1
|
Belorusova AY, Rovito D, Chebaro Y, Doms S, Verlinden L, Verstuyf A, Metzger D, Rochel N, Laverny G. Vitamin D Analogs Bearing C-20 Modifications Stabilize the Agonistic Conformation of Non-Responsive Vitamin D Receptor Variants. Int J Mol Sci 2022; 23:ijms23158445. [PMID: 35955580 PMCID: PMC9369186 DOI: 10.3390/ijms23158445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
The Vitamin D receptor (VDR) plays a key role in calcium homeostasis, as well as in cell proliferation and differentiation. Among the large number of VDR ligands that have been developed, we have previously shown that BXL-62 and Gemini-72, two C-20-modified vitamin D analogs are highly potent VDR agonists. In this study, we show that both VDR ligands restore the transcriptional activities of VDR variants unresponsive to the natural ligand and identified in patients with rickets. The elucidated mechanisms of action underlying the activities of these C-20-modified analogs emphasize the mutual adaptation of the ligand and the VDR ligand-binding pocket.
Collapse
Affiliation(s)
- Anna Y. Belorusova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), F-67400 Illkirch, France; (A.Y.B.); (D.R.); (Y.C.); (D.M.)
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, F-67400 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S 1258, F-67400 Illkirch, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, INSERM U1258, CNRS UMR 7104, 67404 Illkirch, France
| | - Daniela Rovito
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), F-67400 Illkirch, France; (A.Y.B.); (D.R.); (Y.C.); (D.M.)
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, F-67400 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S 1258, F-67400 Illkirch, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, INSERM U1258, CNRS UMR 7104, 67404 Illkirch, France
- OSCAR, French Network for Rare Bone Diseases, 94270 Le Kremlin-Bicêtre, France
| | - Yassmine Chebaro
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), F-67400 Illkirch, France; (A.Y.B.); (D.R.); (Y.C.); (D.M.)
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, F-67400 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S 1258, F-67400 Illkirch, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, INSERM U1258, CNRS UMR 7104, 67404 Illkirch, France
| | - Stefanie Doms
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (S.D.); (L.V.); (A.V.)
| | - Lieve Verlinden
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (S.D.); (L.V.); (A.V.)
| | - Annemieke Verstuyf
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (S.D.); (L.V.); (A.V.)
| | - Daniel Metzger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), F-67400 Illkirch, France; (A.Y.B.); (D.R.); (Y.C.); (D.M.)
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, F-67400 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S 1258, F-67400 Illkirch, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, INSERM U1258, CNRS UMR 7104, 67404 Illkirch, France
- OSCAR, French Network for Rare Bone Diseases, 94270 Le Kremlin-Bicêtre, France
| | - Natacha Rochel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), F-67400 Illkirch, France; (A.Y.B.); (D.R.); (Y.C.); (D.M.)
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, F-67400 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S 1258, F-67400 Illkirch, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, INSERM U1258, CNRS UMR 7104, 67404 Illkirch, France
- Correspondence: (N.R.); (G.L.)
| | - Gilles Laverny
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), F-67400 Illkirch, France; (A.Y.B.); (D.R.); (Y.C.); (D.M.)
- Centre National de la Recherche Scientifique (CNRS), UMR 7104, F-67400 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S 1258, F-67400 Illkirch, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, INSERM U1258, CNRS UMR 7104, 67404 Illkirch, France
- OSCAR, French Network for Rare Bone Diseases, 94270 Le Kremlin-Bicêtre, France
- Correspondence: (N.R.); (G.L.)
