1
|
Labella L, Bottaro G, Marchetti F, Samaritani S, Armelao L. Luminescent Tetrahedral Manganese(II) Pentaphluorophenolate Complex as a Highly Sensitive Molecular Thermometer. Inorg Chem 2025; 64:7960-7969. [PMID: 40235398 DOI: 10.1021/acs.inorgchem.4c05477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
A mononuclear tetrahedral manganese complex containing all O-donor ligands has been prepared under mild conditions starting from a dialkylcarbamato manganese(II) precursor. Manganese(II) N,N-dibutylcarbamate [Mn(O2CNBu2)2]n, 1, can be conveniently prepared by extraction from a deoxygenated water solution of manganese(II) sulfate using a CO2-saturated toluene solution of dibutylamine. Access to the N,N-dibenzylcarbamato manganese complex [Mn(O2CNBz2)2]n, 2, occurs through metathesis by reaction with dibenzylamine and carbon dioxide. By reaction of 2 with pentafluorophenol, an almost quantitative reaction affords [Bz2NH2]2[Mn(OC6F5)4], 3, that has been crystallographically characterized through single-crystal X-ray diffraction. Compound 3 exhibits absorption and emission spectral features characteristic of Mn2+ ions in a tetrahedral coordination environment. Upon cooling, the emission intensity was observed to increase by approximately two orders of magnitude. The excited-state lifetimes exhibited significant temperature dependence, ranging from 12.7 ms at 80 K to 10 μs at 290 K. The temperature-dependent trends of both emission intensity and lifetimes showed nearly identical profiles. As a result, compound 3 functions as a dual-mode highly sensitive luminescent molecular thermometer, with a maximum relative thermal sensitivity (Sr) of 7.4% K-1 at 220 K and Sr >1 over the temperature range 170-270 K. A distinctive feature of compound 3 is its capacity to yield equivalent luminescent molecular thermometers (LMT) using either the emission intensity or lifetime, thus enhancing its versatility in thermal sensing applications.
Collapse
Affiliation(s)
- Luca Labella
- Dipartimento di Chimica e Chimica Industriale and CIRCC, Università di Pisa, via Giuseppe Moruzzi 13, Pisa I-56124, Italy
- Centro per l'Integrazione della Strumentazione scientifica dell'Università di Pisa (C.I.S.U.P.), Università di Pisa, Pisa 56127, Italy
| | - Gregorio Bottaro
- CNR ICMATE and INSTM, presso Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, Padova I-35131, Italy
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale and CIRCC, Università di Pisa, via Giuseppe Moruzzi 13, Pisa I-56124, Italy
- Centro per l'Integrazione della Strumentazione scientifica dell'Università di Pisa (C.I.S.U.P.), Università di Pisa, Pisa 56127, Italy
| | - Simona Samaritani
- Dipartimento di Chimica e Chimica Industriale and CIRCC, Università di Pisa, via Giuseppe Moruzzi 13, Pisa I-56124, Italy
- Centro per l'Integrazione della Strumentazione scientifica dell'Università di Pisa (C.I.S.U.P.), Università di Pisa, Pisa 56127, Italy
| | - Lidia Armelao
- Dipartimento di Scienze Chimiche and INSTM, Università di Padova, via Marzolo 1, Padova I-35131, Italy
- Dipartimento di Scienze Chimiche e Tecnologie dei Materiali (DSCTM), Consiglio Nazionale delle Ricerche, Piazzale A. Moro 7, Roma 00185, Italy
| |
Collapse
|
2
|
Zhao Z, Nian B, Lei Y, Zhao L, Hedhili MN, Guo D, Shi Z, Zhao W, El-Demellawi JK, Wang Y, Zhu Y, Xu K, Alshareef HN. Passivation Layers in Mg-Metal Batteries: Robust Interphases for Li-Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402626. [PMID: 38781603 DOI: 10.1002/adma.202402626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/02/2024] [Indexed: 05/25/2024]
Abstract
In advanced batteries, interphases serve as the key component in stabilizing the electrolyte with reactive electrode materials far beyond thermodynamic equilibria. While an active interphase facilitates the transport of working ions, an inactive interphase obstructs ion flow, constituting the primary barrier to the realization of battery chemistries. Here, a successful transformation of a traditionally inactive passivating layer on Mg-metal anode, characteristic of Mg-metal batteries with typical carbonate electrolytes, into an active and robust interphase in the Li-metal scenario is presented. By further strategically designing magnesiated Li+ electrolytes, the in situ development of this resilient interphase on Li-metal anodes, imparting enduring stability to Li-metal batteries with nickel-rich cathodes is induced. It is identified that the strong affinity between Mg2+ and anions in magnesiated Li+ electrolytes assembles ionic clusters with a bias for reducibility, thereby catalyzing the creation of anion-derived interphases rich in inorganic constituents. The prevalence of ionic clusters induced by magnesiation of electrolytes has brought properties only available in high-concentration electrolytes, suggesting a fresh paradigm of tailing electrolytes for highly reversible LMBs.
Collapse
Affiliation(s)
- Zhiming Zhao
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Binbin Nian
- School of Pharmaceutical Sciences, Nanjing Technology University, Nanjing, Jiangsu Province, 210009, China
| | - Yongjiu Lei
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Lingyun Zhao
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mohamed N Hedhili
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Dong Guo
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Zixiong Shi
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Wenli Zhao
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jehad K El-Demellawi
- KAUST Upstream Research Center (KURC), EXPEC-ARC, Saudi Aramco, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yizhou Wang
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yunpei Zhu
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Kang Xu
- SES AI Corp., Woburn, MA, 01801, USA
| | - Husam N Alshareef
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Zhang Z, Pan F, Mohamed SA, Ji C, Zhang K, Jiang J, Jiang Z. Accelerating Discovery of Water Stable Metal-Organic Frameworks by Machine Learning. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405087. [PMID: 39155437 DOI: 10.1002/smll.202405087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/29/2024] [Indexed: 08/20/2024]
Abstract
Metal-organic frameworks (MOFs) provide an extensive design landscape for nanoporous materials that drive innovation across energy and environmental fields. However, their practical applications are often hindered by water stability challenges. In this study, a machine learning (ML) approach is proposed to accelerate the discovery of water stable MOFs and validated through experimental test. First, the largest database currently available that contains water stability information of 1133 synthesized MOFs is constructed and categorized according to experimental stability. Then, structural and chemical descriptors are applied at various fragmental levels to develop ML classifiers for predicting the water stability of MOFs. The ML classifiers achieve high prediction accuracy and excellent transferability on out-of-sample validation. Next, two MOFs are experimentally synthesized with their water stability tested to validate ML predictions. Finally, the ML classifiers are applied to discover water stable MOFs in the ab initio REPEAT charge MOF (ARC-MOF) database. Among ≈280 000 candidates, ≈130 000 (47%) MOFs are predicted to be water stable; furthermore, through multi-stability analysis, 461 (0.16%) MOFs are identified as not only water stable but also thermal and activation stable. The ML approach is anticipated to serve as a prerequisite filtering tool to streamline the exploration of water stable MOFs for important practical applications.
Collapse
Affiliation(s)
- Zhiming Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Fusheng Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Saad Aldin Mohamed
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Chengxin Ji
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Kang Zhang
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Zhongyi Jiang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
4
|
Song Z, Wang X, Feng W, Armand M, Zhou Z, Zhang H. Designer Anions for Better Rechargeable Lithium Batteries and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310245. [PMID: 38839065 DOI: 10.1002/adma.202310245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/17/2024] [Indexed: 06/07/2024]
Abstract
Non-aqueous electrolytes, generally consisting of metal salts and solvating media, are indispensable elements for building rechargeable batteries. As the major sources of ionic charges, the intrinsic characters of salt anions are of particular importance in determining the fundamental properties of bulk electrolyte, as well as the features of the resulting electrode-electrolyte interphases/interfaces. To cope with the increasing demand for better rechargeable batteries requested by emerging application domains, the structural design and modifications of salt anions are highly desired. Here, salt anions for lithium and other monovalent (e.g., sodium and potassium) and multivalent (e.g., magnesium, calcium, zinc, and aluminum) rechargeable batteries are outlined. Fundamental considerations on the design of salt anions are provided, particularly involving specific requirements imposed by different cell chemistries. Historical evolution and possible synthetic methodologies for metal salts with representative salt anions are reviewed. Recent advances in tailoring the anionic structures for rechargeable batteries are scrutinized, and due attention is paid to the paradigm shift from liquid to solid electrolytes, from intercalation to conversion/alloying-type electrodes, from lithium to other kinds of rechargeable batteries. The remaining challenges and key research directions in the development of robust salt anions are also discussed.
