongqiang Ye
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xiaole Sun
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Cui Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,Shandong Institute of Sport Science, Jinan, China
| | - Shen Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xini Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Shaobai Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Weijie Fu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
5
|
Phan CB, Shin G, Lee KM, Koo S. Skeletal kinematics of the midtarsal joint during walking: Midtarsal joint locking revisited. J Biomech 2019; 95:109287. [PMID: 31431345 DOI: 10.1016/j.jbiomech.2019.07.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 11/29/2022]
Abstract
The kinematics of the human foot complex have been investigated to understand the weight bearing mechanism of the foot. This study aims to investigate midtarsal joint locking during walking by noninvasively measuring the movements of foot bones using a high-speed bi-planar fluoroscopic system. Eighteen healthy subjects volunteered for the study; the subjects underwent computed tomography imaging and bi-planar radiographs of the foot in order to measure the three-dimensional (3D) midtarsal joint kinematics using a 2D-to-3D registration method and anatomical coordinate system in each bone. The relative movements on bone surfaces were also calculated in the talonavicular and calcaneocuboid joints and quantified as surface relative velocity vectors on articular surfaces to understand the kinematic interactions in the midtarsal joint. The midtarsal joint performed a coupled motion in the early stance to pronate the foot to extreme pose in the range of motion during walking and maintained this pose during the mid-stance. In the terminal stance, the talonavicular joint performed plantar-flexion, inversion, and internal rotation while the calcaneocuboid joint performed mainly inversion. The midtarsal joint moved towards an extreme supinated pose, rather than a minimum motion in the terminal stance. The study provides a new perspective to understand the kinematics and kinetics of the movement of foot bones and so-called midtarsal joint locking, during walking. The midtarsal joint continuously moved towards extreme poses together with the activation of muscle forces, which would support the foot for more effective force transfer during push-off in the terminal stance.
Collapse
Affiliation(s)
- Cong-Bo Phan
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Geonhui Shin
- School of Mechanical Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Kyoung Min Lee
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Seungbum Koo
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|