1
|
Song X, Qin YG, Zhang YH, Zhou YB, Chen D, Xie DH, Li ZX. Functional characterization of alkaline phosphatases involved alarm pheromone in the vetch aphid Megoura viciae. iScience 2023; 26:108115. [PMID: 37876794 PMCID: PMC10590853 DOI: 10.1016/j.isci.2023.108115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/01/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023] Open
Abstract
The alkaline phosphatases (ALPs) are highly promiscuous enzymes and have been extensively investigated in mammals for their medical significance, but their functional promiscuity is relatively poorly understood in insects. Here, we first identified four ALP genes (designated as MvALP1-4) in the vetch aphid Megoura viciae that contained one alkaline phosphatase site, three metal-binding sites, and varied other functional sites. Phylogenetic analysis, molecular docking and the spatiotemporal expression profiling of MvALP1-4 were very different, indicating a promiscuous functionality. We also found that MvALP4 involved the biosynthesis of aphid alarm pheromones (EβF) in vitro and in vivo. Finally, transcriptome analysis in the stimulated and unstimulated aphids supported the involvement of MvALPs in the biosynthesis of aphid alarm pheromones. Our study identified a multifunctional ALP involved terpene synthase enzyme activity in the aphid, which contributes to the understanding of the functional plasticity of ALPs in insects.
Collapse
Affiliation(s)
- Xuan Song
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yao-Guo Qin
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yi-Han Zhang
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yu-Bei Zhou
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Dan Chen
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Dong-Hai Xie
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zheng-Xi Li
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Zhang J, Keibler MA, Dong W, Ghelfi J, Cordes T, Kanashova T, Pailot A, Linster CL, Dittmar G, Metallo CM, Lautenschlaeger T, Hiller K, Stephanopoulos G. Stable Isotope-Assisted Untargeted Metabolomics Identifies ALDH1A1-Driven Erythronate Accumulation in Lung Cancer Cells. Biomedicines 2023; 11:2842. [PMID: 37893215 PMCID: PMC10604529 DOI: 10.3390/biomedicines11102842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Using an untargeted stable isotope-assisted metabolomics approach, we identify erythronate as a metabolite that accumulates in several human cancer cell lines. Erythronate has been reported to be a detoxification product derived from off-target glycolytic metabolism. We use chemical inhibitors and genetic silencing to define the pentose phosphate pathway intermediate erythrose 4-phosphate (E4P) as the starting substrate for erythronate production. However, following enzyme assay-coupled protein fractionation and subsequent proteomics analysis, we identify aldehyde dehydrogenase 1A1 (ALDH1A1) as the predominant contributor to erythrose oxidation to erythronate in cell extracts. Through modulating ALDH1A1 expression in cancer cell lines, we provide additional support. We hence describe a possible alternative route to erythronate production involving the dephosphorylation of E4P to form erythrose, followed by its oxidation by ALDH1A1. Finally, we measure increased erythronate concentrations in tumors relative to adjacent normal tissues from lung cancer patients. These findings suggest the accumulation of erythronate to be an example of metabolic reprogramming in cancer cells, raising the possibility that elevated levels of erythronate may serve as a biomarker of certain types of cancer.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (J.Z.); (M.A.K.); (W.D.)
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg (A.P.)
- Biomia Aps, Kemitorvet 220, 2800 Kongens Lyngby, Denmark
| | - Mark A. Keibler
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (J.Z.); (M.A.K.); (W.D.)
- Alnylam Pharmaceuticals, Cambridge, MA 02139, USA
| | - Wentao Dong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (J.Z.); (M.A.K.); (W.D.)
- Department of Chemical Engineering, Department of Genetics, Institute for Chemistry, Engineering & Medicine for Human Health, Stanford University, Stanford, CA 94305, USA
| | - Jenny Ghelfi
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg (A.P.)
| | - Thekla Cordes
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg (A.P.)
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Tamara Kanashova
- Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Arnaud Pailot
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg (A.P.)
| | - Carole L. Linster
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg (A.P.)
| | - Gunnar Dittmar
- Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
- Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Christian M. Metallo
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (J.Z.); (M.A.K.); (W.D.)
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tim Lautenschlaeger
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43221, USA
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Karsten Hiller
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg (A.P.)
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (J.Z.); (M.A.K.); (W.D.)
| |
Collapse
|
3
|
Bihani SC, Nagar V, Kumar M. Mechanistic and evolutionary insights into alkaline phosphatase superfamily through structure-function studies on Sphingomonas alkaline phosphatase. Arch Biochem Biophys 2023; 736:109524. [PMID: 36716801 DOI: 10.1016/j.abb.2023.109524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/20/2022] [Accepted: 01/20/2023] [Indexed: 01/28/2023]
Abstract
Alkaline phosphatases (APs), represented by E. coli AP (ECAP), employ an arginine residue to stabilize the phosphoryl group in the active site; whereas, AP from Sphingomonas (SPAP) shows a unique combination of substrate-binding residues; Thr89, Asn110, Lys171, and Arg173. Although such combination has been observed only in SPAP, these residues are present separately in different members of the AP superfamily. Here, we establish the presence of two distinct classes of APs; ECAP-type and SPAP-type. Bioinformatic analyses show that SPAP-type of APs are widely distributed in the bacterial kingdom. The role of active site residues in the catalytic mechanism has been delineated through a set of crystal structures reported here. These structures, representing different stages of the reaction pathway provide wealth of information for the catalytic mechanism. Despite critical differences in the substrate binding residues, SPAP follows a mechanism similar to that of ECAP-type of APs. Structure-based phylogenetic analysis suggests that SPAP and ECAP may have diverged very early during the evolution from a common ancestor. Moreover, it is proposed that the SPAP-type of APs are fundamental members of the AP superfamily and are more closely related to other members of the superfamily as compared to the ECAP-type of APs.
Collapse
Affiliation(s)
- Subhash C Bihani
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| | - Vandan Nagar
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India; Food Microbiology Group, Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Mukesh Kumar
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
4
|
Copley SD, Newton MS, Widney KA. How to Recruit a Promiscuous Enzyme to Serve a New Function. Biochemistry 2023; 62:300-308. [PMID: 35729117 PMCID: PMC9881647 DOI: 10.1021/acs.biochem.2c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Promiscuous enzymes can be recruited to serve new functions when a genetic or environmental change makes catalysis of a novel reaction important for fitness or even survival. Subsequently, gene duplication and divergence can lead to evolution of an efficient and specialized new enzyme. Every organism likely has thousands of promiscuous enzyme activities that provide a vast reservoir of catalytic potential. However, much of this potential may not be accessible. We compiled kinetic parameters for promiscuous reactions catalyzed by 108 enzymes. The median value of kcat/KM is a very modest 31 M-1 s-1. Based upon the fluxes through metabolic pathways in E. coli, we estimate that many, if not most, promiscuous activities are too inefficient to impact fitness. However, mutations can elevate the level of an insufficient promiscuous activity by increasing enzyme expression, improving kcat/KM, or altering concentrations of the promiscuous and native substrates and allosteric regulators. Particularly in large bacterial populations, stochastic mutations may provide a viable pathway for recruitment of even inefficient promiscuous activities.
Collapse
|
5
|
Gavira JA, Cámara-Artigas A, Neira JL, Torres de Pinedo JM, Sánchez P, Ortega E, Martinez-Rodríguez S. Structural insights into choline-O-sulfatase reveal the molecular determinants for ligand binding. Acta Crystallogr D Struct Biol 2022; 78:669-682. [PMID: 35503214 PMCID: PMC9063841 DOI: 10.1107/s2059798322003709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
Choline-O-sulfatase (COSe; EC 3.1.6.6) is a member of the alkaline phosphatase (AP) superfamily, and its natural function is to hydrolyze choline-O-sulfate into choline and sulfate. Despite its natural function, the major interest in this enzyme resides in the landmark catalytic/substrate promiscuity of sulfatases, which has led to attention in the biotechnological field due to their potential in protein engineering. In this work, an in-depth structural analysis of wild-type Sinorhizobium (Ensifer) meliloti COSe (SmeCOSe) and its C54S active-site mutant is reported. The binding mode of this AP superfamily member to both products of the reaction (sulfate and choline) and to a substrate-like compound are shown for the first time. The structures further confirm the importance of the C-terminal extension of the enzyme in becoming part of the active site and participating in enzyme activity through dynamic intra-subunit and inter-subunit hydrogen bonds (Asn146A-Asp500B-Asn498B). These residues act as the `gatekeeper' responsible for the open/closed conformations of the enzyme, in addition to assisting in ligand binding through the rearrangement of Leu499 (with a movement of approximately 5 Å). Trp129 and His145 clamp the quaternary ammonium moiety of choline and also connect the catalytic cleft to the C-terminus of an adjacent protomer. The structural information reported here contrasts with the proposed role of conformational dynamics in promoting the enzymatic catalytic proficiency of an enzyme.