Collapse
Affiliation(s)
- Ziyu Song
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Xingxing Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Wenfang Feng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Michel Armand
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, Vitoria-Gasteiz, 01510, Spain
| | - Zhibin Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Heng Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| |
Collapse
|
5
|
Bhide R, Phun GS, Ardo S. Elementary Reaction Steps That Precede or Follow a Unimolecular Reaction Step Can Obfuscate Interpretation of the Driving-Force Dependence to Its Rate Constant. J Phys Chem A 2024; 128:4177-4188. [PMID: 38752741 DOI: 10.1021/acs.jpca.3c08228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Assessing the validity of a driving-force-dependent kinetic theory for a unimolecular elementary reaction step is difficult when the observed reaction rate is strongly influenced by properties of the preceding or following elementary reaction step. A well-known example occurs for bimolecular reactions with weak orbital overlap, such as outer-sphere electron transfer, where bimolecular collisional encounters that precede a fast unimolecular electron-transfer step can limit the observed rate. A lesser-appreciated example occurs for bimolecular reactions with stronger orbital overlap, including many proton-transfer reactions, where equilibration of an endergonic unimolecular proton-transfer step results in a relatively small concentration of reaction products, thus slowing the rate of the following step such that it becomes rate limiting. Incomplete consideration of these points has led to discrepancies in interpretation of data from the literature. Our reanalysis of these data suggests that proton-transfer elementary reaction steps have a nonzero intrinsic free energy barrier, implying, in the parlance of Marcus theory, that there is non-negligible nuclear reorganization. Outcomes from our analyses are generalizable to inner-sphere electron-transfer reactions such as those involved in (photo)electrochemical fuel-forming reactions.
Collapse
Affiliation(s)
- Rohit Bhide
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Gabriel S Phun
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Shane Ardo
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Department of Chemical & Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
- Department of Materials Science & Engineering, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
6
|
Chen X, Cifuentes-Lopez A, Shao X, Lin L, Prokopchuk D, Pavanello M. Unraveling the Hydration Shell Structure and Dynamics of Group 10 Aqua Ions. J Phys Chem Lett 2024; 15:5517-5528. [PMID: 38749061 DOI: 10.1021/acs.jpclett.4c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
We present ab initio simulations based on subsystem DFT of group 10 aqua ions accurately compared against experimental data on hydration structure. Our simulations provide insights into the molecular structures and dynamics of hydration shells, offering recalibrated interpretations of experimental results. We observe a soft, but distinct second hydration shell in Palladium (Pd) due to a balance between thermal fluctuations, metal-water interactions, and hydrogen bonding. Nickel (Ni) and platinum (Pt) exhibit more rigid hydration shells. Notably, our simulations align with experimental findings for Pd, showing axial hydration marked by a broad peak at about 3 Å in the Pd-O radial distribution function, revising the previously sharp "mesoshell" prediction. We introduce the "hydrogen bond dome" concept to describe a resilient network of hydrogen-bonded water molecules around the metal, which plays a critical role in the axial hydration dynamics.
Collapse
Affiliation(s)
- Xin Chen
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
- Department of Physics, Rutgers University, Newark, New Jersey 07102, United States
| | | | - Xuecheng Shao
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Lirong Lin
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Demyan Prokopchuk
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Michele Pavanello
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
- Department of Physics, Rutgers University, Newark, New Jersey 07102, United States
| |
Collapse
|
7
|
Zhao Z, Alshareef HN. Sustainable Dual-Ion Batteries beyond Li. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309223. [PMID: 37907202 DOI: 10.1002/adma.202309223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/23/2023] [Indexed: 11/02/2023]
Abstract
The limitations of resources used in current Li-ion batteries may hinder their widespread use in grid-scale energy storage systems, prompting the search for low-cost and resource-abundant alternatives. "Beyond-Li cation" batteries have emerged as promising contenders; however, they confront noteworthy challenges due to the scarcity of suitable host materials for these cations. In contrast, anions, the other crucial component in electrolytes, demonstrate reversible intercalation capacity in specific materials like graphite. The convergence of anion and cation storage has given rise to a new battery technology known as dual-ion batteries (DIBs). This comprehensive review presents the current status, advancements, and future prospects of sustainable DIBs beyond Li. Notably, most DIBs exhibit similar cathode reaction mechanisms involving anion intercalation, while the distinguishing factor lies in the cation types functioning at the anode. Accordingly, the review is organized into sections by various cation types, including Na-, K-, Mg-, Zn-, Ca-, Al-, NH4 + -, and proton-based DIBs. Moreover, a perspective on these novel DIBs is presented, along with proposed protocols for investigating DIBs and promising future research directions. It is envisioned that this review will inspire fresh concepts, ideas, and research directions, while raising important questions to further tailor and understand sustainable DIBs, ultimately facilitating their practical realization.
Collapse
Affiliation(s)
- Zhiming Zhao
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Husam N Alshareef
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
8
|
Eisner D, Neher E, Taschenberger H, Smith G. Physiology of intracellular calcium buffering. Physiol Rev 2023; 103:2767-2845. [PMID: 37326298 PMCID: PMC11550887 DOI: 10.1152/physrev.00042.2022] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/08/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023] Open
Abstract
Calcium signaling underlies much of physiology. Almost all the Ca2+ in the cytoplasm is bound to buffers, with typically only ∼1% being freely ionized at resting levels in most cells. Physiological Ca2+ buffers include small molecules and proteins, and experimentally Ca2+ indicators will also buffer calcium. The chemistry of interactions between Ca2+ and buffers determines the extent and speed of Ca2+ binding. The physiological effects of Ca2+ buffers are determined by the kinetics with which they bind Ca2+ and their mobility within the cell. The degree of buffering depends on factors such as the affinity for Ca2+, the Ca2+ concentration, and whether Ca2+ ions bind cooperatively. Buffering affects both the amplitude and time course of cytoplasmic Ca2+ signals as well as changes of Ca2+ concentration in organelles. It can also facilitate Ca2+ diffusion inside the cell. Ca2+ buffering affects synaptic transmission, muscle contraction, Ca2+ transport across epithelia, and the killing of bacteria. Saturation of buffers leads to synaptic facilitation and tetanic contraction in skeletal muscle and may play a role in inotropy in the heart. This review focuses on the link between buffer chemistry and function and how Ca2+ buffering affects normal physiology and the consequences of changes in disease. As well as summarizing what is known, we point out the many areas where further work is required.
Collapse
Affiliation(s)
- David Eisner
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Erwin Neher
- Membrane Biophysics Laboratory, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Godfrey Smith
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
9
|
Al-Salih H, Baranova EA, Abu-Lebdeh Y. Unraveling the phase diagram-ion transport relationship in aqueous electrolyte solutions and correlating conductivity with concentration and temperature by semi-empirical modeling. Commun Chem 2023; 6:195. [PMID: 37700030 PMCID: PMC10497523 DOI: 10.1038/s42004-023-00993-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023] Open
Abstract
The relationship between structure and ion transport in liquid electrolyte solutions is not well understood over the whole concentration and temperature ranges. In this work, we have studied the ionic conductivity (κ) as a function of molar fraction (x) and Temperature (T) for aqueous solutions of salts with nitrate anion and different cations (proton, lithium, calcium, and ammonium) along with their liquid-solid phase diagrams. The connection between the known features in the phase diagrams and the ionic conductivity isotherms is established with an insight on the conductivity mechanism. Also, known isothermal (κ vs.. x) and iso-compositional (κ vs.. T) equations along with a proposed two variables semi-empirical model (κ = f (x, T)) were fitted to the collected data to validate their accuracy. The role of activation energy and free volume in controlling ionic conductivity is discussed. This work brings us closer to the development of a phenomenological model to describe the structure and transport in liquid electrolyte solutions.
