1
|
Exendin-4 Exacerbates Burn-Induced Mortality in Mice by Switching to Th2 Response. J Surg Res 2022; 280:333-347. [PMID: 36030610 DOI: 10.1016/j.jss.2022.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/14/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022]
Abstract
INTRODUCTION To determine if Exendin-4 could be a therapeutic agent for burn-induced hyperglycemia. MATERIALS AND METHODS Male Balb/c mice received a bolus of Exendin-4 intraperitoneally immediately after 15% total body surface area scald injury. Tail glucose levels were recorded and T-cell functions were analyzed at 4 h and 24 h postburn (pb). Pancreatic pathology was observed consecutively. The secretions of cytokines were detected in serum, spleen, and lung. Apoptosis of splenic CD3+ T-cells was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and flow cytometry. RESULTS Although Exendin-4 could attenuate burn-induced hyperglycemia in mice at 4 h pb, it accelerated their survival dose dependently with progressive depletion of splenocyte number. T-cell function underwent two-phasic changes following Exendin-4 treatment. Compared to placebo mice, T-cell from Exendin-4-treated mice was manifested with increased proliferation, while decreased IL-2 secretion and lower ratio of IL-4/IFN-γ at 4 h pb. However, at 24 h pb, it showed decreased proliferation, while increased IL-2 secretion and higher ratio of IL-4/IFN-γ. Exendin-4 could elicit higher circulating IL-6 and IL-10 levels at 4 h pb, which were pronounced in the lung at 24 h pb. In the meanwhile, severe inflammation could be found in the pancreas. At 24 h pb, the numbers of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling or caspase-3 positive cells and the apoptosis of CD3+ T-cells were significantly increased in the spleens of Exendin-4 mice relative to placebo mice. CONCLUSIONS These data support a pathogenic role of Exendin-4 signaling during thermal injury, warning against its clinical application in acute insults.
Collapse
|
2
|
Maximal Glycemic Difference, the Possible Strongest Glycemic Variability Parameter to Predict Mortality in ICU Patients. Crit Care Res Pract 2020; 2020:5071509. [PMID: 32908696 PMCID: PMC7463358 DOI: 10.1155/2020/5071509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/25/2020] [Accepted: 07/29/2020] [Indexed: 01/04/2023] Open
Abstract
Background This retrospective study aimed to determine the correlation of blood glucose and glycemic variability with mortality and to identify the strongest glycemic variability parameter for predicting mortality in critically ill patients. Methods A total of 528 patients admitted to the medical intensive care unit were included in this study. Blood glucose levels during the first 24 hours of admission were recorded and calculated to determine the glycemic variability. Significant glycemic variability parameters, including the standard deviation, coefficient of variation, maximal blood glucose difference, and J-index, were subsequently compared between intensive care unit survivors and nonsurvivors. A binary logistic regression was performed to identify independent factors associated with mortality. To determine the strongest glycemic variability parameter to predict mortality, the area under the receiver operating characteristic of each glycemic variability parameter was determined, and a pairwise comparison was performed. Results Among the 528 patients, 17.8% (96/528) were nonsurvivors. Both survivor and nonsurvivor groups were clinically comparable. However, nonsurvivors had significantly higher median APACHE-II scores (23 [21, 27] vs. 18 [14, 22]; p < 0.01) and a higher mechanical ventilator support rate (97.4% vs. 74.9%; p < 0.01). The mean blood glucose level and significant glycemic variability parameters were higher in nonsurvivors than in survivors. The maximal blood glucose difference yielded a similar power to the coefficient of variation (p = 0.21) but was significantly stronger than the standard deviation (p = 0.005) and J-index (p = 0.006). Conclusions Glycemic variability was independently associated with intensive care unit mortality. Higher glycemic variability was identified in the nonsurvivor group regardless of preexisting diabetes mellitus. The maximal blood glucose difference and coefficient of variation of the blood glucose were the two strongest parameters for predicting intensive care unit mortality in this study.