Collapse
Affiliation(s)
- Jose Antonio Gavira
- Laboratorio de Estudios Cristalográficos, CSIC, Armilla, 18100 Granada, Spain
| | - Ana Cámara-Artigas
- Department of Chemistry and Physics, University of Almería, Agrifood Campus of International Excellence (ceiA3), Research Centre for Agricultural and Food Biotechnology (BITAL), Carretera de Sacramento s/n, Almería, 04120, Spain
| | - Jose Luis Neira
- IDIBE, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR–CSIC–BIFI and GBsC–CSIC–BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Jesús M. Torres de Pinedo
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, 18071 Granada, Spain
| | - Pilar Sánchez
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, 18071 Granada, Spain
| | - Esperanza Ortega
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, 18071 Granada, Spain
| | - Sergio Martinez-Rodríguez
- Laboratorio de Estudios Cristalográficos, CSIC, Armilla, 18100 Granada, Spain
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
6
|
Jeon H, Vazquez-Lima H, Jeong H, Cho KB, Hong S. Mono- and dinuclear zinc complexes bearing identical bis(thiosemicarbazone) ligand that exhibit alkaline phosphatase-like catalytic reactivity. J Biol Inorg Chem 2021; 27:37-47. [PMID: 34714402 DOI: 10.1007/s00775-021-01909-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/22/2021] [Indexed: 10/20/2022]
Abstract
Mono- and dinuclear zinc(II) complexes bearing bis(thiosemicarbazone) (bTSC) ligand were employed in the cleavage of phosphoester bonds. Comparative kinetic studies combined with theory suggested that the P-O bond cleavage is much accelerated by dinuclear zinc(II) complex in the presence of base. Based on the DFT-optimized structures of the proposed intermediates, it is plausible that (1) the removal of sulfur atoms of bTSC ligand from the zinc center provides two vacant sites for the binding of water (or hydroxide ion) and phosphoester and (2) the H-bonding between water (or hydroxide ion) and phosphoester, through several water molecules, may also assist the P-O bond cleavage and facilitate the nucleophilic attack. The kinetic and catalytic studies on the hydrolysis of phosphoester by dinuclear zinc complex showed a much-enhanced reactivity under basic reaction conditions, reaching over 95% conversion yield within 4 h. The currently presented compounds are arguably one of the faster synthetic Zn-based model performing phosphatase-like activity presented so far.
Collapse
Affiliation(s)
- Hyeri Jeon
- Department of Chemistry, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Hugo Vazquez-Lima
- Department of Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea.,Department of Inorganic Chemistry, Meritorious Autonomous University of Puebla, 72000, Puebla, Mexico
| | - Haewon Jeong
- Department of Chemistry, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Kyung-Bin Cho
- Department of Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Seungwoo Hong
- Department of Chemistry, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
7
|
Lai R, Cui Q. Differences in the Nature of the Phosphoryl Transfer Transition State in Protein Phosphatase 1 and Alkaline Phosphatase: Insights from QM Cluster Models. J Phys Chem B 2020; 124:9371-9384. [PMID: 33030898 PMCID: PMC7647665 DOI: 10.1021/acs.jpcb.0c07863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Quantum mechanical (QM) cluster models are used to probe effects on the catalytic properties of protein phosphatase 1 (PP1) and alkaline phosphatase (AP) due to metal ions and active site residues. The calculations suggest that the phosphoryl transfer transition states in PP1 are synchronous in nature with a significant degree of P-Olg cleavage, while those in AP are tighter with a modest degree of P-Olg cleavage and a range of P-Onuc formation. Similar to observations made in our recent work, a significant degree of cross talk between the forming and breaking P-O bonds complicates the interpretation of the Brønsted relation, especially in regard to AP for which the computed βlg/βEQ,lg value does not correlate with the degree of P-Olg cleavage regardless of the metal ions in the active site. By comparison, the correlation between βlg/βEQ,lg and the P-Olg bond order is more applicable to PP1, which generally exhibits less variation in the transition state than AP. Results for computational models with swapped metal ions between PP1 and AP suggest that the metal ions modulate both the nature of the transition state and the degrees of sensitivity of the transition state to the leaving group. In the reactant state, the degree of the scissile bond polarization is also different in the two enzymes, although this difference appears to be largely determined by the active site residues rather than the metal ions. Therefore, both the identity of the metal ion and the positioning of polar or charged residues in the active site contribute to the distinct catalytic characteristics of these enzymes. Several discrepancies observed between the QM cluster results and the available experimental data highlight the need for further QM/MM method developments for the quantitative analysis of metalloenzymes that contain open-shell transition metal ions.
Collapse
Affiliation(s)
- Rui Lai
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Qiang Cui
- Departments of Chemistry, Physics, and Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
8
|
Samantha A, Vrielink A. Lipid A Phosphoethanolamine Transferase: Regulation, Structure and Immune Response. J Mol Biol 2020; 432:5184-5196. [PMID: 32353363 DOI: 10.1016/j.jmb.2020.04.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 01/23/2023]
Abstract
A wide variety of antibiotics are targeted to the bacterial membrane due to its unique arrangement and composition relative to the host mammalian membranes. By modification of their membranes, some gram-negative pathogens resist the action of antibiotics. Lipid A phosphoethanolamine transferase (EptA) is an intramembrane enzyme that modifies the lipid A portion of lipopolysaccharide/lipooligosaccharide by the addition of phosphoethanolamine. This modification reduces the overall net-negative charge of the outer membrane of some gram-negative bacteria, conferring resistance to polymyxin. This resistance mechanism has resulted in a global public health issue due to the increased use of polymyxin as last-resort antibiotic treatments against multi-drug-resistant pathogens. Studies show that, without EptA, pathogenic bacteria become more sensitive to polymyxin and to clearance by the host immune system, suggesting the importance of this target enzyme for the development of novel therapeutic agents. In this review, EptA will be discussed comprehensively. Specifically, this review will cover the regulation of eptA expression by the two component systems PmrA/PmrB and PhoP/PhoQ, the site of modification on lipid A, the structure and catalytic mechanism of EptA in comparison to MCR-1 and Escherichia coli alkaline phosphatase, and the host immune system's response to lipid A modification by EptA. The overarching aim of this review is to provide a comprehensive overview of polymyxin resistance mediated by EptA.
Collapse
Affiliation(s)
- Ariela Samantha
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Alice Vrielink
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia.
| |
Collapse
|
9
|
Copley SD. The physical basis and practical consequences of biological promiscuity. Phys Biol 2020; 17:10.1088/1478-3975/ab8697. [PMID: 32244231 PMCID: PMC9291633 DOI: 10.1088/1478-3975/ab8697] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteins interact with metabolites, nucleic acids, and other proteins to orchestrate the myriad catalytic, structural and regulatory functions that support life from the simplest microbes to the most complex multicellular organisms. These molecular interactions are often exquisitely specific, but never perfectly so. Adventitious "promiscuous" interactions are ubiquitous due to the thousands of macromolecules and small molecules crowded together in cells. Such interactions may perturb protein function at the molecular level, but as long as they do not compromise organismal fitness, they will not be removed by natural selection. Although promiscuous interactions are physiologically irrelevant, they are important because they can provide a vast reservoir of potential functions that can provide the starting point for evolution of new functions, both in nature and in the laboratory.
Collapse
Affiliation(s)
- Shelley D Copley
- Department of Molecular, Cellular and Developmental Biology and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, UNITED STATES
| |
Collapse
|
10
|
Lukesch M, Tasnádi G, Ditrich K, Hall M, Faber K. Characterization of alkaline phosphatase PhoK from Sphingomonas sp. BSAR-1 for phosphate monoester synthesis and hydrolysis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140291. [DOI: 10.1016/j.bbapap.2019.140291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022]
|
11
|
van Loo B, Berry R, Boonyuen U, Mohamed MF, Golicnik M, Hengge AC, Hollfelder F. Transition-State Interactions in a Promiscuous Enzyme: Sulfate and Phosphate Monoester Hydrolysis by Pseudomonas aeruginosa Arylsulfatase. Biochemistry 2019; 58:1363-1378. [PMID: 30810299 PMCID: PMC11098524 DOI: 10.1021/acs.biochem.8b00996] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pseudomonas aeruginosa arylsulfatase (PAS) hydrolyzes sulfate and, promiscuously, phosphate monoesters. Enzyme-catalyzed sulfate transfer is crucial to a wide variety of biological processes, but detailed studies of the mechanistic contributions to its catalysis are lacking. We present linear free energy relationships (LFERs) and kinetic isotope effects (KIEs) of PAS and analyses of active site mutants that suggest a key role for leaving group (LG) stabilization. In LFERs PASWT has a much less negative Brønsted coefficient (βleaving groupobs-Enz = -0.33) than the uncatalyzed reaction (βleaving groupobs = -1.81). This situation is diminished when cationic active site groups are exchanged for alanine. The considerable degree of bond breaking during the transition state (TS) is evidenced by an 18Obridge KIE of 1.0088. LFER and KIE data for several active site mutants point to leaving group stabilization by active site K375, in cooperation with H211. 15N KIEs and the increased sensitivity to leaving group ability of the sulfatase activity in neat D2O (Δβleaving groupH-D = +0.06) suggest that the mechanism for S-Obridge bond fission shifts, with decreasing leaving group ability, from charge compensation via Lewis acid interactions toward direct proton donation. 18Ononbridge KIEs indicate that the TS for PAS-catalyzed sulfate monoester hydrolysis has a significantly more associative character compared to the uncatalyzed reaction, while PAS-catalyzed phosphate monoester hydrolysis does not show this shift. This difference in enzyme-catalyzed TSs appears to be the major factor favoring specificity toward sulfate over phosphate esters by this promiscuous hydrolase, since other features are either too similar (uncatalyzed TS) or inherently favor phosphate (charge).
Collapse
Affiliation(s)
- Bert van Loo
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Ryan Berry
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Usa Boonyuen
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Mark F. Mohamed
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Marko Golicnik
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Alvan C. Hengge
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
van Loo B, Bayer CD, Fischer G, Jonas S, Valkov E, Mohamed MF, Vorobieva A, Dutruel C, Hyvönen M, Hollfelder F. Balancing Specificity and Promiscuity in Enzyme Evolution: Multidimensional Activity Transitions in the Alkaline Phosphatase Superfamily. J Am Chem Soc 2018; 141:370-387. [PMID: 30497259 DOI: 10.1021/jacs.8b10290] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Highly proficient, promiscuous enzymes can be springboards for functional evolution, able to avoid loss of function during adaptation by their capacity to promote multiple reactions. We employ a systematic comparative study of structure, sequence, and substrate specificity to track the evolution of specificity and reactivity between promiscuous members of clades of the alkaline phosphatase (AP) superfamily. Construction of a phylogenetic tree of protein sequences maps out the likely transition zone between arylsulfatases (ASs) and phosphonate monoester hydrolases (PMHs). Kinetic analysis shows that all enzymes characterized have four chemically distinct phospho- and sulfoesterase activities, with rate accelerations ranging from 1011- to 1017-fold for their primary and 109- to 1012-fold for their promiscuous reactions, suggesting that catalytic promiscuity is widespread in the AP-superfamily. This functional characterization and crystallography reveal a novel class of ASs that is so similar in sequence to known PMHs that it had not been recognized as having diverged in function. Based on analysis of snapshots of catalytic promiscuity "in transition", we develop possible models that would allow functional evolution and determine scenarios for trade-off between multiple activities. For the new ASs, we observe largely invariant substrate specificity that would facilitate the transition from ASs to PMHs via trade-off-free molecular exaptation, that is, evolution without initial loss of primary activity and specificity toward the original substrate. This ability to bypass low activity generalists provides a molecular solution to avoid adaptive conflict.