Collapse
Affiliation(s)
- Hilal Al-Salih
- Department of Chemical and Biological Engineering, Centre for Catalysis Research and Innovation, University of Ottawa, 161 Louis-Pasteur, Ottawa, ON, K1N 6N5, Canada
- Nexus for Quantum Technologies (NexQT), University of Ottawa, Ottawa, ON, K1N 6N5, Canada
- Energy, Mining, and Environment Research Centre, National Research Council of Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Elena A Baranova
- Department of Chemical and Biological Engineering, Centre for Catalysis Research and Innovation, University of Ottawa, 161 Louis-Pasteur, Ottawa, ON, K1N 6N5, Canada
- Nexus for Quantum Technologies (NexQT), University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Yaser Abu-Lebdeh
- Energy, Mining, and Environment Research Centre, National Research Council of Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada.
| |
Collapse
|
10
|
Zhang H, Qiao L, Armand M. Organic Electrolyte Design for Rechargeable Batteries: From Lithium to Magnesium. Angew Chem Int Ed Engl 2022; 61:e202214054. [PMID: 36219515 DOI: 10.1002/anie.202214054] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 11/07/2022]
Abstract
Rechargeable magnesium batteries (RMBs) have been considered as one of the most viable battery chemistries amongst the "post" lithium-ion battery (LIB) technologies owing to their high volumetric capacity and the natural abundance of their key elements. The fundamental properties of Mg-ion conducting electrolytes are of essence to regulate the overall performance of RMBs. In this Review, the basic electrochemistry of Mg-ion conducting electrolytes batteries is discussed and compared to that of the Li-ion conducting electrolytes, and a comprehensive overview of the development of different Mg-ion conducting electrolytes is provided. In addition, the remaining challenges and possible solutions for future research are intensively discussed. The present work is expected to give an impetus to inspire the discovery of key electrolytes and thereby improve the electrochemical performances of RMBs and other related emerging battery technologies.
Collapse
Affiliation(s)
- Heng Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, 430074, Wuhan, China
| | - Lixin Qiao
- Centre for Cooperative Research on Alternative Energies (CIC EnergiGUNE), Basque Research and Technology Alliance (BRTA), Álava Technology Park, Albert Einstein 48, 01510, Vitoria-Gasteiz, Spain
| | - Michel Armand
- Centre for Cooperative Research on Alternative Energies (CIC EnergiGUNE), Basque Research and Technology Alliance (BRTA), Álava Technology Park, Albert Einstein 48, 01510, Vitoria-Gasteiz, Spain
| |
Collapse
|
11
|
Corinti D, Paciotti R, Coletti C, Re N, Chiavarino B, Crestoni ME, Fornarini S. Elusive intermediates in cisplatin reaction with target amino acids: Platinum(II)-cysteine complexes assayed by IR ion spectroscopy and DFT calculations. J Inorg Biochem 2022; 237:112017. [PMID: 36209532 DOI: 10.1016/j.jinorgbio.2022.112017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 01/18/2023]
Abstract
The reactivity of a widely used metal based antineoplastic drug, cisplatin, cis-PtCl2(NH3)2, with L-cysteine (Cys) has been investigated using a combination of electrospray ionization mass spectrometry (ESI-MS), IRMPD gas phase ion spectroscopy and DFT calculations. The cysteine lateral chain represents one of the main platination sites in proteins, which is believed to be related to the resistance mechanisms to cisplatin. The vibrational features of the mass-selected substitution product cis-[PtCl(NH3)2(Cys)]+ and the intercepted cis-[PtCl(NH3)2(H2O)(Cys)]+ intermediate complex were compared to calculated IR spectra, enabling the assessment of the sampled ions structures. In cis-[PtCl(NH3)2(Cys)]+, cysteine was found to bind platinum through the sulfur atom as a thiolate zwitterion, highlighting the enhanced acidity of the cysteine thiol group upon metal coordination. The cis-[PtCl(NH3)2(H2O)(Cys)]+ structure complies with the non-covalent encounter complex, formed by cis-[PtCl(NH3)2(H2O)]+ and neutral cysteine. This species is able to undergo the substitution process to produce cis-[PtCl(NH3)2(Cys)]+ when activated as a mass-isolated ion suggesting its participation in the reaction mechanism of cisplatin with cysteine in solution. Finally, the DFT-calculated energy profile for the substitution reaction was correlated with the peculiar gas-phase reactivity of this non-covalent complex, resulting to be 10-fold less reactive toward substitution than the corresponding methionine complex.
Collapse
Affiliation(s)
- Davide Corinti
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma, "La Sapienza", I-00185 Roma, Italy.
| | - Roberto Paciotti
- Dipartimento di Farmacia, Università G. D'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti I-66100, Italy.
| | - Cecilia Coletti
- Dipartimento di Farmacia, Università G. D'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti I-66100, Italy
| | - Nazzareno Re
- Dipartimento di Farmacia, Università G. D'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti I-66100, Italy
| | - Barbara Chiavarino
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma, "La Sapienza", I-00185 Roma, Italy
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma, "La Sapienza", I-00185 Roma, Italy
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma, "La Sapienza", I-00185 Roma, Italy
| |
Collapse
|
12
|
Electrostatic effects on ligand-assisted transfer of metals to (bio)accumulating interfaces and metal complexes (bioavai)lability. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Bhide R, Feltenberger CN, Phun GS, Barton G, Fishman D, Ardo S. Quantification of Excited-State Brønsted-Lowry Acidity of Weak Photoacids Using Steady-State Photoluminescence Spectroscopy and a Driving-Force-Dependent Kinetic Theory. J Am Chem Soc 2022; 144:14477-14488. [PMID: 35917469 DOI: 10.1021/jacs.2c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photoacids and photobases constitute a class of molecules that upon absorption of light undergoes a reversible change in acidity, i.e. pKa. Knowledge of the excited-state pKa value, pKa*, is critical for predicting excited-state proton-transfer behavior. A reasonable approximation of pKa* is possible using the Förster cycle analysis, but only when the ground-state pKa is known. This poses a challenge for the study of weak photoacids (photobases) with less acidic (basic) excited states (pKa* (pKb*) > 7), because ground-state pKa (pKb) values are >14, making it difficult to quantify them accurately in water. Another method to determine pKa* relies on acid-base titrations with photoluminescence detection and Henderson-Hasselbalch analysis. This method requires that the acid dissociation reaction involving the thermally equilibrated electronic excited state reaches chemical quasi-equilibrium, which does not occur for weak photoacids (photobases) due to slow rates of excited-state proton transfer. Herein, we report a method to overcome these limitations. We demonstrate that liquid water and aqueous hydroxide are unique proton-accepting quenchers of excited-state photoacids. We determine that Stern-Volmer quenching analysis is appropriate to extract rate constants for excited-state proton transfer in aqueous solutions from a weak photoacid, 5-aminonaphthalene-1-sulfonate, to a series of proton-accepting quenchers. Analysis of these data by Marcus-Cohen bond-energy-bond-order theory yields an accurate value for pKa* of 5-aminonaphthalene-1-sulfonate. Our method is broadly accessible because it only requires readily available steady-state photoluminescence spectroscopy. Moreover, our results for weak photoacids are consistent with those from previous studies of strong photoacids, each showing the applicability of kinetic theories to interpret driving-force-dependent rate constants for proton-transfer reactions.
Collapse
Affiliation(s)
- Rohit Bhide
- Department of Chemistry, University of California─Irvine, Irvine, California 92697, United States
| | - Cassidy N Feltenberger
- Department of Chemistry, University of California─Irvine, Irvine, California 92697, United States
| | - Gabriel S Phun
- Department of Chemistry, University of California─Irvine, Irvine, California 92697, United States
| | - Grant Barton
- Department of Chemistry, University of California─Irvine, Irvine, California 92697, United States
| | - Dmitry Fishman
- Department of Chemistry, University of California─Irvine, Irvine, California 92697, United States.,Laser Spectroscopy Laboratories, University of California─Irvine, Irvine, California 92697, United States
| | - Shane Ardo
- Department of Chemistry, University of California─Irvine, Irvine, California 92697, United States.,Department of Chemical & Biomolecular Engineering, University of California─Irvine, Irvine, California 92697, United States.,Department of Materials Science & Engineering, University of California─Irvine, Irvine, California 92697, United States
| |
Collapse
|
14
|
Town RM, van Leeuwen HP. Chemodynamic features of nickel(II) and its complexes: Implications for bioavailability in freshwaters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113840. [PMID: 36068763 DOI: 10.1016/j.ecoenv.2022.113840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/28/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
A robust description of the bioavailability of Ni(II) in freshwaters is fundamental for the setting of environmental quality standards. Current approaches assume that bioavailability is governed by the equilibrium concentration of the free metal ion in the bulk aqueous medium. Such strategies generally have limited predictive value: a suite of empirical fitting parameters is required to deal with variations in water chemistry. Herein we compile data on Ni(II) speciation under typical freshwater conditions and compute the lability of Ni(II) complexes with typical molecular and nanoparticulate components of dissolved organic carbon. In combination with an analysis of the kinetic setting of Ni(II) biouptake by freshwater organisms, we assess the potential contribution from dissociation of Ni(II) complexes to the diffusive supply flux of free Ni2+. The strategy takes into account the absolute and relative magnitudes of the Michaelis-Menten bioaffinity and bioconversion parameters for a range of freshwater organisms, together with dynamic chemical speciation descriptors under environmentally relevant conditions. The results show that the dissociation kinetics of Ni(II) complexes play a crucial role in buffering the free metal ion concentration at the biointerface. Our results highlight the need to couple the timescales of chemical reactivity with those of biouptake to properly identify the bioavailable fraction of Ni(II) in freshwaters.