Collapse
|
3
|
Exendin-4 Exacerbates Burn-Induced Morbidity in Mice by Activation of the Sympathetic Nervous System. Mediators Inflamm 2019; 2019:2750528. [PMID: 30800001 PMCID: PMC6360064 DOI: 10.1155/2019/2750528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/19/2018] [Accepted: 12/05/2018] [Indexed: 12/27/2022] Open
Abstract
Background Although glucagon-like peptide 1- (GLP-1-) based therapy of hyperglycemia in burn injury has shown great potential in clinical trials, its safety is seldom evaluated. We hypothesize that exendin-4, a GLP-1 analogue, might affect the immune response via the activation of the sympathetic nervous system in burn injury. Methods Male Balb/c mice were subjected to sham or thermal injury of 15% total body surface area. Exendin-4 on T cell function in vitro was examined in cultured splenocytes in the presence of β-adrenoceptor antagonist propranolol (1 nmol/L) or GLP-1R antagonist exendin (9-39) (1 μmol/L), whereas its in vivo effect was determined by i.p. injection of exendin-4 (2.4 nmol/kg) in mice. To further elucidate the sympathetic mechanism, propranolol (30 mg/kg) or vehicle was applied 30 min prior to injury. Results Although the exacerbated burn-induced mortality by exendin-4 was worsened by propranolol pretreatment, the inhibition of T cell proliferation by exendin-4 in vitro could be restored by propranolol instead of exendin (9-39). However, a Th2 switch by exendin-4 in vitro could only be reversed by exendin (9-39). Likewise, the inhibition of splenic T cell function and NFAT activity by exendin-4 in vivo was restored by propranolol. By contrast, the increased splenic NF-κB translocation by exendin-4 in vivo was potentiated by propranolol in sham mice but suppressed in burn mice. Accordingly, propranolol abrogated the heightened inflammatory response in the lung and the accelerated organ injuries by exendin-4 in burn mice. On the contrary, a Th2 switch and higher serum levels of inflammatory mediators by exendin-4 were potentiated by propranolol in burn mice. Lastly, exendin-4 raised serum stress hormones which could be remarkably augmented by propranolol. Conclusions Exendin-4 suppresses T cell function and promotes organ inflammation through the activation of the sympathetic nervous system, while elicits Th2 switch via GLP-1R in burn injury.
Collapse
|
4
|
Lipš M, Mráz M, Kloučková J, Kopecký P, Dobiáš M, Křížová J, Lindner J, Diamant M, Haluzík M. Effect of continuous exenatide infusion on cardiac function and peri-operative glucose control in patients undergoing cardiac surgery: A single-blind, randomized controlled trial. Diabetes Obes Metab 2017; 19:1818-1822. [PMID: 28581209 DOI: 10.1111/dom.13029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 01/24/2023]
Abstract
We performed a randomized controlled trial with the glucagon-like peptide-1 (GLP-1) receptor agonist exenatide as add-on to standard peri-operative insulin therapy in patients undergoing elective cardiac surgery. The aims of the study were to intensify peri-operative glucose control while minimizing the risk of hypoglycaemia and to evaluate the suggested cardioprotective effects of GLP-1-based treatments. A total of 38 patients with decreased left ventricular systolic function (ejection fraction ≤50%) scheduled for elective coronary artery bypass grafting (CABG) were randomized to receive either exenatide or placebo in a continuous 72-hour intravenous (i.v.) infusion on top of standard peri-operative insulin therapy. While no significant difference in postoperative echocardiographic variables was found between the groups, participants receiving exenatide showed improved peri-operative glucose control as compared with the placebo group (average glycaemia 6.4 ± 0.5 vs 7.3 ± 0.8 mmol/L; P < .001; percentage of time in target range of 4.5-6.5 mmol/L 54.8% ± 14.5% vs 38.6% ± 14.4%; P = .001; percentage of time above target range 39.7% ± 13.9% vs 52.8% ± 15.2%; P = .009) without an increased risk of hypoglycaemia (glycaemia <3.3 mmol/L: 0.10 ± 0.32 vs 0.21 ± 0.42 episodes per participant; P = .586). Continuous administration of i.v. exenatide in patients undergoing elective CABG could provide a safe option for intensifying the peri-operative glucose management of such patients.