Collapse
Affiliation(s)
- Bert van Loo
- Department of Biochemistry , University of Cambridge , Cambridge CB2 1GA , United Kingdom
| | - Christopher D Bayer
- Department of Biochemistry , University of Cambridge , Cambridge CB2 1GA , United Kingdom
| | - Gerhard Fischer
- Department of Biochemistry , University of Cambridge , Cambridge CB2 1GA , United Kingdom
| | - Stefanie Jonas
- Department of Biochemistry , University of Cambridge , Cambridge CB2 1GA , United Kingdom
| | - Eugene Valkov
- Department of Biochemistry , University of Cambridge , Cambridge CB2 1GA , United Kingdom
| | - Mark F Mohamed
- Department of Biochemistry , University of Cambridge , Cambridge CB2 1GA , United Kingdom
| | - Anastassia Vorobieva
- Department of Biochemistry , University of Cambridge , Cambridge CB2 1GA , United Kingdom
| | - Celine Dutruel
- Department of Biochemistry , University of Cambridge , Cambridge CB2 1GA , United Kingdom
| | - Marko Hyvönen
- Department of Biochemistry , University of Cambridge , Cambridge CB2 1GA , United Kingdom
| | - Florian Hollfelder
- Department of Biochemistry , University of Cambridge , Cambridge CB2 1GA , United Kingdom
| |
Collapse
|
13
|
Roston D, Lu X, Fang D, Demapan D, Cui Q. Analysis of Phosphoryl-Transfer Enzymes with QM/MM Free Energy Simulations. Methods Enzymol 2018; 607:53-90. [PMID: 30149869 DOI: 10.1016/bs.mie.2018.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We discuss the application of quantum mechanics/molecular mechanics (QM/MM) free energy simulations to the analysis of phosphoryl transfers catalyzed by two enzymes: alkaline phosphatase and myosin. We focus on the nature of the transition state and the issue of mechanochemical coupling, respectively, in the two enzymes. The results illustrate unique insights that emerged from the QM/MM simulations, especially concerning the interpretation of experimental data regarding the nature of enzymatic transition states and coupling between global structural transition and catalysis in the active site. We also highlight a number of technical issues worthy of attention when applying QM/MM free energy simulations, and comment on a number of technical and mechanistic issues that require further studies.
Collapse
Affiliation(s)
- Daniel Roston
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, Madison, WI, United States
| | - Xiya Lu
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, Madison, WI, United States
| | - Dong Fang
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, Madison, WI, United States
| | - Darren Demapan
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, Madison, WI, United States
| | - Qiang Cui
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, Madison, WI, United States.
| |
Collapse
|
14
|
Evolutionary repurposing of a sulfatase: A new Michaelis complex leads to efficient transition state charge offset. Proc Natl Acad Sci U S A 2018; 115:E7293-E7302. [PMID: 30012610 DOI: 10.1073/pnas.1607817115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The recruitment and evolutionary optimization of promiscuous enzymes is key to the rapid adaptation of organisms to changing environments. Our understanding of the precise mechanisms underlying enzyme repurposing is, however, limited: What are the active-site features that enable the molecular recognition of multiple substrates with contrasting catalytic requirements? To gain insights into the molecular determinants of adaptation in promiscuous enzymes, we performed the laboratory evolution of an arylsulfatase to improve its initially weak phenylphosphonate hydrolase activity. The evolutionary trajectory led to a 100,000-fold enhancement of phenylphosphonate hydrolysis, while the native sulfate and promiscuous phosphate mono- and diester hydrolyses were only marginally affected (≤50-fold). Structural, kinetic, and in silico characterizations of the evolutionary intermediates revealed that two key mutations, T50A and M72V, locally reshaped the active site, improving access to the catalytic machinery for the phosphonate. Measured transition state (TS) charge changes along the trajectory suggest the creation of a new Michaelis complex (E•S, enzyme-substrate), with enhanced leaving group stabilization in the TS for the promiscuous phosphonate (βleavinggroup from -1.08 to -0.42). Rather than altering the catalytic machinery, evolutionary repurposing was achieved by fine-tuning the molecular recognition of the phosphonate in the Michaelis complex, and by extension, also in the TS. This molecular scenario constitutes a mechanistic alternative to adaptation solely based on enzyme flexibility and conformational selection. Instead, rapid functional transitions between distinct chemical reactions rely on the high reactivity of permissive active-site architectures that allow multiple substrate binding modes.
Collapse
|
15
|
Petrović D, Risso VA, Kamerlin SCL, Sanchez-Ruiz JM. Conformational dynamics and enzyme evolution. J R Soc Interface 2018; 15:20180330. [PMID: 30021929 PMCID: PMC6073641 DOI: 10.1098/rsif.2018.0330] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/27/2018] [Indexed: 12/21/2022] Open
Abstract
Enzymes are dynamic entities, and their dynamic properties are clearly linked to their biological function. It follows that dynamics ought to play an essential role in enzyme evolution. Indeed, a link between conformational diversity and the emergence of new enzyme functionalities has been recognized for many years. However, it is only recently that state-of-the-art computational and experimental approaches are revealing the crucial molecular details of this link. Specifically, evolutionary trajectories leading to functional optimization for a given host environment or to the emergence of a new function typically involve enriching catalytically competent conformations and/or the freezing out of non-competent conformations of an enzyme. In some cases, these evolutionary changes are achieved through distant mutations that shift the protein ensemble towards productive conformations. Multifunctional intermediates in evolutionary trajectories are probably multi-conformational, i.e. able to switch between different overall conformations, each competent for a given function. Conformational diversity can assist the emergence of a completely new active site through a single mutation by facilitating transition-state binding. We propose that this mechanism may have played a role in the emergence of enzymes at the primordial, progenote stage, where it was plausibly promoted by high environmental temperatures and the possibility of additional phenotypic mutations.
Collapse
Affiliation(s)
- Dušan Petrović
- Department of Chemistry, BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Valeria A Risso
- Departamento de Quimica Fisica, Facultad de Ciencias, University of Granada, 18071 Granada, Spain
| | | | - Jose M Sanchez-Ruiz
- Departamento de Quimica Fisica, Facultad de Ciencias, University of Granada, 18071 Granada, Spain
| |
Collapse
|
16
|
van Loo B, Schober M, Valkov E, Heberlein M, Bornberg-Bauer E, Faber K, Hyvönen M, Hollfelder F. Structural and Mechanistic Analysis of the Choline Sulfatase from Sinorhizobium melliloti: A Class I Sulfatase Specific for an Alkyl Sulfate Ester. J Mol Biol 2018; 430:1004-1023. [PMID: 29458126 PMCID: PMC5870055 DOI: 10.1016/j.jmb.2018.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 12/23/2022]
Abstract
Hydrolysis of organic sulfate esters proceeds by two distinct mechanisms, water attacking at either sulfur (S-O bond cleavage) or carbon (C-O bond cleavage). In primary and secondary alkyl sulfates, attack at carbon is favored, whereas in aromatic sulfates and sulfated sugars, attack at sulfur is preferred. This mechanistic distinction is mirrored in the classification of enzymes that catalyze sulfate ester hydrolysis: arylsulfatases (ASs) catalyze S-O cleavage in sulfate sugars and arylsulfates, and alkyl sulfatases break the C-O bond of alkyl sulfates. Sinorhizobium meliloti choline sulfatase (SmCS) efficiently catalyzes the hydrolysis of alkyl sulfate choline-O-sulfate (kcat/KM=4.8×103s-1M-1) as well as arylsulfate 4-nitrophenyl sulfate (kcat/KM=12s-1M-1). Its 2.8-Å resolution X-ray structure shows a buried, largely hydrophobic active site in which a conserved glutamate (Glu386) plays a role in recognition of the quaternary ammonium group of the choline substrate. SmCS structurally resembles members of the alkaline phosphatase superfamily, being most closely related to dimeric ASs and tetrameric phosphonate monoester hydrolases. Although >70% of the amino acids between protomers align structurally (RMSDs 1.79-1.99Å), the oligomeric structures show distinctly different packing and protomer-protomer interfaces. The latter also play an important role in active site formation. Mutagenesis of the conserved active site residues typical for ASs, H218O-labeling studies and the observation of catalytically promiscuous behavior toward phosphoesters confirm the close relation to alkaline phosphatase superfamily members and suggest that SmCS is an AS that catalyzes S-O cleavage in alkyl sulfate esters with extreme catalytic proficiency.
Collapse
Affiliation(s)
- Bert van Loo
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom; Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, D-48149 Münster, Germany
| | - Markus Schober
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom; Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Eugene Valkov
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Magdalena Heberlein
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, D-48149 Münster, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, D-48149 Münster, Germany
| | - Kurt Faber
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom.
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom.
| |
Collapse
|
17
|
Petrović D, Szeler K, Kamerlin SCL. Challenges and advances in the computational modeling of biological phosphate hydrolysis. Chem Commun (Camb) 2018; 54:3077-3089. [PMID: 29412205 DOI: 10.1039/c7cc09504j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphate ester hydrolysis is fundamental to many life processes, and has been the topic of substantial experimental and computational research effort. However, even the simplest of phosphate esters can be hydrolyzed through multiple possible pathways that can be difficult to distinguish between, either experimentally, or computationally. Therefore, the mechanisms of both the enzymatic and non-enzymatic reactions have been historically controversial. In the present contribution, we highlight a number of technical issues involved in reliably modeling these computationally challenging reactions, as well as proposing potential solutions. We also showcase examples of our own work in this area, discussing both the non-enzymatic reaction in aqueous solution, as well as insights obtained from the computational modeling of organophosphate hydrolysis and catalytic promiscuity amongst enzymes that catalyze phosphoryl transfer.