Collapse
Affiliation(s)
- Raewyn M Town
- ECOSPHERE, Department of Biology, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | - Herman P van Leeuwen
- ECOSPHERE, Department of Biology, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium; Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| |
Collapse
|
15
|
Fraenkel D. The equivalent electric conductivity of hydrochloric acid in solvents of lower permittivity than water, and its interrelation with the acid’s activity coefficient: A theoretical analysis. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
16
|
Comparative Extraction of Aluminum Group Metals Using Acetic Acid Derivatives with Three Different-Sized Frameworks for Coordination. SEPARATIONS 2021. [DOI: 10.3390/separations8110211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We prepared acetic acid derivatives using three different frameworks, calix[4]arene, alkenyltrimethylol, and trihydroxytriphenylmethane, which differ in the number and size of their coordination sites. We further investigated the extraction properties for aluminum group metal ions. All three extraction reagents exhibited increased extraction compared with the corresponding monomeric compounds, owing to structural effects. The extraction reaction and extraction equilibrium constants were determined using a slope analysis. Their extraction abilities, separation efficiencies, and potential coordination modes are discussed using the extraction equilibrium constants, half-pH values, and spectroscopic data. The calix[4]arene and trihydroxytriphenylmethane derivatives demonstrated allosteric co-extraction of indium ions (In3+) with an unexpected stoichiometry of 1:2.
Collapse
|
17
|
Paciotti R, Corinti D, Maitre P, Coletti C, Re N, Chiavarino B, Crestoni ME, Fornarini S. From Preassociation to Chelation: A Survey of Cisplatin Interaction with Methionine at Molecular Level by IR Ion Spectroscopy and Computations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2206-2217. [PMID: 34236851 PMCID: PMC8397306 DOI: 10.1021/jasms.1c00152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Methionine (Met) plays an important role in the metabolism of cisplatin anticancer drug. Yet, methionine platination in aqueous solution presents a highly complex pattern of interconnected paths and intermediates. This study reports on the reaction of methionine with the active aqua form of cisplatin, cis-[PtCl(NH3)2(H2O)]+, isolating the encounter complex of the reactant pair, {cis-[PtCl(NH3)2(H2O)]+·Met}, by electrospray ionization. In the unsolvated state, charged intermediates are characterized for their structure and photofragmentation behavior by IR ion spectroscopy combined with quantum-chemical calculations, obtaining an outline of the cisplatin-methionine reaction at a molecular level. To summarize the major findings: (i) the {cis-[PtCl(NH3)2(H2O)]+·Met} encounter complex, lying on the reaction coordinate of the Eigen-Wilkins preassociation mechanism for ligand substitution, is delivered in the gas phase and characterized by IR ion spectroscopy; (ii) upon vibrational excitation, ligand exchange occurs within {cis-[PtCl(NH3)2(H2O)]+·Met}, releasing water and cis-[PtCl(NH3)2(Met)]+, along the calculated energy profile; (iii) activated cis-[PtCl(NH3)2(Met)]+ ions undergo NH3 departure, forming a chelate complex, [PtCl(NH3)(Met)]+, whose structure is congruent with overwhelming S-Met ligation as the primary coordination step. The latter process involving ammonia loss marks a difference with the prevailing chloride replacement in protic solvent, pointing to the effect of a low-polarity environment.
Collapse
Affiliation(s)
- Roberto Paciotti
- Dipartimento
di Farmacia, Università G. D’Annunzio
Chieti-Pescara, Via dei
Vestini 31, Chieti I-66100, Italy
| | - Davide Corinti
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università
di Roma “La Sapienza”, I-00185 Roma, Italy
| | - Philippe Maitre
- Institut
de Chimie Physique, Université Paris-Saclay,
CNRS, F-91405 Orsay, France
| | - Cecilia Coletti
- Dipartimento
di Farmacia, Università G. D’Annunzio
Chieti-Pescara, Via dei
Vestini 31, Chieti I-66100, Italy
| | - Nazzareno Re
- Dipartimento
di Farmacia, Università G. D’Annunzio
Chieti-Pescara, Via dei
Vestini 31, Chieti I-66100, Italy
| | - Barbara Chiavarino
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università
di Roma “La Sapienza”, I-00185 Roma, Italy
| | - Maria Elisa Crestoni
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università
di Roma “La Sapienza”, I-00185 Roma, Italy
| | - Simonetta Fornarini
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università
di Roma “La Sapienza”, I-00185 Roma, Italy
| |
Collapse
|
18
|
Wahyudianto B, Imanishi K, Kojima T, Yoshinari N, Konno T. Intermediate snapshots of a 116-nuclear metallosupramolecular cage-of-cage in a homogeneous single-crystal-to-single-crystal transformation. Chem Commun (Camb) 2021; 57:6090-6093. [PMID: 34037636 DOI: 10.1039/d1cc02219a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Soaking crystals of an AuI72CdII40NaI4 cage-of-cage in aqueous Co(NO3)2 afforded an analogous AuI72CoII44 cage-of-cage, accompanied by the exchange of NaI and CdII by CoII with retention of the single crystallinity. The homogeneous progress of the transformation led to the direct observation of intermediate species by single-crystal X-ray crystallography.
Collapse
Affiliation(s)
- Benny Wahyudianto
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - Kento Imanishi
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - Tatsuhiro Kojima
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - Nobuto Yoshinari
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - Takumi Konno
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
19
|
Martínez-Ahumada E, Díaz-Ramírez ML, Velásquez-Hernández MDJ, Jancik V, Ibarra IA. Capture of toxic gases in MOFs: SO 2, H 2S, NH 3 and NO x. Chem Sci 2021; 12:6772-6799. [PMID: 34123312 PMCID: PMC8153083 DOI: 10.1039/d1sc01609a] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
MOFs are promising candidates for the capture of toxic gases since their adsorption properties can be tuned as a function of the topology and chemical composition of the pores. Although the main drawback of MOFs is their vulnerability to these highly corrosive gases which can compromise their chemical stability, remarkable examples have demonstrated high chemical stability to SO2, H2S, NH3 and NO x . Understanding the role of different chemical functionalities, within the pores of MOFs, is the key for accomplishing superior captures of these toxic gases. Thus, the interactions of such functional groups (coordinatively unsaturated metal sites, μ-OH groups, defective sites and halogen groups) with these toxic molecules, not only determines the capture properties of MOFs, but also can provide a guideline for the desigh of new multi-functionalised MOF materials. Thus, this perspective aims to provide valuable information on the significant progress on this environmental-remediation field, which could inspire more investigators to provide more and novel research on such challenging task.