| |
Collapse
|
2
|
Dhawan P, Christakos S. Novel regulation of 25-hydroxyvitamin D3 24-hydroxylase (24(OH)ase) transcription by glucocorticoids: cooperative effects of the glucocorticoid receptor, C/EBP beta, and the Vitamin D receptor in 24(OH)ase transcription. J Cell Biochem 2010; 110:1314-23. [PMID: 20564225 DOI: 10.1002/jcb.22645] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Glucocorticoid-induced bone loss has been proposed to involve direct effects on bone cells as well as alterations in calcium absorption and excretion. Since vitamin D is important for the maintenance of calcium homeostasis, in the present study the effects of glucocorticoids on vitamin D metabolism through the expression of 24(OH)ase, an enzyme involved in the catabolism of 1,25(OH)(2)D(3), were examined. Injection of vitamin D replete mice with dexamethasone (dex) resulted in a significant induction in 24(OH)ase mRNA in kidney, indicating a regulatory effect of glucocorticoids on vitamin D metabolism. Whether glucocorticoids can affect 24(OH)ase transcription is not known. Here we demonstrate for the first time a glucocorticoid receptor (GR) dependent enhancement of 1,25(OH)(2)D(3)-induced 24(OH)ase transcription. Dex treatment of GR and vitamin D receptor (VDR) transfected COS-7 cells and dex treatment of osteoblastic cells (in which VDR and GR are present endogenously) potentiated 1,25(OH)(2)D(3)-induced 24(OH)ase transcription. In addition, GR was found to cooperate with C/EBP beta to enhance VDR-mediated 24(OH)ase transcription. Using the rat 24(OH)ase promoter with the C/EBP site mutated, GR-mediated potentiation of 1,25(OH)(2)D(3)-induced 24(OH)ase transcription was inhibited. Immunoprecipitation indicated that that GR can interact with C/EBP beta and ChIP/re-ChIP analysis showed that C/EBP beta and GR bind simultaneously to the 24(OH)ase promoter. These findings indicate a novel mechanism whereby glucocorticoids can alter VDR-mediated 24(OH)ase transcription through functional cooperation between C/EBP beta and GR that results in an enhanced ability of C/EBP beta to cooperate with VDR in the regulation of 24(OH)ase.
Collapse
Affiliation(s)
- Puneet Dhawan
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | |
Collapse
|
3
|
Koszewski NJ, Herberth J, Malluche HH. Retinoic acid receptor gamma 2 interactions with vitamin D response elements. J Steroid Biochem Mol Biol 2010; 120:200-7. [PMID: 20420906 DOI: 10.1016/j.jsbmb.2010.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/15/2010] [Accepted: 04/17/2010] [Indexed: 11/16/2022]
Abstract
The vitamin D receptor (VDR) typically binds DNA in a heterodimer complex with the retinoid X receptor (RXR) to direct repeat sequences separated by three base pairs, or vitamin D response elements (VDREs). A modified yeast one-hybrid screen was utilized to search for partner proteins capable of associating with the VDR on a repressor VDRE. Screening of a HeLa cell cDNA library revealed that retinoic acid receptor gamma 2 (RARgamma2) could specifically interact with VDREs, either in the presence or absence of the VDR. Importantly, the A-domain of RARgamma2 appeared to be crucial for this interaction as evidenced by the inability of RARgamma1 to affect reporter gene activity. Transfection data in COS-7 cells revealed the combination of both receptor ligands strongly attenuated transcriptional activation from an enhancer VDRE when RARgamma2 was co-transfected into these cells with the VDR. Furthermore, a VDR/RARgamma2 complex was detected in the mobility shift assay from nuclear extracts of transfected cells. Thus, the data highlight the novel ability of RARgamma2 to interact with VDREs and impact vitamin D activity, which would allow for additional fine-tuning of a transcriptional response depending on ligand availability and expression profile of these nuclear receptors in a given cell type.