Collapse
Affiliation(s)
- Dušan Petrović
- Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden.
| | - Klaudia Szeler
- Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden.
| | | |
Collapse
|
18
|
Cooperativity and flexibility in enzyme evolution. Curr Opin Struct Biol 2018; 48:83-92. [DOI: 10.1016/j.sbi.2017.10.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022]
|
19
|
Sunden F, AlSadhan I, Lyubimov A, Doukov T, Swan J, Herschlag D. Differential catalytic promiscuity of the alkaline phosphatase superfamily bimetallo core reveals mechanistic features underlying enzyme evolution. J Biol Chem 2017; 292:20960-20974. [PMID: 29070681 DOI: 10.1074/jbc.m117.788240] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 10/19/2017] [Indexed: 11/06/2022] Open
Abstract
Members of enzyme superfamilies specialize in different reactions but often exhibit catalytic promiscuity for one another's reactions, consistent with catalytic promiscuity as an important driver in the evolution of new enzymes. Wanting to understand how catalytic promiscuity and other factors may influence evolution across a superfamily, we turned to the well-studied alkaline phosphatase (AP) superfamily, comparing three of its members, two evolutionarily distinct phosphatases and a phosphodiesterase. We mutated distinguishing active-site residues to generate enzymes that had a common Zn2+ bimetallo core but little sequence similarity and different auxiliary domains. We then tested the catalytic capabilities of these pruned enzymes with a series of substrates. A substantial rate enhancement of ∼1011-fold for both phosphate mono- and diester hydrolysis by each enzyme indicated that the Zn2+ bimetallo core is an effective mono/di-esterase generalist and that the bimetallo cores were not evolutionarily tuned to prefer their cognate reactions. In contrast, our pruned enzymes were ineffective sulfatases, and this limited promiscuity may have provided a driving force for founding the distinct one-metal-ion branch that contains all known AP superfamily sulfatases. Finally, our pruned enzymes exhibited 107-108-fold phosphotriesterase rate enhancements, despite absence of such enzymes within the AP superfamily. We speculate that the superfamily active-site architecture involved in nucleophile positioning prevents accommodation of the additional triester substituent. Overall, we suggest that catalytic promiscuity, and the ease or difficulty of remodeling and building onto existing protein scaffolds, have greatly influenced the course of enzyme evolution. Uncovering principles and properties of enzyme function, promiscuity, and repurposing provides lessons for engineering new enzymes.
Collapse
Affiliation(s)
- Fanny Sunden
- From the Department of Biochemistry, Beckman Center
| | | | - Artem Lyubimov
- the Departments of Molecular and Cellular Physiology.,Neurology and Neurological Science.,Structural Biology, and.,Photon Science.,Howard Hughes Medical Institute
| | - Tzanko Doukov
- the Macromolecular Crystallographic Group, Stanford Synchrotron Radiation Lightsource, National Accelerator Laboratory, Stanford University, Stanford, California 94309
| | - Jeffrey Swan
- From the Department of Biochemistry, Beckman Center
| | - Daniel Herschlag
- From the Department of Biochemistry, Beckman Center, .,the Departments of Chemical Engineering and Chemistry, and.,Stanford ChEM-H (Chemistry, Engineering, and Medicine for Human Health), Stanford University, Stanford, California 94305 and
| |
Collapse
|
20
|
Chu Y, Williams NH, Hengge AC. Transition States and Control of Substrate Preference in the Promiscuous Phosphatase PP1. Biochemistry 2017; 56:3923-3933. [PMID: 28678475 DOI: 10.1021/acs.biochem.7b00441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Catalytically promiscuous enzymes are an attractive frontier for biochemistry, because enzyme promiscuities not only plausibly explain enzyme evolution through the mechanism of gene duplication but also could provide an efficient route to changing the catalytic function of proteins by mimicking this evolutionary process. PP1γ is an effectively promiscuous phosphatase for the hydrolysis of both monoanionic and dianionic phosphate ester-based substrates. In addition to its native phosphate monoester substrate, PP1γ catalyzes the hydrolysis of aryl methylphosphonates, fluorophosphate esters, phosphorothioate esters, and phosphodiesters, with second-order rate accelerations that fall within the narrow range of 1011-1013. In contrast to the different transition states in the uncatalyzed hydrolysis reactions of these substrates, PP1γ catalyzes their hydrolysis through similar transition states. PP1γ does not catalyze the hydrolysis of a sulfate ester, which is unexpected. The PP1γ active site is tolerant of variations in the geometry of bound ligands, which permit the effective catalysis even of substrates whose steric requirements may result in perturbations to the positioning of the transferring group, both in the initial enzyme-substrate complex and in the transition state. The conservative mutation of arginine 221 to lysine results in a mutant that is a more effective catalyst toward monoanionic substrates. The surprising conversion of substrate preference lends support to the notion that mutations following gene duplication can result in an altered enzyme with different catalytic capabilities and preferences and may provide a pathway for the evolution of new enzymes.
Collapse
Affiliation(s)
- Yuan Chu
- Department of Chemistry and Biochemistry, Utah State University , Logan, Utah 84322-0300, United States
| | - Nicholas H Williams
- Centre for Chemical Biology, Department of Chemistry, University of Sheffield , Sheffield S3 7HF, U.K
| | - Alvan C Hengge
- Department of Chemistry and Biochemistry, Utah State University , Logan, Utah 84322-0300, United States
| |
Collapse
|
21
|
Bayer CD, van Loo B, Hollfelder F. Specificity Effects of Amino Acid Substitutions in Promiscuous Hydrolases: Context-Dependence of Catalytic Residue Contributions to Local Fitness Landscapes in Nearby Sequence Space. Chembiochem 2017; 18:1001-1015. [PMID: 28464395 PMCID: PMC5488252 DOI: 10.1002/cbic.201600657] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Indexed: 12/18/2022]
Abstract
Catalytic promiscuity can facilitate evolution of enzyme functions-a multifunctional catalyst may act as a springboard for efficient functional adaptation. We test the effect of single mutations on multiple activities in two groups of promiscuous AP superfamily members to probe this hypothesis. We quantify the effect of site-saturating mutagenesis of an analogous, nucleophile-flanking residue in two superfamily members: an arylsulfatase (AS) and a phosphonate monoester hydrolase (PMH). Statistical analysis suggests that no one physicochemical characteristic alone explains the mutational effects. Instead, these effects appear to be dominated by their structural context. Likewise, the effect of changing the catalytic nucleophile itself is not reaction-type-specific. Mapping of "fitness landscapes" of four activities onto the possible variation of a chosen sequence position revealed tremendous potential for respecialization of AP superfamily members through single-point mutations, highlighting catalytic promiscuity as a powerful predictor of adaptive potential.
Collapse
Affiliation(s)
- Christopher D. Bayer
- Department of BiochemistryUniversity of Cambridge80 Tennis Court RoadCB2 1GACambridgeUK
- Present address: c-LEcta GmbHPerlickstrasse 504103LeipzigGermany
| | - Bert van Loo
- Department of BiochemistryUniversity of Cambridge80 Tennis Court RoadCB2 1GACambridgeUK
- Present address: Institute for Evolution and BiodiversityUniversity of MünsterHüfferstrasse 148149MünsterGermany
| | - Florian Hollfelder
- Department of BiochemistryUniversity of Cambridge80 Tennis Court RoadCB2 1GACambridgeUK
| |
Collapse
|
22
|
Hinchliffe P, Yang QE, Portal E, Young T, Li H, Tooke CL, Carvalho MJ, Paterson NG, Brem J, Niumsup PR, Tansawai U, Lei L, Li M, Shen Z, Wang Y, Schofield CJ, Mulholland AJ, Shen J, Fey N, Walsh TR, Spencer J. Insights into the Mechanistic Basis of Plasmid-Mediated Colistin Resistance from Crystal Structures of the Catalytic Domain of MCR-1. Sci Rep 2017; 7:39392. [PMID: 28059088 PMCID: PMC5216409 DOI: 10.1038/srep39392] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/22/2016] [Indexed: 11/09/2022] Open
Abstract
The polymixin colistin is a "last line" antibiotic against extensively-resistant Gram-negative bacteria. Recently, the mcr-1 gene was identified as a plasmid-mediated resistance mechanism in human and animal Enterobacteriaceae, with a wide geographical distribution and many producer strains resistant to multiple other antibiotics. mcr-1 encodes a membrane-bound enzyme catalysing phosphoethanolamine transfer onto bacterial lipid A. Here we present crystal structures revealing the MCR-1 periplasmic, catalytic domain to be a zinc metalloprotein with an alkaline phosphatase/sulphatase fold containing three disulphide bonds. One structure captures a phosphorylated form representing the first intermediate in the transfer reaction. Mutation of residues implicated in zinc or phosphoethanolamine binding, or catalytic activity, restores colistin susceptibility of recombinant E. coli. Zinc deprivation reduces colistin MICs in MCR-1-producing laboratory, environmental, animal and human E. coli. Conversely, over-expression of the disulphide isomerase DsbA increases the colistin MIC of laboratory E. coli. Preliminary density functional theory calculations on cluster models suggest a single zinc ion may be sufficient to support phosphoethanolamine transfer. These data demonstrate the importance of zinc and disulphide bonds to MCR-1 activity, suggest that assays under zinc-limiting conditions represent a route to phenotypic identification of MCR-1 producing E. coli, and identify key features of the likely catalytic mechanism.