Collapse
Affiliation(s)
- Eva Martínez-Ahumada
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior s/n, CU, Del. Coyoacán, 04510 Ciudad de México Mexico +52(55) 5622-4595
| | | | | | - Vojtech Jancik
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria Ciudad de México Mexico
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM Carr. Toluca-Atlacomulco Km 14.5 Toluca Estado de México 50200 Mexico
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior s/n, CU, Del. Coyoacán, 04510 Ciudad de México Mexico +52(55) 5622-4595
| |
Collapse
|
20
|
Review of adsorbents incorporating calixarene derivatives used for metals recovery and hazardous ions removal: the concept of adsorbent design and classification of adsorbents. J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-021-01053-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Pastore VJ, Sullivan MG, Rzayev J, Cook TR. Postsynthetic polymer-ligand exchange hybridization in M-MOF-74 composites. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1876852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Vincent J. Pastore
- Department of Chemistry, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | - Meghan G. Sullivan
- Department of Chemistry, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | - Javid Rzayev
- Department of Chemistry, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | - Timothy R. Cook
- Department of Chemistry, University at Buffalo, the State University of New York, Buffalo, NY, USA
| |
Collapse
|
22
|
Percástegui E, Ronson TK, Nitschke JR. Design and Applications of Water-Soluble Coordination Cages. Chem Rev 2020; 120:13480-13544. [PMID: 33238092 PMCID: PMC7760102 DOI: 10.1021/acs.chemrev.0c00672] [Citation(s) in RCA: 301] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Indexed: 12/23/2022]
Abstract
Compartmentalization of the aqueous space within a cell is necessary for life. In similar fashion to the nanometer-scale compartments in living systems, synthetic water-soluble coordination cages (WSCCs) can isolate guest molecules and host chemical transformations. Such cages thus show promise in biological, medical, environmental, and industrial domains. This review highlights examples of three-dimensional synthetic WSCCs, offering perspectives so as to enhance their design and applications. Strategies are presented that address key challenges for the preparation of coordination cages that are soluble and stable in water. The peculiarities of guest binding in aqueous media are examined, highlighting amplified binding in water, changing guest properties, and the recognition of specific molecular targets. The properties of WSCC hosts associated with biomedical applications, and their use as vessels to carry out chemical reactions in water, are also presented. These examples sketch a blueprint for the preparation of new metal-organic containers for use in aqueous solution, as well as guidelines for the engineering of new applications in water.
Collapse
Affiliation(s)
- Edmundo
G. Percástegui
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Instituto
de Química, Ciudad UniversitariaUniversidad
Nacional Autónoma de México, Ciudad de México 04510, México
- Centro
Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, Toluca, 50200 Estado de México, México
| | - Tanya K. Ronson
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Jonathan R. Nitschke
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| |
Collapse
|
23
|
Abstract
Ammonia is one of the most common reductants for the automotive selective catalytic reduction (SCR) system owing to its high NO2 reduction (deNOx) efficiency. However, ammonia carriers for the SCR system have sluggishly evolved to achieve rapid ammonia dosing. In this study, the MOFs [M2(adc)2(dabco)] (M = Co, Ni, Cu, Zn) were synthesized and characterized as ammonia carriers. Among the four obtained MOFs, Ni2(adc)2(dabco) possessed the highest surface area, 772 m2/g, highest ammonia uptake capacity, 12.1 mmol/g, and stable cyclic adsorption-desorption performance. All the obtained MOFs demonstrated physisorption of ammonia and rapid kinetics of ammonia adsorption and desorption. Compared with halide ammonia carrier MgCl2, the obtained MOFs showed four times faster adsorption kinetics to reach 90% of the ammonia uptake capacity. For the ammonia desorption, the Ni2(adc)2(dabco) provided 6 mmol/g ammonia dosing when temperature reached 125 °C in the first 10 min, which was six times of the ammonia dosing from Mg(NH3)6Cl2. The results offer a solution to shorten the buffering time for ammonia dosing in the SCR system.
Collapse
|
24
|
Town RM, Duval JFL, van Leeuwen HP. Electrochemical activity of various types of aqueous In(III) species at a mercury electrode. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04607-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Hamisu AM, Ariffin A, Wibowo AC. Cation exchange in metal-organic frameworks (MOFs): The hard-soft acid-base (HSAB) principle appraisal. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119801] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
26
|
Barger JP, Dillon PF. Electrophoretic measurement of water charge density and ion hydration. Electrophoresis 2020; 41:1170-1177. [PMID: 32357247 DOI: 10.1002/elps.201900467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 11/07/2022]
Abstract
Water exchange between bulk water and water-ion complexes will be at equilibrium when the charge density of the complex surface equals the charge density of bulk water, producing a constant radius water-ion complex. This complex will migrate in an electric field at a velocity proportional to the complex radius. CE velocity is the sum of the complex charge-dependent velocity and the buffer electro-osmotic flow. Simultaneous use of both a base (1.07 mM imidazole) and an acid (1.5 mM MOPS) buffer negates EOF at pH 7.4. Electric fields below 300 V/cm (potassium, calcium) and 400 V/cm (magnesium) yield migration velocities with no dehydration of the water-ion complexes. The number of waters per complex increase with the ion charge density: K+ 1.90, Ca++ 5.90, Mg++ 6.59 waters/ion. The charge densities of the complexes are similar: K+ 1.24, Ca++ 1.43, Mg++ 1.21 e/nm2 , for an average bulk water charge density of 1.29 ± 0.11 (SD) e/nm2 . The addition of 0.1% Triton increases the number of waters for Mg++ to 25.33 and lowers the charge density to 0.497 e/nm2 . High electric field dehydration shows that calcium will be fully dehydrated at 638.3 V/cm and magnesium fully dehydrated at 925.5 V/cm, which occur at 6.15 and 5.78 nm from the membrane. Dehydrated magnesium will then bind to calcium channels leading to decreased smooth muscle activation.
Collapse
Affiliation(s)
- James P Barger
- Department of Physiology, Michigan State University, East Lansing, MI
| | - Patrick F Dillon
- Department of Physiology, Michigan State University, East Lansing, MI
| |
Collapse
|
27
|
Abstract
AbstractThe totally symmetric stretching mode $$\nu_{1}$$ν1 Ln–(OH2) of the first hydration shells of all the rare earth (RE) ions across the series from lanthanum to lutetium has been measured on dilute aqueous perchlorate solutions at room temperature. An S-shaped relationship has been found between the $$\nu_{1}$$ν1 Ln–(OH2) peak positions and the Ln–(OH2) bond distances of the lanthanide(III) aqua ions. While the light rare earth ions form nona-hydrates, the heavy ones form octa-hydrates and the rare earth ions in the middle of the series show non integer hydration numbers between 9 and 8. A relationship between wavenumber positions $$\nu_{1}$$ν1 Ln–(OH2) and the Ln–(OH2) bond distances of the RE hydrates has been given. Recent quantum mechanical calculations support the given interpretation.
Collapse
|
28
|
Stripping chronopotentiometry at scanned deposition potential (SSCP): An effective methodology for dynamic speciation analysis of nanoparticulate metal complexes. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Extraction of scandium and other rare earth elements with a tricarboxylic acid derivative of tripodal pseudcalix[3]arene prepared from a new phenolic tripodal framework. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Rieth AJ, Wright AM, Skorupskii G, Mancuso JL, Hendon CH, Dincă M. Record-Setting Sorbents for Reversible Water Uptake by Systematic Anion Exchanges in Metal-Organic Frameworks. J Am Chem Soc 2019; 141:13858-13866. [PMID: 31398286 PMCID: PMC6748661 DOI: 10.1021/jacs.9b06246] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Indexed: 12/19/2022]
Abstract
The reversible capture of water vapor at low humidity can enable transformative applications such as atmospheric water harvesting and heat transfer that uses water as a refrigerant, replacing environmentally detrimental hydro- and chloro-fluorocarbons. The driving force for these applications is governed by the relative humidity at which the pores of a porous material fill with water. Here, we demonstrate modulation of the onset of pore-filling in a family of metal-organic frameworks with record water sorption capacities by employing anion exchange. Unexpectedly, the replacement of the structural bridging Cl- with the more hydrophilic anions F- and OH- does not induce pore-filling at lower relative humidity, whereas the introduction of the larger Br- results in a substantial shift toward lower relative humidity. We rationalize these results in terms of pore size modifications as well as the water hydrogen bonding structure based on detailed infrared spectroscopic measurements. Fundamentally, our data suggest that, in the presence of strong nucleation sites, the thermodynamic favorability of water pore-filling depends more strongly on the pore diameter and the interface between water in the center of the pore and water bound to the pore walls than the hydrophilicity of the pore wall itself. On the basis of these results, we report two materials that exhibit record water uptake capacities in their respective humidity regions and extended stability over 400 water adsorption-desorption cycles.