Collapse
Affiliation(s)
- Nick J Koszewski
- University of Kentucky Medical Center, Division of Nephrology, Bone and Mineral Metabolism, 800 Rose Street, Lexington, KY 40536-0298, United States.
| | | | | |
Collapse
|
4
|
Dhawan P, Wieder R, Christakos S. CCAAT enhancer-binding protein alpha is a molecular target of 1,25-dihydroxyvitamin D3 in MCF-7 breast cancer cells. J Biol Chem 2009; 284:3086-3095. [PMID: 19054766 PMCID: PMC2631956 DOI: 10.1074/jbc.m803602200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 12/02/2008] [Indexed: 11/06/2022] Open
Abstract
Numerous studies have shown that the active form of vitamin D, 1,25(OH)(2)D(3), can exert growth inhibitory effects on human breast cancer cells and mammary tumor growth. However, the molecular mechanisms remain to be fully delineated. This study demonstrates for the first time that CCAAT enhancer-binding protein alpha (C/EBPalpha), a member of the C/EBP family of transcription factors, is induced by 1,25(OH)(2)D(3) and is a potent enhancer of VDR transcription in MCF-7 breast cancer cells. 1,25(OH)(2)D(3) was found to induce C/EBPalpha as well as VDR expression in MCF-7 cells. C/EBPalpha was not detected in MDA-MB-231 cells that are poorly responsive to 1,25(OH)(2)D(3). Antiproliferative effects of 1,25(OH)(2)D(3) and induction of VDR were observed in MDA-MB-231 cells transfected with C/EBPalpha, and knockdown of C/EBPalpha suppressed VDR and antiproliferative effects of 1,25(OH)(2)D(3) in MCF-7 cells. Transfection of C/EBPalpha in MCF-7 cells resulted in a dose-dependent enhancement of hVDR transcription. Our studies show that C/EBPalpha can bind to Brahma (Brm), an ATPase that is a component of the SWI/SNF complex, and cooperate with Brm in the regulation of hVDR transcription in MCF-7 cells. Because the levels of VDR in MCF-7 breast cancer cells correlate with the antiproliferative effects of 1,25(OH)(2)D(3) and because C/EBPalpha has been suggested as a potential tumor suppressor in breast cancer, these findings provide important mechanisms whereby 1,25(OH)(2)D(3) may act to inhibit growth of breast cancer cells. These findings also identify C/EBPalpha as a 1,25(OH)(2)D(3) target in breast cancer cells and provide evidence for C/EBPalpha as a candidate for breast cancer treatment.
Collapse
Affiliation(s)
- Puneet Dhawan
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103
| | - Robert Wieder
- Department of Medicine, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103
| | - Sylvia Christakos
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103.
| |
Collapse
|
5
|
Abstract
Thyroid hormone regulates cardiac metabolism through multiple mechanisms. Traditionally, most cardiac metabolic studies have focused on presumed transcriptional actions by defining thyroid hormone-induced changes in mRNA or protein levels. Recent studies have established metabolic pathways in heart that rapidly respond to thyroid hormone. Functions have also been implicated for thyroid hormone receptors, which are separate from their transcriptional actions. Finally, thyroid through ligand binding may play a direct role in transactivation of mitochondrial DNA. This review will explore these newly identified modes of thyroid action on metabolism in heart.
Collapse
Affiliation(s)
- Michael A Portman
- Department of Cardiology, Children's Hospital and Regional Medical Center, Department of Pediatrics, University of Washington, Seattle, Washington 98105, USA.
| |
Collapse
|
8
|
Chung I, Karpf AR, Muindi JR, Conroy JM, Nowak NJ, Johnson CS, Trump DL. Epigenetic silencing of CYP24 in tumor-derived endothelial cells contributes to selective growth inhibition by calcitriol. J Biol Chem 2007; 282:8704-14. [PMID: 17244627 DOI: 10.1074/jbc.m608894200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Calcitriol (1,25-dihydroxycholecalciferol), the most active form of vitamin D, has selective anti-proliferative effects on tumor-derived endothelial cells (TDEC) compared with Matrigel-derived endothelial cells (MDEC). Although both cell types have an intact vitamin D receptor-signaling axis, this study demonstrates that upon treatment with calcitriol, 24-hydroxylase (CYP24) mRNA, protein and enzymatic activity were markedly induced in MDEC in a time-dependent manner but not in TDEC. Furthermore, treatment of MDEC with a CYP24 small interfering RNA restored sensitivity to calcitriol. To investigate the lack of CYP24 induction in TDEC, we examined methylation patterns in the promoter regions of the CYP24 gene in these two cell types. We identified two putative CpG island regions located at the 5' end. Using methylation-specific PCR and bisulfite sequencing, we determined that these CpG islands were hypermethylated in TDEC but not in MDEC. These data may explain the recruitment of vitamin D receptor to the promoter region in MDEC but not TDEC, as revealed by chromatin immunoprecipitation analyses. Treatment of TDEC with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine restored calcitriol-mediated induction of CYP24, which led to loss of sensitivity to calcitriol growth inhibitory effects. CYP24 promoter hypermethylation was also observed in endothelial cells isolated from other tumors but not in endothelial cells isolated from normal mouse tissues. These observations indicate that the methylation status of the CYP24 promoter differs in endothelial cells isolated from different microenvironments (tumor versus normal) and that methylation silencing of CYP24 contributes to selective calcitriol-mediated growth inhibition in endothelial cells.