Collapse
Affiliation(s)
- Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Qiu E Yang
- Institute of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Edward Portal
- Institute of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Tom Young
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Hui Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Catherine L Tooke
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Maria J Carvalho
- Institute of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - Neil G Paterson
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Jürgen Brem
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Pannika R Niumsup
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Uttapoln Tansawai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Lei Lei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mei Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhangqi Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | | | | | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Natalie Fey
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Timothy R Walsh
- Institute of Infection and Immunity, Cardiff University, Cardiff CF14 4XN, UK
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
23
|
Purg M, Pabis A, Baier F, Tokuriki N, Jackson C, Kamerlin SCL. Probing the mechanisms for the selectivity and promiscuity of methyl parathion hydrolase. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2016.0150. [PMID: 27698033 PMCID: PMC5052733 DOI: 10.1098/rsta.2016.0150] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/01/2016] [Indexed: 05/27/2023]
Abstract
Diverse organophosphate hydrolases have convergently evolved the ability to hydrolyse man-made organophosphates. Thus, these enzymes are attractive model systems for studying the factors shaping enzyme functional evolution. Methyl parathion hydrolase (MPH) is an enzyme from the metallo-β-lactamase superfamily, which hydrolyses a wide range of organophosphate, aryl ester and lactone substrates. In addition, MPH demonstrates metal-ion-dependent selectivity patterns. The origins of this remain unclear, but are linked to open questions about the more general role of metal ions in functional evolution and divergence within enzyme superfamilies. Here, we present detailed mechanistic studies of the paraoxonase and arylesterase activities of MPH complexed with five different transition metal ions, and demonstrate that the hydrolysis reactions proceed via similar pathways and transition states. However, while it is possible to discern a clear structural origin for the selectivity between different substrates, the selectivity between different metal ions appears to lie instead in the distinct electrostatic properties of the metal ions themselves, which causes subtle changes in transition state geometries and metal-metal distances at the transition state rather than significant structural changes in the active site. While subtle, these differences can be significant for shaping the metal-ion-dependent activity patterns observed for this enzyme.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.
Collapse
Affiliation(s)
- Miha Purg
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, Uppsala 75124, Sweden
| | - Anna Pabis
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, Uppsala 75124, Sweden
| | - Florian Baier
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, Canada V6T 1Z4
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, Canada V6T 1Z4
| | - Colin Jackson
- Research School of Chemistry, Building 138, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Shina Caroline Lynn Kamerlin
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, Uppsala 75124, Sweden
| |
Collapse
|
24
|
Pabis A, Duarte F, Kamerlin SCL. Promiscuity in the Enzymatic Catalysis of Phosphate and Sulfate Transfer. Biochemistry 2016; 55:3061-81. [PMID: 27187273 PMCID: PMC4899807 DOI: 10.1021/acs.biochem.6b00297] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
The
enzymes that facilitate phosphate and sulfate hydrolysis are
among the most proficient natural catalysts known to date. Interestingly,
a large number of these enzymes are promiscuous catalysts that exhibit
both phosphatase and sulfatase activities in the same active site
and, on top of that, have also been demonstrated to efficiently catalyze
the hydrolysis of other additional substrates with varying degrees
of efficiency. Understanding the factors that underlie such multifunctionality
is crucial both for understanding functional evolution in enzyme superfamilies
and for the development of artificial enzymes. In this Current Topic,
we have primarily focused on the structural and mechanistic basis
for catalytic promiscuity among enzymes that facilitate both phosphoryl
and sulfuryl transfer in the same active site, while comparing this
to how catalytic promiscuity manifests in other promiscuous phosphatases.
We have also drawn on the large number of experimental and computational
studies of selected model systems in the literature to explore the
different features driving the catalytic promiscuity of such enzymes.
Finally, on the basis of this comparative analysis, we probe the plausible
origins and determinants of catalytic promiscuity in enzymes that
catalyze phosphoryl and sulfuryl transfer.
Collapse
Affiliation(s)
- Anna Pabis
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University , BMC Box 596, S-751 24 Uppsala, Sweden
| | - Fernanda Duarte
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, U.K.,Physical and Theoretical Chemistry Laboratory, University of Oxford , South Parks Road, Oxford OX1 3QZ, U.K
| | - Shina C L Kamerlin
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University , BMC Box 596, S-751 24 Uppsala, Sweden
| |
Collapse
|
25
|
Esteves LF, Rey NA, Dos Santos HF, Costa LAS. Theoretical Proposal for the Whole Phosphate Diester Hydrolysis Mechanism Promoted by a Catalytic Promiscuous Dinuclear Copper(II) Complex. Inorg Chem 2016; 55:2806-18. [DOI: 10.1021/acs.inorgchem.5b02604] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lucas F. Esteves
- NEQC (Núcleo de Estudos em Quı́mica
Computacional), Departamento de Quı́mica, Instituto de
Ciências Exatas (ICE), Universidade Federal de Juiz de Fora, Campus Universitário
Martelos, 36036-900 Juiz de Fora, Minas Gerais, Brazil
| | - Nicolás A. Rey
- Laboratório
de Síntese Orgânica e Quı́mica de Coordenação
Aplicada a Sistemas Biológicos (LABSO-BIO), Departamento de
Quı́mica, Centro Técnico Científico (CTC), PUC-Rio, 22453-900 Rio de Janeiro, Rio
de Janeiro, Brazil
| | - Hélio F. Dos Santos
- NEQC (Núcleo de Estudos em Quı́mica
Computacional), Departamento de Quı́mica, Instituto de
Ciências Exatas (ICE), Universidade Federal de Juiz de Fora, Campus Universitário
Martelos, 36036-900 Juiz de Fora, Minas Gerais, Brazil
| | - Luiz Antônio S. Costa
- NEQC (Núcleo de Estudos em Quı́mica
Computacional), Departamento de Quı́mica, Instituto de
Ciências Exatas (ICE), Universidade Federal de Juiz de Fora, Campus Universitário
Martelos, 36036-900 Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
26
|
Moura M, Finkle J, Stainbrook S, Greene J, Broadbelt LJ, Tyo KE. Evaluating enzymatic synthesis of small molecule drugs. Metab Eng 2016; 33:138-147. [DOI: 10.1016/j.ymben.2015.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/02/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
|
27
|
Pabis A, Kamerlin SCL. Promiscuity and electrostatic flexibility in the alkaline phosphatase superfamily. Curr Opin Struct Biol 2015; 37:14-21. [PMID: 26716576 DOI: 10.1016/j.sbi.2015.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/09/2015] [Accepted: 11/17/2015] [Indexed: 12/17/2022]
Abstract
Catalytic promiscuity, that is, the ability of single enzymes to facilitate the turnover of multiple, chemically distinct substrates, is a widespread phenomenon that plays an important role in the evolution of enzyme function. Additionally, such pre-existing multifunctionality can be harnessed in artificial enzyme design. The members of the alkaline phosphatase superfamily have served extensively as both experimental and computational model systems for enhancing our understanding of catalytic promiscuity. In this Opinion, we present key recent computational studies into the catalytic activity of these highly promiscuous enzymes, highlighting the valuable insight they have provided into both the molecular basis for catalytic promiscuity in general, and its implications for the evolution of phosphatase activity.
Collapse
Affiliation(s)
- Anna Pabis
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden
| | - Shina Caroline Lynn Kamerlin
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden.
| |
Collapse
|
28
|
Barrozo A, Duarte F, Bauer P, Carvalho ATP, Kamerlin SCL. Cooperative Electrostatic Interactions Drive Functional Evolution in the Alkaline Phosphatase Superfamily. J Am Chem Soc 2015; 137:9061-76. [PMID: 26091851 PMCID: PMC4513756 DOI: 10.1021/jacs.5b03945] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It is becoming widely accepted that catalytic promiscuity, i.e., the ability of a single enzyme to catalyze the turnover of multiple, chemically distinct substrates, plays a key role in the evolution of new enzyme functions. In this context, the members of the alkaline phosphatase superfamily have been extensively studied as model systems in order to understand the phenomenon of enzyme multifunctionality. In the present work, we model the selectivity of two multiply promiscuous members of this superfamily, namely the phosphonate monoester hydrolases from Burkholderia caryophylli and Rhizobium leguminosarum. We have performed extensive simulations of the enzymatic reaction of both wild-type enzymes and several experimentally characterized mutants. Our computational models are in agreement with key experimental observables, such as the observed activities of the wild-type enzymes, qualitative interpretations of experimental pH-rate profiles, and activity trends among several active site mutants. In all cases the substrates of interest bind to the enzyme in similar conformations, with largely unperturbed transition states from their corresponding analogues in aqueous solution. Examination of transition-state geometries and the contribution of individual residues to the calculated activation barriers suggest that the broad promiscuity of these enzymes arises from cooperative electrostatic interactions in the active site, allowing each enzyme to adapt to the electrostatic needs of different substrates. By comparing the structural and electrostatic features of several alkaline phosphatases, we suggest that this phenomenon is a generalized feature driving selectivity and promiscuity within this superfamily and can be in turn used for artificial enzyme design.
Collapse
Affiliation(s)
- Alexandre Barrozo
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24, Uppsala, Sweden
| | - Fernanda Duarte
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24, Uppsala, Sweden
| | - Paul Bauer
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24, Uppsala, Sweden
| | - Alexandra T P Carvalho
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24, Uppsala, Sweden
| | - Shina C L Kamerlin
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24, Uppsala, Sweden
| |
Collapse
|
29
|
Duarte F, Åqvist J, Williams NH, Kamerlin SCL. Resolving apparent conflicts between theoretical and experimental models of phosphate monoester hydrolysis. J Am Chem Soc 2014; 137:1081-93. [PMID: 25423607 PMCID: PMC4311964 DOI: 10.1021/ja5082712] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
Understanding
phosphoryl and sulfuryl transfer is central to many
biochemical processes. However, despite decades of experimental and
computational studies, a consensus concerning the precise mechanistic
details of these reactions has yet to be reached. In this work we
perform a detailed comparative theoretical study of the hydrolysis
of p-nitrophenyl phosphate, methyl phosphate and p-nitrophenyl sulfate, all of which have served as key model
systems for understanding phosphoryl and sulfuryl transfer reactions,
respectively. We demonstrate the existence of energetically similar
but mechanistically distinct possibilities for phosphate monoester
hydrolysis. The calculated kinetic isotope effects for p-nitrophenyl phosphate provide a means to discriminate between substrate-
and solvent-assisted pathways of phosphate monoester hydrolysis, and
show that the solvent-assisted pathway dominates in solution. This
preferred mechanism for p-nitrophenyl phosphate hydrolysis
is difficult to find computationally due to the limitations of compressing
multiple bonding changes onto a 2-dimensional energy surface. This
problem is compounded by the need to include implicit solvation to
at least microsolvate the system and stabilize the highly charged
species. In contrast, methyl phosphate hydrolysis shows a preference
for a substrate-assisted mechanism. For p-nitrophenyl
sulfate hydrolysis there is only one viable reaction pathway, which
is similar to the solvent-assisted pathway for phosphate hydrolysis,
and the substrate-assisted pathway is not accessible. Overall, our
results provide a unifying mechanistic framework that is consistent
with the experimentally measured kinetic isotope effects and reconciles
the discrepancies between theoretical and experimental models for
these biochemically ubiquitous classes of reaction.