Collapse
Affiliation(s)
- Adam J. Rieth
- Department
of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ashley M. Wright
- Department
of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Grigorii Skorupskii
- Department
of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jenna L. Mancuso
- Materials
Science Institute, Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Christopher H. Hendon
- Materials
Science Institute, Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Mircea Dincă
- Department
of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
31
|
Town RM, van Leeuwen HP, Duval JFL. Rigorous Physicochemical Framework for Metal Ion Binding by Aqueous Nanoparticulate Humic Substances: Implications for Speciation Modeling by the NICA-Donnan and WHAM Codes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8516-8532. [PMID: 31291104 DOI: 10.1021/acs.est.9b00624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Latest knowledge on the reactivity of charged nanoparticulate complexants toward aqueous metal ions is discussed in mechanistic detail. We present a rigorous generic description of electrostatic and chemical contributions to metal ion binding by nanoparticulate complexants, and their dependence on particle size, particle type (i.e., reactive sites distributed within the particle body or confined to the surface), ionic strength of the aqueous medium, and the nature of the metal ion. For the example case of soft environmental particles such as fulvic and humic acids, practical strategies are delineated for determining intraparticulate metal ion speciation, and for evaluating intrinsic chemical binding affinities and heterogeneity. The results are compared with those obtained by popular codes for equilibrium speciation modeling (namely NICA-Donnan and WHAM). Physicochemical analysis of the discrepancies generated by these codes reveals the a priori hypotheses adopted therein and the inappropriateness of some of their key parameters. The significance of the characteristic time scales governing the formation and dissociation rates of metal-nanoparticle complexes in defining the relaxation properties and the complete equilibration of the metal-nanoparticulate complex dispersion is described. The dynamic features of nanoparticulate complexes are also discussed in the context of predictions of the labilities and bioavailabilities of the metal species.
Collapse
Affiliation(s)
- Raewyn M Town
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology , University of Antwerp , Groenenborgerlaan 171 , 2020 Antwerp , Belgium
- Physical Chemistry and Soft Matter , Wageningen University & Research , Stippeneng 4 , 6708 WE Wageningen , The Netherlands
| | - Herman P van Leeuwen
- Physical Chemistry and Soft Matter , Wageningen University & Research , Stippeneng 4 , 6708 WE Wageningen , The Netherlands
| | - Jérôme F L Duval
- CNRS - Université de Lorraine , Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR 7360 CNRS , 15 avenue du Charmois , 54500 Vandoeuvre-les-Nancy , France
| |
Collapse
|
32
|
Jumina, Siswanta D, Nofiati K, Imawan AC, Priastomo Y, Ohto K. Synthesis of C-4-Hydroxy-3-methoxyphenylcalix[4]resorcinarene and Its Application as Adsorbent for Lead(II), Copper(II) and Chromium(III). BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180323] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jumina
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Sekip Utara Yogyakarta 55281, Indonesia
| | - Dwi Siswanta
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Sekip Utara Yogyakarta 55281, Indonesia
| | - Kira Nofiati
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Sekip Utara Yogyakarta 55281, Indonesia
| | - Arif Cahyo Imawan
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Sekip Utara Yogyakarta 55281, Indonesia
| | - Yoga Priastomo
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Sekip Utara Yogyakarta 55281, Indonesia
| | - Keisuke Ohto
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, 1-Honjo, Saga 840-8502, Japan
| |
Collapse
|
33
|
Effect of Multivalent Cations on Intermolecular Association of Isotactic and Atactic Poly(Methacrylic Acid) Chains in Aqueous Solutions. Polymers (Basel) 2019; 11:polym11040605. [PMID: 30960589 PMCID: PMC6523823 DOI: 10.3390/polym11040605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 11/18/2022] Open
Abstract
The formation of nanoparticles of two poly(methacrylic acid) (PMA) isomers, atactic (aPMA) and isotactic (iPMA), was investigated in aqueous solutions in the presence of mono- (Na+) and multivalent cations (Mg2+ and La3+). Using dynamic (DLS) and static light scattering (SLS), we show that PMA nanoparticles have characteristics of microgel-like particles with a denser core and a swollen corona. iPMA aggregates are stable at a much higher degree of neutralization (αN) than the aPMA ones, indicating a much stronger association between iPMA chains. This is explained by proposing segregation of ionized and unionized carboxyl groups within the iPMA aggregates and subsequent cooperative hydrogen-bonding between COOH groups. The calculated shape parameter (ρ) suggests different behavior of both isomers in the presence of Mg2+ ions on one hand and Na+ and La3+ on the other. The microgel-like particles formed in the presence of Mg2+ ions have a more even mass distribution (possibly a no core-shell structure) in comparison with those in the presence of Na+ and La3+ ions. Differences between the aggregate structures in the presence of different ions are reflected also in calorimetric experiments and supported by pH and fluorimetric measurements. Reasons for different behavior in the presence of Mg2+ ions lie in specific properties of this cation, in particular in its strong hydration and preference towards monodentate binding to carboxylate groups.
Collapse
|
34
|
Percástegui EG, Mosquera J, Ronson TK, Plajer AJ, Kieffer M, Nitschke JR. Waterproof architectures through subcomponent self-assembly. Chem Sci 2018; 10:2006-2018. [PMID: 30881630 PMCID: PMC6385555 DOI: 10.1039/c8sc05085f] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/12/2018] [Indexed: 11/21/2022] Open
Abstract
Construction of metal–organic containers that are soluble and stable in water can be challenging – we present diverse strategies that allow the synthesis of kinetically robust water-soluble architectures via subcomponent self-assembly.
Metal–organic containers are readily prepared through self-assembly, but achieving solubility and stability in water remains challenging due to ligand insolubility and the reversible nature of the self-assembly process. Here we have developed conditions for preparing a broad range of architectures that are both soluble and kinetically stable in water through metal(ii)-templated (MII = CoII, NiII, ZnII, CdII) subcomponent self-assembly. Although these structures are composed of hydrophobic and poorly-soluble subcomponents, sulfate counterions render them water-soluble, and they remain intact indefinitely in aqueous solution. Two strategies are presented. Firstly, stability increased with metal–ligand bond strength, maximising when NiII was used as a template. Architectures that disassembled when CoII, ZnII and CdII templates were employed could be directly prepared from NiSO4 in water. Secondly, a higher density of connections between metals and ligands within a structure, considering both ligand topicity and degree of metal chelation, led to increased stability. When tritopic amines were used to build highly chelating ligands around ZnII and CdII templates, cryptate-like water-soluble structures were formed using these labile ions. Our synthetic platform provides a unified understanding of the elements of aqueous stability, allowing predictions of the stability of metal–organic cages that have not yet been prepared.
Collapse
Affiliation(s)
| | - Jesús Mosquera
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW , UK .
| | - Tanya K Ronson
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW , UK .
| | - Alex J Plajer
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW , UK .
| | - Marion Kieffer
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW , UK .
| | - Jonathan R Nitschke
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW , UK .
| |
Collapse
|
35
|
Cilibrizzi A, Abbate V, Chen YL, Ma Y, Zhou T, Hider RC. Hydroxypyridinone Journey into Metal Chelation. Chem Rev 2018; 118:7657-7701. [DOI: 10.1021/acs.chemrev.8b00254] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King’s College London, Stamford Street, London SE1 9NH, United Kingdom
| | - Vincenzo Abbate
- Institute of Pharmaceutical Science, King’s College London, Stamford Street, London SE1 9NH, United Kingdom
- King’s Forensics, School of Population Health & Environmental Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Yu-Lin Chen
- Institute of Pharmaceutical Science, King’s College London, Stamford Street, London SE1 9NH, United Kingdom
| | - Yongmin Ma
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, P. R. China 311402
| | - Tao Zhou
- Department of Applied Chemistry, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China 310018
| | - Robert C. Hider
- Institute of Pharmaceutical Science, King’s College London, Stamford Street, London SE1 9NH, United Kingdom
| |
Collapse
|
36
|
Sakipov S, Sobolevsky AI, Kurnikova MG. Ion Permeation Mechanism in Epithelial Calcium Channel TRVP6. Sci Rep 2018; 8:5715. [PMID: 29632318 PMCID: PMC5890290 DOI: 10.1038/s41598-018-23972-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/20/2018] [Indexed: 12/14/2022] Open
Abstract
Calcium is the most abundant metal in the human body that plays vital roles as a cellular electrolyte as well as the smallest and most frequently used signaling molecule. Calcium uptake in epithelial tissues is mediated by tetrameric calcium-selective transient receptor potential (TRP) channels TRPV6 that are implicated in a variety of human diseases, including numerous forms of cancer. We used TRPV6 crystal structures as templates for molecular dynamics simulations to identify ion binding sites and to study the permeation mechanism of calcium and other ions through TRPV6 channels. We found that at low Ca2+ concentrations, a single calcium ion binds at the selectivity filter narrow constriction formed by aspartates D541 and allows Na+ permeation. In the presence of ions, no water binds to or crosses the pore constriction. At high Ca2+ concentrations, calcium permeates the pore according to the knock-off mechanism that includes formation of a short-lived transition state with three calcium ions bound near D541. For Ba2+, the transition state lives longer and the knock-off permeation occurs slower. Gd3+ binds at D541 tightly, blocks the channel and prevents Na+ from permeating the pore. Our results provide structural foundations for understanding permeation and block in tetrameric calcium-selective ion channels.