Collapse
Affiliation(s)
- Michal Lipš
- Department of Anaesthesiology, Resuscitation and Intensive Care, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Miloš Mráz
- Department of Diabetes, Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jana Kloučková
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Department of Experimental Diabetology, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petr Kopecký
- Department of Anaesthesiology, Resuscitation and Intensive Care, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Miloš Dobiáš
- Department of Anaesthesiology, Resuscitation and Intensive Care, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jarmila Křížová
- 3rd Department of Medicine - Department of Endocrinology and Metabolism, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jaroslav Lindner
- 2nd Department of Surgery - Department of Cardiovascular Surgery, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | | | - Martin Haluzík
- Department of Diabetes, Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Department of Experimental Diabetology, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Obesitology, Institute of Endocrinology, Prague, Czech Republic
| |
Collapse
|
5
|
Zhang QH, Hao JW, Li GL, Ji XJ, Yao XD, Dong N, Yao YM. Proinflammatory switch from Gαs to Gαi signaling by Glucagon-like peptide-1 receptor in murine splenic monocyte following burn injury. Inflamm Res 2017; 67:157-168. [PMID: 29022064 DOI: 10.1007/s00011-017-1104-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/26/2017] [Accepted: 09/30/2017] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE Glucagon-like peptide-1 (GLP-1)-based therapy via G protein-coupled receptor (GPCR) GLP-1R, to attenuate hyperglycemia in critical care has attracted great attention. However, the exaggerated inflammation by GLP-1R agonist, Exendin-4, in a mouse model of burn injury was quite unexpected. Recent studies found that GPCR might elicit proinflammatory effects by switching from Gαs to Gαi signaling in the immune system. Thus, we aimed to investigate the possible Gαs to Gαi switch in GLP-1R signaling in monocyte following burn injury. MATERIALS AND METHODS Splenic monocytes from sham and burn mice 24 h following burn injury were treated with consecutive doses of Exendin-4 alone or in combination with an inhibitor of Gαi signaling (pertussis toxin, PTX), or a blocker of protein kinase A (H89). Cell viability was assessed by CCK-8, and the supernatant was collected for cytokine measurement by ELISA. Intracellular cAMP level, phosphorylated PKA activity, and nuclear NF-κB p65 were determined by ELISA, ERK1/2 activation was analyzed by Western blot. The expression of GLP-1R downstream molecules, Gαs, Gαi and G-protein coupled receptor kinase 2 (GRK2) were examined by immunofluorescence staining and Western blot. RESULTS Exendin-4 could inhibit the viability of monocyte from sham rather than burn mice. Unexpectedly, it could also reduce TNF-α secretion from sham monocyte while increase it from burn monocyte. The increased secretion of TNF-α by Exendin-4 from burn monocyte could be reversed by pretreatment of PTX or H89. Accordingly, Exendin-4 could stimulates cAMP production dose dependently from sham instead of burn monocyte. However, the blunt cAMP production from burn monocyte was further suppressed by pretreatment of PTX or H89 after 6-h incubation. Nevertheless, phosphorylated PKA activity was significantly increased by low dose of Exendin-4 in sham monocyte, by contrast, it was enhanced by high dose of Exendin-4 in burn monocyte after 1-h incubation. Following Exendin-4 treatment for 2 h ex vivo, total nuclear NF-κB and phosphorylated NF-κB activity, as well as cytoplasmic pERK1/2 expressions were reduced in sham monocyte, however, only pERK1/2 was increased by Exendin-4 in burn monocytes. Moreover, reduced expressions of GLP-1R, GRK-2 and Gαs in contrast with increased expression of Gαi were identified in burn monocyte relative to sham monocyte. CONCLUSIONS This study presents an unexpected proinflammatory switch from Gαs to Gαi signaling in burn monocyte, which promotes ERK1/2 and NF-κB activation and the downstream TNF-α secretion. This phenomenon is most probably responsible for proinflammatory response evoked by Gαs agonist Exendin-4 following burn injury.