Collapse
Affiliation(s)
- Fernanda Duarte
- Department of Cell and Molecular Biology (ICM), Uppsala University , SE-751 24 Uppsala, Sweden
| | | | | | | |
Collapse
|
30
|
Lu X, Gaus M, Elstner M, Cui Q. Parametrization of DFTB3/3OB for magnesium and zinc for chemical and biological applications. J Phys Chem B 2014; 119:1062-82. [PMID: 25178644 PMCID: PMC4306495 DOI: 10.1021/jp506557r] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
We report the parametrization of
the approximate density functional
theory, DFTB3, for magnesium and zinc for chemical and biological
applications. The parametrization strategy follows that established
in previous work that parametrized several key main group elements
(O, N, C, H, P, and S). This 3OB set of parameters can thus be used
to study many chemical and biochemical systems. The parameters are
benchmarked using both gas-phase and condensed-phase systems. The
gas-phase results are compared to DFT (mostly B3LYP), ab initio (MP2 and G3B3), and PM6, as well as to a previous DFTB parametrization
(MIO). The results indicate that DFTB3/3OB is particularly successful
at predicting structures, including rather complex dinuclear metalloenzyme
active sites, while being semiquantitative (with a typical mean absolute
deviation (MAD) of ∼3–5 kcal/mol) for energetics. Single-point
calculations with high-level quantum mechanics (QM) methods generally
lead to very satisfying (a typical MAD of ∼1 kcal/mol) energetic
properties. DFTB3/MM simulations for solution and two enzyme systems
also lead to encouraging structural and energetic properties in comparison
to available experimental data. The remaining limitations of DFTB3,
such as the treatment of interaction between metal ions and highly
charged/polarizable ligands, are also discussed.
Collapse
Affiliation(s)
- Xiya Lu
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | | | | | | |
Collapse
|
31
|
Duarte F, Geng T, Marloie G, Al Hussain AO, Williams NH, Kamerlin SCL. The alkaline hydrolysis of sulfonate esters: challenges in interpreting experimental and theoretical data. J Org Chem 2014; 79:2816-28. [PMID: 24279349 PMCID: PMC3982930 DOI: 10.1021/jo402420t] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Indexed: 01/12/2023]
Abstract
Sulfonate ester hydrolysis has been the subject of recent debate, with experimental evidence interpreted in terms of both stepwise and concerted mechanisms. In particular, a recent study of the alkaline hydrolysis of a series of benzene arylsulfonates (Babtie et al., Org. Biomol. Chem. 10, 2012, 8095) presented a nonlinear Brønsted plot, which was explained in terms of a change from a stepwise mechanism involving a pentavalent intermediate for poorer leaving groups to a fully concerted mechanism for good leaving groups and supported by a theoretical study. In the present work, we have performed a detailed computational study of the hydrolysis of these compounds and find no computational evidence for a thermodynamically stable intermediate for any of these compounds. Additionally, we have extended the experimental data to include pyridine-3-yl benzene sulfonate and its N-oxide and N-methylpyridinium derivatives. Inclusion of these compounds converts the Brønsted plot to a moderately scattered but linear correlation and gives a very good Hammett correlation. These data suggest a concerted pathway for this reaction that proceeds via an early transition state with little bond cleavage to the leaving group, highlighting the care that needs to be taken with the interpretation of experimental and especially theoretical data.
Collapse
Affiliation(s)
- Fernanda Duarte
- Department
of Cell and Molecular Biology, Uppsala University, Uppsala 751 05, Sweden
| | - Ting Geng
- Department
of Cell and Molecular Biology, Uppsala University, Uppsala 751 05, Sweden
| | - Gaël Marloie
- Department
of Cell and Molecular Biology, Uppsala University, Uppsala 751 05, Sweden
| | - Adel O. Al Hussain
- Department
of Chemistry, The University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Nicholas H. Williams
- Department
of Chemistry, The University of Sheffield, Sheffield S3 7HF, United Kingdom
| | | |
Collapse
|
32
|
Zinchenko A, Devenish SR, Kintses B, Colin PY, Fischlechner M, Hollfelder F. One in a million: flow cytometric sorting of single cell-lysate assays in monodisperse picolitre double emulsion droplets for directed evolution. Anal Chem 2014; 86:2526-33. [PMID: 24517505 PMCID: PMC3952496 DOI: 10.1021/ac403585p] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/22/2014] [Indexed: 12/25/2022]
Abstract
Directed evolution relies on iterative cycles of randomization and selection. The outcome of an artificial evolution experiment is crucially dependent on (i) the numbers of variants that can be screened and (ii) the quality of the assessment of each clone that forms the basis for selection. Compartmentalization of screening assays in water-in-oil emulsion droplets provides an opportunity to screen vast numbers of individual assays with good signal quality. Microfluidic systems have been developed to make and sort droplets, but the operator skill required precludes their ready implementation in nonspecialist settings. We now establish a protocol for the creation of monodisperse double-emulsion droplets in two steps in microfluidic devices with different surface characteristics (first hydrophobic, then hydrophilic). The resulting double-emulsion droplets are suitable for quantitative analysis and sorting in a commercial flow cytometer. The power of this approach is demonstrated in a series of enrichment experiments, culminating in the successful recovery of catalytically active clones from a sea of 1 000 000-fold as many low-activity variants. The modular workflow allows integration of additional steps: the encapsulated lysate assay reactions can be stopped by heat inactivation (enabling ready control of selection stringency), the droplet size can be contracted (to concentrate its contents), and storage (at -80 °C) is possible for discontinuous workflows. The control that can be thus exerted on screening conditions will facilitate exploitation of the potential of protein libraries compartmentalized in droplets in a straightforward protocol that can be readily implemented and used by protein engineers.
Collapse
Affiliation(s)
- Anastasia Zinchenko
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Sean R.
A. Devenish
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Balint Kintses
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Pierre-Yves Colin
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Martin Fischlechner
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
- Institute
for Life Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Florian Hollfelder
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| |
Collapse
|
33
|
Duarte F, Amrein BA, Kamerlin SCL. Modeling catalytic promiscuity in the alkaline phosphatase superfamily. Phys Chem Chem Phys 2013; 15:11160-77. [PMID: 23728154 PMCID: PMC3693508 DOI: 10.1039/c3cp51179k] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/02/2013] [Indexed: 12/19/2022]
Abstract
In recent years, it has become increasingly clear that promiscuity plays a key role in the evolution of new enzyme function. This finding has helped to elucidate fundamental aspects of molecular evolution. While there has been extensive experimental work on enzyme promiscuity, computational modeling of the chemical details of such promiscuity has traditionally fallen behind the advances in experimental studies, not least due to the nearly prohibitive computational cost involved in examining multiple substrates with multiple potential mechanisms and binding modes in atomic detail with a reasonable degree of accuracy. However, recent advances in both computational methodologies and power have allowed us to reach a stage in the field where we can start to overcome this problem, and molecular simulations can now provide accurate and efficient descriptions of complex biological systems with substantially less computational cost. This has led to significant advances in our understanding of enzyme function and evolution in a broader sense. Here, we will discuss currently available computational approaches that can allow us to probe the underlying molecular basis for enzyme specificity and selectivity, discussing the inherent strengths and weaknesses of each approach. As a case study, we will discuss recent computational work on different members of the alkaline phosphatase superfamily (AP) using a range of different approaches, showing the complementary insights they have provided. We have selected this particular superfamily, as it poses a number of significant challenges for theory, ranging from the complexity of the actual reaction mechanisms involved to the reliable modeling of the catalytic metal centers, as well as the very large system sizes. We will demonstrate that, through current advances in methodologies, computational tools can provide significant insight into the molecular basis for catalytic promiscuity, and, therefore, in turn, the mechanisms of protein functional evolution.
Collapse
Affiliation(s)
- Fernanda Duarte
- Uppsala University, Science for Life Laboratory (SciLifeLab), Cell and Molecular Biology, Uppsala, Sweden. ; ;
| | - Beat Anton Amrein
- Uppsala University, Science for Life Laboratory (SciLifeLab), Cell and Molecular Biology, Uppsala, Sweden. ; ;
| | | |
Collapse
|
34
|
Hou G, Cui Q. Stabilization of different types of transition states in a single enzyme active site: QM/MM analysis of enzymes in the alkaline phosphatase superfamily. J Am Chem Soc 2013; 135:10457-69. [PMID: 23786365 PMCID: PMC3759165 DOI: 10.1021/ja403293d] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The first step for the hydrolysis of a phosphate monoester (pNPP(2-)) in enzymes of the alkaline phosphatase (AP) superfamily, R166S AP and wild-type NPP, is studied using QM/MM simulations based on an approximate density functional theory (SCC-DFTBPR) and a recently introduced QM/MM interaction Hamiltonian. The calculations suggest that similar loose transition states are involved in both enzymes, despite the fact that phosphate monoesters are the cognate substrates for AP but promiscuous substrates for NPP. The computed loose transition states are clearly different from the more synchronous ones previously calculated for diester reactions in the same AP enzymes. Therefore, our results explicitly support the proposal that AP enzymes are able to recognize and stabilize different types of transition states in a single active site. Analysis of the structural features of computed transition states indicates that the plastic nature of the bimetallic site plays a minor role in accommodating multiple types of transition states and that the high degree of solvent accessibility of the AP active site also contributes to its ability to stabilize diverse transition-state structures without the need of causing large structural distortions of the bimetallic motif. The binding mode of the leaving group in the transition state highlights that vanadate may not always be an ideal transition state analog for loose phosphoryl transfer transition states.