Collapse
Affiliation(s)
- Serzhan Sakipov
- Chemistry Department, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, PA, 15213, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th St., New York, NY, 10032, USA
| | - Maria G Kurnikova
- Chemistry Department, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, PA, 15213, USA.
| |
Collapse
|
37
|
Rieth AJ, Dincă M. Controlled Gas Uptake in Metal-Organic Frameworks with Record Ammonia Sorption. J Am Chem Soc 2018; 140:3461-3466. [PMID: 29425040 DOI: 10.1021/jacs.8b00313] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ammonia is a vital commodity in our food supply chain, but its toxicity and corrosiveness require advanced protection and mitigation. These needs are not met efficiently by current materials, which suffer from either low capacity or low affinity for NH3. Here, we report that a series of microporous triazolate metal-organic frameworks containing open metal sites exhibit record static and dynamic ammonia capacities. Under equilibrium conditions at 1 bar, the materials adsorb up to 19.79 mmol NH3 g-1, more than twice the capacity of activated carbon, the industry standard. Under conditions relevant to personal protection equipment, capacities reach 8.56 mmol g-1, 27% greater than the previous best material. Structure-function relationships and kinetic analyses of NH3 uptake in isostructural micro- and mesoporous materials made from Co, Ni, and Cu reveal stability trends that are in line with the water substitution rates in simple metal-aquo complexes. Altogether, these results provide clear, intuitive descriptors that govern the static and dynamic uptake, kinetics, and stability of MOF sorbents for strongly interacting gases.
Collapse
Affiliation(s)
- Adam J Rieth
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Mircea Dincă
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
38
|
|
39
|
Sessa F, Migliorati V, Serva A, Lapi A, Aquilanti G, Mancini G, D'Angelo P. On the coordination of Zn2+ ion in Tf2N− based ionic liquids: structural and dynamic properties depending on the nature of the organic cation. Phys Chem Chem Phys 2018; 20:2662-2675. [DOI: 10.1039/c7cp07497b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Zn2+ coordination structure changes when the Zn(Tf2N)2 salt is dissolved in ionic liquids resulting in more favorable interactions among solvent cations and anions.
Collapse
Affiliation(s)
- Francesco Sessa
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| | | | - Alessandra Serva
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| | - Andrea Lapi
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
- Istituto CNR di Metodologie Chimiche-IMC
| | | | | | - Paola D'Angelo
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| |
Collapse
|
40
|
A convenient preparation of nano-powders of Y2O3, Y3Al5O12 and Nd:Y3Al5O12 and study of the photoluminescent emission properties of the neodymium doped oxide. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Chen YL, Kong X, Xie Y, Hider RC. The interaction of pyridoxal isonicotinoyl hydrazone (PIH) and salicylaldehyde isonicotinoyl hydrazone (SIH) with iron. J Inorg Biochem 2017; 180:194-203. [PMID: 29329026 DOI: 10.1016/j.jinorgbio.2017.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/06/2017] [Accepted: 12/10/2017] [Indexed: 01/23/2023]
Abstract
The interaction of pyridoxal isonicotinoyl hydrazone (PIH) and salicylaldehyde isonicotinoyl hydrazone (SIH), two important biologically active chelators, with iron has been investigated by spectrophotometric methods. High iron(III) affinity constants were determined for PIH, logβ2=37.0 and SIH, logβ2=37.6. The associated redox potentials of the iron complexes were determined using cyclic voltammetry at pH7.4 as +130mV (vs normal hydrogen electrode, NHE) for PIH and +136mV(vs NHE) for SIH. These redox potentials are much higher than those corresponding to iron chelators in clinical use, namely deferiprone, -620mV; desferasirox, -600mV and desferrioxamine, -468mV. Although the positive redox potentials of SIH and PIH are similar to that of EDTA, namely +120mV, the iron complexes of these two hydrazone chelators, unlike the iron complex of EDTA, do not redox cycle in the presence of vitamin C. These properties render PIH and SIH as excellent scavengers of iron, under biological conditions. Both SIH and PIH scavenge mononuclear iron(II) and iron(III) rapidly. These fast kinetic properties of the hydrazone-based chelators provide a ready explanation for the adoption of SIH in fluorescence-based methods for the quantification of cytosolic iron(II).
Collapse
Affiliation(s)
- Yu-Lin Chen
- Institute of Pharmaceutical Sciences, King's College London, 150 Stamford Street London SE1 9NH, UK
| | - Xiaole Kong
- Institute of Pharmaceutical Sciences, King's College London, 150 Stamford Street London SE1 9NH, UK
| | - Yuanyuan Xie
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, PR China
| | - Robert C Hider
- Institute of Pharmaceutical Sciences, King's College London, 150 Stamford Street London SE1 9NH, UK.
| |
Collapse
|
42
|
Specific phosphorothioate substitution within domain 6 of a group II intron ribozyme leads to changes in local structure and metal ion binding. J Biol Inorg Chem 2017; 23:167-177. [DOI: 10.1007/s00775-017-1519-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/14/2017] [Indexed: 10/18/2022]
|
43
|
Thaunay F, Ohanessian G, Clavaguéra C. Dynamics of ions in a water drop using the AMOEBA polarizable force field. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Town RM, Pinheiro JP, van Leeuwen HP. Chemodynamics of Soft Nanoparticulate Metal Complexes: From the Local Particle/Medium Interface to a Macroscopic Sensor Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:527-536. [PMID: 27989214 DOI: 10.1021/acs.langmuir.6b03381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The lability of a complex species between a metal ion M and a binding site S, MS, is conventionally defined with respect to an ongoing process at a reactive interface, for example, the conversion or accumulation of the free metal ion M by a sensor. In the case of soft charged multisite nanoparticulate complexes, the chemodynamic features that are operative within the micro environment of the particle body generally differ substantially from those for dissolved similar single-site complexes in the same medium. Here we develop a conceptual framework for the chemodynamics and the ensuing lability of soft (3D) nanoparticulate metal complexes. The approach considers the dynamic features of MS at the intraparticulate level and their impact on the overall reactivity of free metal ions at the surface of a macroscopic sensing interface. Chemodynamics at the intraparticulate level is shown to involve a local reaction layer at the particle/medium interface, while at the macroscopic sensor level an operational reaction layer is invoked. Under a certain window of conditions, volume exclusion of the nanoparticle body near the medium/sensor interface is substantial and affects the properties of the reaction layer and the overall lability of the nanoparticulate MS complex toward the reactive surface.
Collapse
Affiliation(s)
- Raewyn M Town
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp , Groenenborgerlaan 171, 2020 Antwerp, Belgium
- Physical Chemistry and Soft Matter, Wageningen University & Research , Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - José Paulo Pinheiro
- Université de Lorraine , Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360 CNRS, 15 avenue du Charmois, 54500 Vandoeuvre-les-Nancy, France
- Physical Chemistry and Soft Matter, Wageningen University & Research , Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Herman P van Leeuwen
- Physical Chemistry and Soft Matter, Wageningen University & Research , Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
45
|
Présent RM, Rotureau E, Billard P, Pagnout C, Sohm B, Flayac J, Gley R, Pinheiro JP, Duval JFL. Impact of intracellular metallothionein on metal biouptake and partitioning dynamics at bacterial interfaces. Phys Chem Chem Phys 2017; 19:29114-29124. [DOI: 10.1039/c7cp05456d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This study reports the quantitative evaluation of the metal biopartitioning dynamics following biouptake at bacterial interfaces with explicit account of the effects stemming from intracellular metal binding by metallothionein proteins.