Collapse
Affiliation(s)
- Qing-Hong Zhang
- Department of Microbiology and Immunology, Burns' Institute, First Hospital Affiliated to the Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China.
| | - Ji-Wei Hao
- Department of Microbiology and Immunology, Burns' Institute, First Hospital Affiliated to the Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China
| | - Guang-Lei Li
- Department of Microbiology and Immunology, Burns' Institute, First Hospital Affiliated to the Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China
| | - Xiao-Jing Ji
- Department of Emergency, First Hospital Affiliated to Wenzhou Medical College, Wenzhou, 325000, People's Republic of China
| | - Xu-Dong Yao
- Department of Emergency, First Hospital Affiliated to Wenzhou Medical College, Wenzhou, 325000, People's Republic of China
| | - Ning Dong
- Department of Microbiology and Immunology, Burns' Institute, First Hospital Affiliated to the Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China
| | - Yong-Ming Yao
- Department of Microbiology and Immunology, Burns' Institute, First Hospital Affiliated to the Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China. .,State Key Laboratory of Kidney Disease, The Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
| |
Collapse
|
6
|
Lebherz C, Schlieper G, Möllmann J, Kahles F, Schwarz M, Brünsing J, Dimkovic N, Koch A, Trautwein C, Flöge J, Marx N, Tacke F, Lehrke M. GLP-1 Levels Predict Mortality in Patients with Critical Illness as Well as End-Stage Renal Disease. Am J Med 2017; 130:833-841.e3. [PMID: 28366423 DOI: 10.1016/j.amjmed.2017.03.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 03/07/2017] [Accepted: 03/13/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND Glucagon-like peptide 1 (GLP-1) is an incretin hormone, which stimulates glucose-dependent insulin secretion from the pancreas and holds immune-regulatory properties. A marked increase of GLP-1 has been found in critically ill patients. This study was performed to elucidate the underlying mechanism and evaluate its prognostic value. METHODS GLP-1 plasma levels were determined in 3 different patient cohorts: 1) critically ill patients admitted to our intensive care unit (n = 215); 2) patients with chronic kidney disease on hemodialysis (n = 173); and 3) a control group (no kidney disease, no acute inflammation, n = 105). In vitro experiments were performed to evaluate GLP-1 secretion in response to human serum samples from the above-described cohorts. RESULTS Critically ill patients presented with 6.35-fold higher GLP-1 plasma level in comparison with the control group. There was a significant correlation of GLP-1 levels with markers for the severity of inflammation, but also kidney function. Patients with end-stage renal disease displayed 4.46-fold higher GLP-1 concentrations in comparison with the control group. In vitro experiments revealed a strong GLP-1-inducing potential of serum from critically ill patients, while serum from hemodialysis patients only modestly increased GLP-1 secretion. GLP-1 levels independently predicted mortality in critically ill patients and patients with end-stage renal disease. CONCLUSIONS Chronic and acute inflammatory processes like sepsis or chronic kidney disease increase circulating GLP-1 levels. This most likely reflects a sum effect of increased GLP-1 secretion and decreased GLP-1 clearance. GLP-1 plasma levels independently predict the outcome of critically ill and end-stage renal disease patients.
Collapse
Affiliation(s)
- Corinna Lebherz
- Department of Internal Medicine I, University Hospital Aachen, Germany
| | - Georg Schlieper
- Department of Internal Medicine II, University Hospital Aachen, Germany
| | - Julia Möllmann
- Department of Internal Medicine I, University Hospital Aachen, Germany
| | - Florian Kahles
- Department of Internal Medicine I, University Hospital Aachen, Germany
| | - Marvin Schwarz
- Department of Internal Medicine I, University Hospital Aachen, Germany
| | - Jan Brünsing
- Department of Internal Medicine III, University Hospital Aachen, Germany
| | - Nada Dimkovic
- Center for Renal Diseases, Zvezdara University, Medical Center, Belgrade, Serbia
| | - Alexander Koch
- Department of Internal Medicine III, University Hospital Aachen, Germany
| | | | - Jürgen Flöge
- Department of Internal Medicine II, University Hospital Aachen, Germany
| | - Nikolaus Marx
- Department of Internal Medicine I, University Hospital Aachen, Germany
| | - Frank Tacke
- Department of Internal Medicine III, University Hospital Aachen, Germany
| | - Michael Lehrke
- Department of Internal Medicine I, University Hospital Aachen, Germany.