Collapse
Affiliation(s)
- Guanhua Hou
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
| | - Qiang Cui
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706
| |
Collapse
|
35
|
Schober M, Toesch M, Knaus T, Strohmeier GA, van Loo B, Fuchs M, Hollfelder F, Macheroux P, Faber K. One-Pot Deracemization of sec-Alcohols: Enantioconvergent Enzymatic Hydrolysis of Alkyl Sulfates Using Stereocomplementary Sulfatases. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 125:3359-3361. [PMID: 25821253 PMCID: PMC4373141 DOI: 10.1002/ange.201209946] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/12/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Markus Schober
- M. Schober, M. Toesch, Dr. M. Fuchs, Prof. K. Faber Department of Chemistry, Organic & Bioorganic Chemistry, University of GrazHeinrichstrasse 28, 8010 Graz (Austria)
- Dr. T. Knaus, Prof. P. Macheroux Institute of Biochemistry, Graz University of Technology
- Dr. G. A. Strohmeier ACIB GmbH c/o Department of Organic Chemistry, Graz University of Technology
- Dr. B. van Loo, Prof. F. Hollfelder Department of Biochemistry, University of Cambridge
| | - Michael Toesch
- M. Schober, M. Toesch, Dr. M. Fuchs, Prof. K. Faber Department of Chemistry, Organic & Bioorganic Chemistry, University of GrazHeinrichstrasse 28, 8010 Graz (Austria)
- Dr. T. Knaus, Prof. P. Macheroux Institute of Biochemistry, Graz University of Technology
- Dr. G. A. Strohmeier ACIB GmbH c/o Department of Organic Chemistry, Graz University of Technology
- Dr. B. van Loo, Prof. F. Hollfelder Department of Biochemistry, University of Cambridge
| | - Tanja Knaus
- M. Schober, M. Toesch, Dr. M. Fuchs, Prof. K. Faber Department of Chemistry, Organic & Bioorganic Chemistry, University of GrazHeinrichstrasse 28, 8010 Graz (Austria)
- Dr. T. Knaus, Prof. P. Macheroux Institute of Biochemistry, Graz University of Technology
- Dr. G. A. Strohmeier ACIB GmbH c/o Department of Organic Chemistry, Graz University of Technology
- Dr. B. van Loo, Prof. F. Hollfelder Department of Biochemistry, University of Cambridge
| | - Gernot A Strohmeier
- M. Schober, M. Toesch, Dr. M. Fuchs, Prof. K. Faber Department of Chemistry, Organic & Bioorganic Chemistry, University of GrazHeinrichstrasse 28, 8010 Graz (Austria)
- Dr. T. Knaus, Prof. P. Macheroux Institute of Biochemistry, Graz University of Technology
- Dr. G. A. Strohmeier ACIB GmbH c/o Department of Organic Chemistry, Graz University of Technology
- Dr. B. van Loo, Prof. F. Hollfelder Department of Biochemistry, University of Cambridge
| | - Bert van Loo
- M. Schober, M. Toesch, Dr. M. Fuchs, Prof. K. Faber Department of Chemistry, Organic & Bioorganic Chemistry, University of GrazHeinrichstrasse 28, 8010 Graz (Austria)
- Dr. T. Knaus, Prof. P. Macheroux Institute of Biochemistry, Graz University of Technology
- Dr. G. A. Strohmeier ACIB GmbH c/o Department of Organic Chemistry, Graz University of Technology
- Dr. B. van Loo, Prof. F. Hollfelder Department of Biochemistry, University of Cambridge
| | - Michael Fuchs
- M. Schober, M. Toesch, Dr. M. Fuchs, Prof. K. Faber Department of Chemistry, Organic & Bioorganic Chemistry, University of GrazHeinrichstrasse 28, 8010 Graz (Austria)
- Dr. T. Knaus, Prof. P. Macheroux Institute of Biochemistry, Graz University of Technology
- Dr. G. A. Strohmeier ACIB GmbH c/o Department of Organic Chemistry, Graz University of Technology
- Dr. B. van Loo, Prof. F. Hollfelder Department of Biochemistry, University of Cambridge
| | - Florian Hollfelder
- M. Schober, M. Toesch, Dr. M. Fuchs, Prof. K. Faber Department of Chemistry, Organic & Bioorganic Chemistry, University of GrazHeinrichstrasse 28, 8010 Graz (Austria)
- Dr. T. Knaus, Prof. P. Macheroux Institute of Biochemistry, Graz University of Technology
- Dr. G. A. Strohmeier ACIB GmbH c/o Department of Organic Chemistry, Graz University of Technology
- Dr. B. van Loo, Prof. F. Hollfelder Department of Biochemistry, University of Cambridge
| | - Peter Macheroux
- M. Schober, M. Toesch, Dr. M. Fuchs, Prof. K. Faber Department of Chemistry, Organic & Bioorganic Chemistry, University of GrazHeinrichstrasse 28, 8010 Graz (Austria)
- Dr. T. Knaus, Prof. P. Macheroux Institute of Biochemistry, Graz University of Technology
- Dr. G. A. Strohmeier ACIB GmbH c/o Department of Organic Chemistry, Graz University of Technology
- Dr. B. van Loo, Prof. F. Hollfelder Department of Biochemistry, University of Cambridge
| | - Kurt Faber
- *Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz (Austria) E-mail: Homepage: http://biocatalysis.uni-graz.at/
| |
Collapse
|
36
|
Schober M, Toesch M, Knaus T, Strohmeier GA, van Loo B, Fuchs M, Hollfelder F, Macheroux P, Faber K. One-pot deracemization of sec-alcohols: enantioconvergent enzymatic hydrolysis of alkyl sulfates using stereocomplementary sulfatases. Angew Chem Int Ed Engl 2013; 52:3277-9. [PMID: 23401148 PMCID: PMC3743160 DOI: 10.1002/anie.201209946] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/12/2013] [Indexed: 12/03/2022]
Affiliation(s)
- Markus Schober
- Department of Chemistry, Organic & Bioorganic Chemistry, University of GrazHeinrichstrasse 28, 8010 Graz (Austria) E-mail: Homepage: http://biocatalysis.uni-graz.at/
| | - Michael Toesch
- Department of Chemistry, Organic & Bioorganic Chemistry, University of GrazHeinrichstrasse 28, 8010 Graz (Austria) E-mail: Homepage: http://biocatalysis.uni-graz.at/
| | - Tanja Knaus
- Institute of Biochemistry, Graz University of Technology
| | - Gernot A Strohmeier
- ACIB GmbH c/o Department of Organic Chemistry, Graz University of Technology
| | - Bert van Loo
- Department of Biochemistry, University of Cambridge
| | - Michael Fuchs
- Department of Chemistry, Organic & Bioorganic Chemistry, University of GrazHeinrichstrasse 28, 8010 Graz (Austria) E-mail: Homepage: http://biocatalysis.uni-graz.at/
| | | | | | - Kurt Faber
- Department of Chemistry, Organic & Bioorganic Chemistry, University of GrazHeinrichstrasse 28, 8010 Graz (Austria) E-mail: Homepage: http://biocatalysis.uni-graz.at/
| |
Collapse
|
37
|
Gatti-Lafranconi P, Hollfelder F. Flexibility and reactivity in promiscuous enzymes. Chembiochem 2013; 14:285-92. [PMID: 23362046 DOI: 10.1002/cbic.201200628] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Indexed: 11/10/2022]
Abstract
Best of both worlds: The interplay of active site reactivity and the dynamic character of proteins allows enzymes to be promiscuous and--sometimes--remarkably efficient at the same time. This review analyses the roles structural flexibility and chemical reactivity play in the catalytic mechanism of selected enzymes.
Collapse
|
38
|
Abstract
Phosphoryl transfer plays key roles in signaling, energy transduction, protein synthesis, and maintaining the integrity of the genetic material. On the surface, it would appear to be a simple nucleophile displacement reaction. However, this simplicity is deceptive, as, even in aqueous solution, the low-lying d-orbitals on the phosphorus atom allow for eight distinct mechanistic possibilities, before even introducing the complexities of the enzyme catalyzed reactions. To further complicate matters, while powerful, traditional experimental techniques such as the use of linear free-energy relationships (LFER) or measuring isotope effects cannot make unique distinctions between different potential mechanisms. A quarter of a century has passed since Westheimer wrote his seminal review, 'Why Nature Chose Phosphate' (Science 235 (1987), 1173), and a lot has changed in the field since then. The present review revisits this biologically crucial issue, exploring both relevant enzymatic systems as well as the corresponding chemistry in aqueous solution, and demonstrating that the only way key questions in this field are likely to be resolved is through careful theoretical studies (which of course should be able to reproduce all relevant experimental data). Finally, we demonstrate that the reason that nature really chose phosphate is due to interplay between two counteracting effects: on the one hand, phosphates are negatively charged and the resulting charge-charge repulsion with the attacking nucleophile contributes to the very high barrier for hydrolysis, making phosphate esters among the most inert compounds known. However, biology is not only about reducing the barrier to unfavorable chemical reactions. That is, the same charge-charge repulsion that makes phosphate ester hydrolysis so unfavorable also makes it possible to regulate, by exploiting the electrostatics. This means that phosphate ester hydrolysis can not only be turned on, but also be turned off, by fine tuning the electrostatic environment and the present review demonstrates numerous examples where this is the case. Without this capacity for regulation, it would be impossible to have for instance a signaling or metabolic cascade, where the action of each participant is determined by the fine-tuned activity of the previous piece in the production line. This makes phosphate esters the ideal compounds to facilitate life as we know it.