Collapse
Affiliation(s)
- Romain M. Présent
- CNRS, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux)
- Vandoeuvre-lès-Nancy F54501
- France
- Université de Lorraine
- LIEC
| | - Elise Rotureau
- CNRS, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux)
- Vandoeuvre-lès-Nancy F54501
- France
- Université de Lorraine
- LIEC
| | - Patrick Billard
- CNRS, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux)
- Vandoeuvre-lès-Nancy F54501
- France
- Université de Lorraine
- LIEC
| | - Christophe Pagnout
- CNRS
- LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux)
- UMR7360
- France
- Université de Lorraine
| | - Bénédicte Sohm
- CNRS
- LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux)
- UMR7360
- France
- Université de Lorraine
| | - Justine Flayac
- CNRS
- LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux)
- UMR7360
- France
- Université de Lorraine
| | - Renaud Gley
- CNRS, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux)
- Vandoeuvre-lès-Nancy F54501
- France
- Université de Lorraine
- LIEC
| | - José P. Pinheiro
- CNRS, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux)
- Vandoeuvre-lès-Nancy F54501
- France
- Université de Lorraine
- LIEC
| | - Jérôme F. L. Duval
- CNRS, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux)
- Vandoeuvre-lès-Nancy F54501
- France
- Université de Lorraine
- LIEC
| |
Collapse
|
46
|
Duval JFL. Chemodynamics of metal ion complexation by charged nanoparticles: a dimensionless rationale for soft, core–shell and hard particle types. Phys Chem Chem Phys 2017; 19:11802-11815. [DOI: 10.1039/c7cp01750b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study clarifies the contributions of nanoparticle properties and aqueous metal ion dehydration kinetics to chemodynamics of nanoparticulate metal complexes.
Collapse
Affiliation(s)
- Jérôme F. L. Duval
- CNRS
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC)
- UMR 7360
- Vandoeuvre-lès-Nancy F-54501
- France
| |
Collapse
|
47
|
Rotureau E, Waldvogel Y, Pinheiro JP, Farinha JPS, Bihannic I, Présent RM, Duval JFL. Structural effects of soft nanoparticulate ligands on trace metal complexation thermodynamics. Phys Chem Chem Phys 2016; 18:31711-31724. [PMID: 27841406 DOI: 10.1039/c6cp06880d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Metal binding to natural soft colloids is difficult to address due to the inherent heterogeneity of their reactive polyelectrolytic volume and the modifications of their shell structure following changes in e.g. solution pH, salinity or temperature. In this work, we investigate the impacts of temperature- and salinity-mediated modifications of the shell structure of polymeric ligand nanoparticles on the thermodynamics of divalent metal ions Cd(ii)-complexation. The adopted particles consist of a glassy core decorated by a fine-tunable poly(N-isopropylacrylamide) anionic corona. According to synthesis, the charges originating from the metal binding carboxylic moieties supported by the corona chains are located preferentially either in the vicinity of the core or at the outer shell periphery (p(MA-N) and p(N-AA) particles, respectively). Stability constants (KML) of cadmium-nanoparticle complexes are measured under different temperature and salinity conditions using electroanalytical techniques. The obtained KML is clearly impacted by the location of the carboxylic functional groups within the shell as p(MA-N) leads to stronger nanoparticulate Cd complexes than p(N-AA). The dependence of KML on solution salinity for p(N-AA) is shown to be consistent with a binding of Cd to peripheral carboxylic groups driven by Coulombic interactions (Eigen-Fuoss mechanism for ions-pairing) or with particle electrostatic features operating at the edge of the shell Donnan volume. For p(MA-N) particulate ligands, a scenario where metal binding occurs within the intraparticulate Donnan phase correctly reproduces the experimental findings. Careful analysis of electroanalytical data further evidences that complexation of metal ions by core-shell particles significantly differ according to the location and distribution of the metal-binding sites throughout the reactive shell. This complexation heterogeneity is basically enhanced with increasing temperature i.e. upon significant increase of particle shell shrinking, which suggests that the contraction of the reactive phase volume of the particulate ligands promotes cooperative metal binding effects.
Collapse
Affiliation(s)
- Elise Rotureau
- CNRS, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux), UMR 7360, Vandoeuvre-lès-Nancy F-54501, France and Université de Lorraine, LIEC, UMR 7360, Vandoeuvre-lès-Nancy F-54501, France.
| | - Yves Waldvogel
- CNRS, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux), UMR 7360, Vandoeuvre-lès-Nancy F-54501, France and Université de Lorraine, LIEC, UMR 7360, Vandoeuvre-lès-Nancy F-54501, France.
| | - José P Pinheiro
- CNRS, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux), UMR 7360, Vandoeuvre-lès-Nancy F-54501, France and Université de Lorraine, LIEC, UMR 7360, Vandoeuvre-lès-Nancy F-54501, France.
| | - José Paulo S Farinha
- Centro de Quimica Fisica Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Tecnico, University of Lisbon, 1049-001 Lisboa, Portugal
| | - Isabelle Bihannic
- CNRS, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux), UMR 7360, Vandoeuvre-lès-Nancy F-54501, France and Université de Lorraine, LIEC, UMR 7360, Vandoeuvre-lès-Nancy F-54501, France.
| | - Romain M Présent
- CNRS, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux), UMR 7360, Vandoeuvre-lès-Nancy F-54501, France and Université de Lorraine, LIEC, UMR 7360, Vandoeuvre-lès-Nancy F-54501, France.
| | - Jérôme F L Duval
- CNRS, LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux), UMR 7360, Vandoeuvre-lès-Nancy F-54501, France and Université de Lorraine, LIEC, UMR 7360, Vandoeuvre-lès-Nancy F-54501, France.
| |
Collapse
|
48
|
Lability of nanoparticulate metal complexes in electrochemical speciation analysis. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3372-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
AGNES at vibrated gold microwire electrode for the direct quantification of free copper concentrations. Anal Chim Acta 2016; 920:29-36. [PMID: 27114220 DOI: 10.1016/j.aca.2016.03.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/09/2016] [Accepted: 03/23/2016] [Indexed: 11/23/2022]
Abstract
The free metal ion concentration and the dynamic features of the metal species are recognized as key to predict metal bioavailability and toxicity to aquatic organisms. Quantification of the former is, however, still challenging. In this paper, it is shown for the first time that the concentration of free copper (Cu(2+)) can be quantified by applying AGNES (Absence of Gradients and Nernstian equilibrium stripping) at a solid gold electrode. It was found that: i) the amount of deposited Cu follows a Nernstian relationship with the applied deposition potential, and ii) the stripping signal is linearly related with the free metal ion concentration. The performance of AGNES at the vibrating gold microwire electrode (VGME) was assessed for two labile systems: Cu-malonic acid and Cu-iminodiacetic acid at ionic strength 0.01 M and a range of pH values from 4.0 to 6.0. The free Cu concentrations and conditional stability constants obtained by AGNES were in good agreement with stripping scanned voltammetry and thermodynamic theoretical predictions obtained by Visual MinteQ. This work highlights the suitability of gold electrodes for the quantification of free metal ion concentrations by AGNES. It also strongly suggests that other solid electrodes may be well appropriate for such task. This new application of AGNES is a first step towards a range of applications for a number of metals in speciation, toxicological and environmental studies for the direct determination of the key parameter that is the free metal ion concentration.
Collapse
|
50
|
Corinti D, Coletti C, Re N, Chiavarino B, Crestoni ME, Fornarini S. Cisplatin Binding to Biological Ligands Revealed at the Encounter Complex Level by IR Action Spectroscopy. Chemistry 2016; 22:3794-803. [DOI: 10.1002/chem.201504521] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Indexed: 02/03/2023]
Affiliation(s)
- Davide Corinti
- Dipartimento di Chimica e Tecnologie del Farmaco; Università degli Studi di Roma La Sapienza; P. le A. Moro 5 00185 Roma Italy), Fax
| | - Cecilia Coletti
- Dipartimento di Farmacia; Università G. D'Annunzio; Via dei Vestini 31 66100 Chieti Italy
| | - Nazzareno Re
- Dipartimento di Farmacia; Università G. D'Annunzio; Via dei Vestini 31 66100 Chieti Italy
| | - Barbara Chiavarino
- Dipartimento di Chimica e Tecnologie del Farmaco; Università degli Studi di Roma La Sapienza; P. le A. Moro 5 00185 Roma Italy), Fax
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco; Università degli Studi di Roma La Sapienza; P. le A. Moro 5 00185 Roma Italy), Fax
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del Farmaco; Università degli Studi di Roma La Sapienza; P. le A. Moro 5 00185 Roma Italy), Fax
| |
Collapse
|