| |
Collapse
|
7
|
Harp JB, Yancopoulos GD, Gromada J. Glucagon orchestrates stress-induced hyperglycaemia. Diabetes Obes Metab 2016; 18:648-53. [PMID: 27027662 PMCID: PMC5084782 DOI: 10.1111/dom.12668] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/19/2016] [Accepted: 03/24/2016] [Indexed: 01/08/2023]
Abstract
Hyperglycaemia is commonly observed on admission and during hospitalization for medical illness, traumatic injury, burn and surgical intervention. This transient hyperglycaemia is referred to as stress-induced hyperglycaemia (SIH) and frequently occurs in individuals without a history of diabetes. SIH has many of the same underlying hormonal disturbances as diabetes mellitus, specifically absolute or relative insulin deficiency and glucagon excess. SIH has the added features of elevated blood levels of catecholamines and cortisol, which are not typically present in people with diabetes who are not acutely ill. The seriousness of SIH is highlighted by its greater morbidity and mortality rates compared with those of hospitalized patients with normal glucose levels, and this increased risk is particularly high in those without pre-existing diabetes. Insulin is the treatment standard for SIH, but new therapies that reduce glucose variability and hypoglycaemia are desired. In the present review, we focus on the key role of glucagon in SIH and discuss the potential use of glucagon receptor blockers and glucagon-like peptide-1 receptor agonists in SIH to achieve target glucose control.
Collapse
Affiliation(s)
- J B Harp
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | - J Gromada
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| |
Collapse
|
8
|
Kohl BA, Hammond MS, Cucchiara AJ, Ochroch EA. Intravenous GLP-1 (7-36) Amide for Prevention of Hyperglycemia During Cardiac Surgery: A Randomized, Double-Blind, Placebo-Controlled Study. J Cardiothorac Vasc Anesth 2014; 28:618-25. [DOI: 10.1053/j.jvca.2013.06.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Indexed: 12/21/2022]
|
9
|
The glucoregulatory benefits of glucagon-like peptide-1 (7-36) amide infusion during intensive insulin therapy in critically ill surgical patients: a pilot study. Crit Care Med 2014; 42:638-45. [PMID: 24247476 DOI: 10.1097/ccm.0000000000000035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Intensive insulin therapy for tight glycemic control in critically ill surgical patients has been shown to reduce mortality; however, intensive insulin therapy is associated with iatrogenic hypoglycemia and increased variability of blood glucose levels. The incretin glucagon-like peptide-1 (7-36) amide is both insulinotropic and insulinomimetic and has been suggested as an adjunct to improve glycemic control in critically ill patients. We hypothesized that the addition of continuous infusion of glucagon-like peptide-1 to intensive insulin therapy would result in better glucose control, reduced requirement of exogenous insulin administration, and fewer hypoglycemic events. DESIGN Prospective, randomized, double-blind, placebo-controlled clinical trial. SETTING Surgical or burn ICU. PATIENTS Eighteen patients who required intensive insulin therapy. INTERVENTIONS A 72-hour continuous infusion of either glucagon-like peptide-1 (1.5 pmol/kg/min) or normal saline plus intensive insulin therapy. MEASUREMENTS AND MAIN RESULTS The glucagon-like peptide-1 cohort (n = 9) and saline cohort (n = 9) were similar in age, Acute Physiology and Chronic Health Evaluation score, and history of diabetes. Blood glucose levels in the glucagon-like peptide-1 group were better controlled with much less variability. The coefficient of variation of blood glucose ranged from 7.2% to 30.4% in the glucagon-like peptide-1 group and from 19.8% to 56.8% in saline group. The mean blood glucose coefficient of variation for the glucagon-like peptide-1 and saline groups was 18.0% ± 2.7% and 30.3% ± 4.0% (p = 0.010), respectively. The 72-hour average insulin infusion rates were 3.37 ± 0.61 and 4.57 ± 1.18 U/hr (p = not significant). The incidents of hypoglycemia (≤ 2.78 mmol/L) in both groups were low (one in the glucagon-like peptide-1 group, three in the saline group). CONCLUSIONS Glucagon-like peptide-1 (7-36) amide is a safe and efficacious form of adjunct therapy in patients with hyperglycemia in the surgical ICU setting. Improved stability of blood glucose is a favorable outcome, which enhances the safety of intensive insulin therapy. Larger studies of this potentially valuable therapy for glycemic control in the ICU are justified.