Collapse
|
39
|
Marino T, Russo N, Toscano M. Catalytic Mechanism of the Arylsulfatase Promiscuous Enzyme fromPseudomonas Aeruginosa. Chemistry 2012; 19:2185-92. [DOI: 10.1002/chem.201201943] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 11/06/2012] [Indexed: 11/11/2022]
|
40
|
Kintses B, Hein C, Mohamed MF, Fischlechner M, Courtois F, Lainé C, Hollfelder F. Picoliter cell lysate assays in microfluidic droplet compartments for directed enzyme evolution. ACTA ACUST UNITED AC 2012; 19:1001-9. [PMID: 22921067 DOI: 10.1016/j.chembiol.2012.06.009] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 05/31/2012] [Accepted: 06/04/2012] [Indexed: 11/29/2022]
Abstract
We demonstrate the utility of a microfluidic platform in which water-in-oil droplet compartments serve to miniaturize cell lysate assays by a million-fold for directed enzyme evolution. Screening hydrolytic activities of a promiscuous sulfatase demonstrates that this extreme miniaturization to the single-cell level does not come at a high price in signal quality. Moreover, the quantitative readout delivers a level of precision previously limited to screening methodologies with restricted throughput. The sorting of 3 × 10(7) monodisperse droplets per round of evolution leads to the enrichment of clones with improvements in activity (6-fold) and expression (6-fold). The detection of subtle differences in a larger number of screened clones provides the combination of high sensitivity and high-throughput needed to rescue a stalled directed evolution experiment and make it viable.
Collapse
Affiliation(s)
- Balint Kintses
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | | | | | | | | | | |
Collapse
|
41
|
Mohamed MF, Hollfelder F. Efficient, crosswise catalytic promiscuity among enzymes that catalyze phosphoryl transfer. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:417-24. [PMID: 22885024 DOI: 10.1016/j.bbapap.2012.07.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 07/19/2012] [Accepted: 07/26/2012] [Indexed: 11/25/2022]
Abstract
The observation that one enzyme can accelerate several chemically distinct reactions was at one time surprising because the enormous efficiency of catalysis was often seen as inextricably linked to specialization for one reaction. Originally underreported, and considered a quirk rather than a fundamental property, enzyme promiscuity is now understood to be important as a springboard for adaptive evolution. Owing to the large number of promiscuous enzymes that have been identified over the last decade, and the increased appreciation for promiscuity's evolutionary importance, the focus of research has shifted to developing a better understanding of the mechanistic basis for promiscuity and the origins of tolerant or restrictive specificity. We review the evidence for widespread crosswise promiscuity amongst enzymes that catalyze phosphoryl transfer, including several members of the alkaline phosphatase superfamily, where large rate accelerations between 10(6) and 10(17) are observed for both native and multiple promiscuous reactions. This article is part of a Special Issue entitled: Chemistry and mechanism of phosphatases, diesterases and triesterases.
Collapse
Affiliation(s)
- Mark F Mohamed
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, EU, UK
| | | |
Collapse
|
42
|
Luo J, van Loo B, Kamerlin SC. Catalytic promiscuity inPseudomonas aeruginosaarylsulfatase as an example of chemistry-driven protein evolution. FEBS Lett 2012; 586:1622-30. [DOI: 10.1016/j.febslet.2012.04.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 03/30/2012] [Accepted: 04/09/2012] [Indexed: 12/01/2022]
|
43
|
Luo J, van Loo B, Kamerlin SCL. Examining the promiscuous phosphatase activity of Pseudomonas aeruginosa arylsulfatase: a comparison to analogous phosphatases. Proteins 2012; 80:1211-26. [PMID: 22275090 DOI: 10.1002/prot.24020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 12/01/2011] [Accepted: 12/05/2011] [Indexed: 12/25/2022]
Abstract
Pseudomonas aeruginosa arylsulfatase (PAS) is a bacterial sulfatase capable of hydrolyzing a range of sulfate esters. Recently, it has been demonstrated to also show very high proficiency for phosphate ester hydrolysis. Such proficient catalytic promiscuity is significant, as promiscuity has been suggested to play an important role in enzyme evolution. Additionally, a comparative study of the hydrolyses of the p-nitrophenyl phosphate and sulfate monoesters in aqueous solution has demonstrated that despite superficial similarities, the two reactions proceed through markedly different transition states with very different solvation effects, indicating that the requirements for the efficient catalysis of the two reactions by an enzyme will also be very different (and yet they are both catalyzed by the same active site). This work explores the promiscuous phosphomonoesterase activity of PAS. Specifically, we have investigated the identity of the most likely base for the initial activation of the unusual formylglycine hydrate nucleophile (which is common to many sulfatases), and demonstrate that a concerted substrate-as-base mechanism is fully consistent with the experimentally observed data. This is very similar to other related systems, and suggests that, as far as the phosphomonoesterase activity of PAS is concerned, the sulfatase behaves like a "classical" phosphatase, despite the fact that such a mechanism is unlikely to be available to the native substrate (based on pK(a) considerations and studies of model systems). Understanding such catalytic versatility can be used to design novel artificial enzymes that are far more proficient than the current generation of designer enzymes.
Collapse
Affiliation(s)
- Jinghui Luo
- Department of Cell and Molecular Biology (ICM), Uppsala University, Uppsala Biomedical Center (BMC), Uppsala, Sweden
| | | | | |
Collapse
|
44
|
Hou G, Cui Q. QM/MM analysis suggests that Alkaline Phosphatase (AP) and nucleotide pyrophosphatase/phosphodiesterase slightly tighten the transition state for phosphate diester hydrolysis relative to solution: implication for catalytic promiscuity in the AP superfamily. J Am Chem Soc 2012; 134:229-46. [PMID: 22097879 PMCID: PMC3257412 DOI: 10.1021/ja205226d] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Several members of the Alkaline Phosphatase (AP) superfamily exhibit a high level of catalytic proffciency and promiscuity in structurally similar active sites. A thorough characterization of the nature of transition state for different substrates in these enzymes is crucial for understanding the molecular mechanisms that govern those remarkable catalytic properties. In this work, we study the hydrolysis of a phosphate diester, MpNPP(-), in solution, two experimentally well-characterized variants of AP (R166S AP, R166S/E322Y AP) and wild type Nucleotide pyrophosphatase/phosphodiesterase (NPP) by QM/MM calculations in which the QM method is an approximate density functional theory previously parametrized for phosphate hydrolysis (SCC-DFTBPR). The general agreements found between these calculations and available experimental data for both solution and enzymes support the use of SCC-DFTBPR/MM for a semiquantitative analysis of the catalytic mechanism and nature of transition state in AP and NPP. Although phosphate diesters are cognate substrates for NPP but promiscuous substrates for AP, the calculations suggest that their hydrolysis reactions catalyzed by AP and NPP feature similar synchronous transition states that are slightly tighter in nature compared to that in solution, due in part to the geometry of the bimetallic zinc motif. Therefore, this study provides the first direct computational support to the hypothesis that enzymes in the AP superfamily catalyze cognate and promiscuous substrates via similar transition states to those in solution. Our calculations do not support the finding of recent QM/MM studies by López-Canut and co-workers, who suggested that the same diester substrate goes through a much looser transition state in NPP/AP than in solution, a result likely biased by the large structural distortion of the bimetallic zinc site in their simulations. Finally, our calculations for different phosphate diester orientations and phosphorothioate diesters highlight that the interpretation of thio-substitution experiments is not always straightforward.
Collapse
Affiliation(s)
- Guanhua Hou
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
45
|
Babtie AC, Lima MF, Kirby AJ, Hollfelder F. Kinetic and computational evidence for an intermediate in the hydrolysis of sulfonate esters. Org Biomol Chem 2012; 10:8095-101. [DOI: 10.1039/c2ob25699a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
46
|
Abstract
Comparative analysis of the sequences of enzymes encoded in a variety of prokaryotic and eukaryotic genomes reveals convergence and divergence at several levels. Functional convergence can be inferred when structurally distinct and hence non-homologous enzymes show the ability to catalyze the same biochemical reaction. In contrast, as a result of functional diversification, many structurally similar enzyme molecules act on substantially distinct substrates and catalyze diverse biochemical reactions. Here, we present updates on the ATP-grasp, alkaline phosphatase, cupin, HD hydrolase, and N-terminal nucleophile (Ntn) hydrolase enzyme superfamilies and discuss the patterns of sequence and structural conservation and diversity within these superfamilies. Typically, enzymes within a superfamily possess common sequence motifs and key active site residues, as well as (predicted) reaction mechanisms. These observations suggest that the strained conformation (the entatic state) of the active site, which is responsible for the substrate binding and formation of the transition complex, tends to be conserved within enzyme superfamilies. The subsequent fate of the transition complex is not necessarily conserved and depends on the details of the structures of the enzyme and the substrate. This variability of reaction outcomes limits the ability of sequence analysis to predict the exact enzymatic activities of newly sequenced gene products. Nevertheless, sequence-based (super)family assignments and generic functional predictions, even if imprecise, provide valuable leads for experimental studies and remain the best approach to the functional annotation of uncharacterized proteins from new genomes.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894.
| |
Collapse
|
47
|
Kamerlin SCL. Theoretical Comparison of p-Nitrophenyl Phosphate and Sulfate Hydrolysis in Aqueous Solution: Implications for Enzyme-Catalyzed Sulfuryl Transfer. J Org Chem 2011; 76:9228-38. [DOI: 10.1021/jo201104v] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Affiliation(s)
- Maria Svedendahl Humble
- Division of Biochemistry, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center, 10691 Stockholm, Sweden, Fax: +46‐8‐5537‐8468
| | - Per Berglund
- Division of Biochemistry, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center, 10691 Stockholm, Sweden, Fax: +46‐8‐5537‐8468
| |
Collapse
|