Collapse
Affiliation(s)
- Ivy Chung
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Christakos S, Dhawan P, Peng X, Obukhov AG, Nowycky MC, Benn BS, Zhong Y, Liu Y, Shen Q. New insights into the function and regulation of vitamin D target proteins. J Steroid Biochem Mol Biol 2007; 103:405-10. [PMID: 17257825 PMCID: PMC2859311 DOI: 10.1016/j.jsbmb.2006.12.079] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Calbindin-D(28k) has been reported to be a facilitator of calcium diffusion and to protect against apoptotic cell death. Most recently, we found that the presence of calbindin-D(28k) results in reduced calcium influx through voltage-dependent L-type Ca(2+) channels and enhanced sensitivity of the channels to calcium dependent inactivation. Co-immunoprecipitation and GST pull down assays indicate that calbindin-D(28k) interacts with the C-terminus of the L-type calcium channel alpha(1c) subunit (Ca(v)1.2). This is the first report of the binding of calbindin to a calcium channel and provides new insight concerning mechanisms by which calbindin acts to modulate intracellular calcium. Besides calbindin, another major target of 1,25(OH)(2)D(3) is 24(OH)ase, which is involved in the catabolism of 1,25(OH)(2)D(3). We reported that C/EBPbeta is a major transcriptional activator of 24(OH)ase that cooperates with CBP/p300 in regulating VDR mediated 24(OH)ase transcription. Recently, we found, in addition to p160 coactivators, that SWI/SNF complexes (that facilitate transcription by remodeling chromatin using the energy of ATP hydrolysis) are also involved in VDR mediated 24(OH)ase transcription and functionally cooperate with C/EBPbeta in regulating 24(OH)ase. These findings define novel mechanisms that may be of fundamental importance in understanding how 1,25(OH)(2)D(3) mediates its multiple biological effects.
Collapse
Affiliation(s)
- Sylvia Christakos
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Christakos S, Dhawan P, Shen Q, Peng X, Benn B, Zhong Y. New insights into the mechanisms involved in the pleiotropic actions of 1,25dihydroxyvitamin D3. Ann N Y Acad Sci 2006; 1068:194-203. [PMID: 16831919 DOI: 10.1196/annals.1346.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Vitamin D functions to regulate calcium homeostasis in intestine, kidney, and bone. Vitamin D deficiency during bone development causes rickets and in adults vitamin D deficiency, which has been shown to be common in the elderly population, can cause secondary hyperparathyroidism that can result in osteomalacia and increased risk of fracture. Recent evidence has suggested that vitamin D can have numerous other physiological functions including protection against certain autoimmune diseases, such as diabetes and multiple sclerosis and inhibition of proliferation of a number of malignant cells including breast and prostate cancer cells. Exactly how vitamin D affects numerous different systems is a subject of continuing investigation. This article will review new developments related to the function and regulation of vitamin D target proteins in classic vitamin D target tissues that have provided novel insight into the mechanism of vitamin D action.
Collapse
Affiliation(s)
- Sylvia Christakos
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Ave., Newark, NJ 07103, USA.
| | | | | | | | | | | |
Collapse
|