Collapse
|
10
|
Plummer MP, Chapman MJ, Horowitz M, Deane AM. Incretins and the intensivist: what are they and what does an intensivist need to know about them? Crit Care 2014; 18:205. [PMID: 24602388 PMCID: PMC4015118 DOI: 10.1186/cc13737] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hyperglycaemia occurs frequently in the critically ill, even in those patients without a history of diabetes. The mechanisms underlying hyperglycaemia in this group are complex and incompletely defined. In health, the gastrointestinal tract is an important modulator of postprandial glycaemic excursions and both the rate of gastric emptying and the so-called incretin hormones, glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide, are pivotal determinants of postprandial glycaemia. Incretin-based therapies (that is, glucagon-like peptide- 1 agonists and dipeptidyl-peptidase-4 inhibitors) have recently been incorporated into standard algorithms for the management of hyperglycaemia in ambulant patients with type 2 diabetes and, inevitably, an increasing number of patients who were receiving these classes of drugs prior to their acute illness will present to ICUs. This paper summarises current knowledge of the incretin effect as well as the incretin-based therapies that are available for the management of type 2 diabetes, and provides suggestions for the potential relevance of these agents in the management of dysglycaemia in the critically ill, particularly to normalise elevated blood glucose levels.
Collapse
Affiliation(s)
- Mark P Plummer
- />Intensive Care Unit, Level 4, Royal Adelaide Hospital, Adelaide, South Australia 5000 Australia
- />Discipline of Acute Care Medicine, Adelaide University, Adelaide, South Australia 5000 Australia
| | - Marianne J Chapman
- />Intensive Care Unit, Level 4, Royal Adelaide Hospital, Adelaide, South Australia 5000 Australia
- />Discipline of Acute Care Medicine, Adelaide University, Adelaide, South Australia 5000 Australia
| | - Michael Horowitz
- />Intensive Care Unit, Level 4, Royal Adelaide Hospital, Adelaide, South Australia 5000 Australia
- />Discipline of Acute Care Medicine, Adelaide University, Adelaide, South Australia 5000 Australia
| | - Adam M Deane
- />Intensive Care Unit, Level 4, Royal Adelaide Hospital, Adelaide, South Australia 5000 Australia
- />Discipline of Acute Care Medicine, Adelaide University, Adelaide, South Australia 5000 Australia
| |
Collapse
|
11
|
Discovery of an intravenous hepatoselective glucokinase activator for the treatment of inpatient hyperglycemia. Bioorg Med Chem Lett 2013; 23:6588-92. [PMID: 24239482 DOI: 10.1016/j.bmcl.2013.10.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 10/26/2013] [Accepted: 10/28/2013] [Indexed: 11/20/2022]
Abstract
Glucokinase (hexokinase IV) continues to be a compelling target for the treatment of type 2 diabetes given the wealth of supporting human genetics data and numerous reports of robust clinical glucose lowering in patients treated with small molecule allosteric activators. Recent work has demonstrated the ability of hepatoselective activators to deliver glucose lowering efficacy with minimal risk of hypoglycemia. While orally administered agents require a considerable degree of passive permeability to promote suitable exposures, there is no such restriction on intravenously delivered drugs. Therefore, minimization of membrane diffusion in the context of an intravenously agent should ensure optimal hepatic targeting and therapeutic index. This work details the identification a hepatoselective GKA exhibiting the aforementioned properties.
Collapse
|
12
|
Abuannadi M, Kosiborod M, Riggs L, House JA, Hamburg MS, Kennedy KF, Marso SP. Management of hyperglycemia with the administration of intravenous exenatide to patients in the cardiac intensive care unit. Endocr Pract 2013. [PMID: 23186969 DOI: 10.4158/ep12196.or] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To evaluate the feasibility, effectiveness, and safety of intravenous exenatide to control hyperglycemia in the cardiac intensive care unit (CICU). METHODS A prospective, single-center, open-label, nonrandomized pilot study. Forty patients admitted to the CICU with glucose levels of 140 to 400 mg/dL received intravenous exenatide as a bolus followed by a fixed dose infusion for up to 48 hours. Exenatide effectiveness was benchmarked to two historical insulin infusion cohorts, one (INT) with a target glucose of 90 to 119 mg/dL (n = 84) and the other (MOD) with a target of 100 to 140 mg/dL (n = 71). RESULTS Median admission glucose values were 185.5 mg/dL (161.0, 215.5), 259.0 mg/dL (206.0, 343.0), and 189.5 mg/dL (163.5, 245.0) in the exenatide, MOD, and INT groups, respectively (P<.001). Steady state glucose values were similar between the exenatide (132.0 mg/dL [110.0, 157.0]) and the MOD groups (127.0 mg/dL [105.0, 161.0], P = .15), but lower in the INT group (105.0 mg/dL [92.0, 128.0], P<.001 for exenatide versus INT). Median (IQR) time to steady state was 2.0 hours (1.5, 5.0) in the exenatide group compared to 12.0 hours (7.0, 15.0) in the MOD group (P<.001) and 3.0 hours (1.0, 5.0) in the INT group (P = .80 for exenatide versus INT). Exenatide was discontinued in 3 patients after failure to achieve glycemic control. No episodes of severe hypoglycemia (<50 mg/dL) occurred in patients who received exenatide. Nausea was reported by 16 patients and vomiting by 2 patients. CONCLUSION Intravenous exenatide is effective in lowering glucose levels in CICU patients, but its use may be limited by nausea.
Collapse
Affiliation(s)
- Mohammad Abuannadi
- Saint Luke's Mid America Heart Institute University of Missouri-Kansas City, Kansas City, MO 64111, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Liu SH, Huang YW, Wu CT, Chiu CY, Chiang MT. Low molecular weight chitosan accelerates glucagon-like peptide-1 secretion in human intestinal endocrine cells via a p38-dependent pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:4855-4861. [PMID: 23611362 DOI: 10.1021/jf305410k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Chitosan is widely employed as a dietary supplement. Several studies have shown that chitosan possesses an antidiabetic effect. An important intestinal incretin hormone, glucagon-like peptide-1 (GLP-1), is also known to contribute to the amelioration of diabetes. This study investigated whether chitosan possesses an ability in GLP-1 synthesis and secretion in human intestinal cells. Low molecular weight chitosan (LMWC) significantly increases GLP-1 secretion in human intestinal endocrine cells (NCI-H716) in a dose-dependent manner. LMWC could also dose-dependently increase the mRNA expression of proglucagon, a GLP-1 precursor, but did not affect prohormone convertase 3 (PC 3) mRNA expression. LMWC effectively increased the phosphorylation of mitogen-activated protein kinases (MAPK)-p38 and c-Jun N-terminal kinases (JNK), but not extracellular-signal-regulated kinases (ERK). An inhibitor of p38, but not JNK and ERK, significantly reversed the LMWC-increased proglucagon expression. Taken together, LMWC accelerates proglucagon expression and GLP-1 secretion through a p38/MAPK-dependent signaling pathway. These findings suggest that LMWC may provide a strategy for diabetes therapy.
Collapse
Affiliation(s)
- Shing Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|