1
|
Li D, Wu Y, Shi K, Shao M, Duan Y, Yu M, Feng C. Untargeted metabolomics reveals the effect of rearing systems on bone quality parameters in chickens. Front Genet 2023; 13:1071562. [PMID: 36685899 PMCID: PMC9846032 DOI: 10.3389/fgene.2022.1071562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
The objective of this study was to investigate the effects of rearing systems on the bone quality parameters in chickens using a metabolomics strategy. A total of 419 male one-day-old chicks were randomly allocated to two groups, a floor rearing group (FRG, n = 173) and a cage rearing group (CRG, n = 246). At 6, 8, 10, and 12 weeks of age, all chickens were radiographed by a digital X-ray machine, and body weight was recorded. At 12 weeks of age, 12 birds were selected from each group to obtain tibia and femur, and bone quality parameters of bone mineral density (BMD), mineral content (BMC), breaking strength (BBS), stiffness, Young's modulus (YM), ash content, calcium content, and phosphorus content were determined. An untargeted metabolomics assay was performed to identify changes in the serum metabolic profile (n = 8 birds/group). The results showed that cage-reared chickens had wider tibiae and greater body weight compared with floor-reared chickens. There were no significant differences in BMC or BBS between the two groups (p > 0.05), but BMD, ash content, calcium content, and phosphorus content of the tibia and femur of FRG were significantly higher than those of CRG (p < 0.05). Greater stiffness and YM of the femur were also observed in birds raised in the FRG compared with those raised in the CRG (p < 0.05). Taken together, the results suggest that rearing systems affected bone quality parameters. Furthermore, 148 and 149 differential metabolites were identified in positive and negative ion modes by LC-MS/MS analysis, among which 257 metabolites were significantly correlated with 16 bone quality parameters, including leucine, myristoleic acid, glycocholic acid, and N-phenylacetamide. KEGG analysis indicated that 15 metabolic pathways, including six pathways of amino acid metabolism, two pathways of lipid metabolism, and two pathways of carbohydrate metabolism, were responsible for bone quality. Overall, the present study demonstrated the effect of rearing systems on bone quality parameters, and identified several metabolites and metabolic pathways associated with bone quality parameters.
Collapse
|
2
|
Johnsson M, Wall H, Lopes Pinto FA, Fleming RH, McCormack HA, Benavides-Reyes C, Dominguez-Gasca N, Sanchez-Rodriguez E, Dunn IC, Rodriguez-Navarro AB, Kindmark A, de Koning DJ. Genetics of tibia bone properties of crossbred commercial laying hens in different housing systems. G3 (BETHESDA, MD.) 2022; 13:6855652. [PMID: 36453438 PMCID: PMC9911068 DOI: 10.1093/g3journal/jkac302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/02/2021] [Accepted: 11/07/2022] [Indexed: 12/05/2022]
Abstract
Osteoporosis and bone fractures are a severe problem for the welfare of laying hens, with genetics and environment, such as housing system, each making substantial contributions to bone strength. In this work, we performed genetic analyses of bone strength, bone mineral density, and bone composition, as well as body weight, in 860 commercial crossbred laying hens from 2 different companies, kept in either furnished cages or floor pens. We compared bone traits between housing systems and crossbreds and performed a genome-wide association study of bone properties and body weight. As expected, the 2 housing systems produced a large difference in bone strength, with layers housed in floor pens having stronger bones. These differences were accompanied by differences in bone geometry, mineralization, and chemical composition. Genome scans either combining or independently analyzing the 2 housing systems revealed no genome-wide significant loci for bone breaking strength. We detected 3 loci for body weight that were shared between the housing systems on chromosomes 4, 6, and 27 (either genome-wide significant or suggestive) and these coincide with associations for bone length. In summary, we found substantial differences in bone strength, content, and composition between hens kept in floor pens and furnished cages that could be attributed to greater physical activity in pen housing. We found little evidence for large-effect loci for bone strength in commercial crossbred hens, consistent with a highly polygenic architecture for bone strength in the production environment. The lack of consistent genetic associations between housing systems in combination with the differences in bone phenotypes could be due to gene-by-environment interactions with housing system or a lack of power to detect shared associations for bone strength.
Collapse
Affiliation(s)
- Martin Johnsson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 756 51 Uppsala, Sweden
| | - Helena Wall
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Fernando A Lopes Pinto
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 756 51 Uppsala, Sweden
| | - Robert H Fleming
- The Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| | | | | | | | | | - Ian C Dunn
- The Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| | | | - Andreas Kindmark
- Department of Medical Sciences, Uppsala University, Akademiska sjukhuset, 751 85 Uppsala, Sweden
| | - Dirk-Jan de Koning
- Corresponding author. Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 750 07 Uppsala, Sweden.
| |
Collapse
|
3
|
Lv H, Wang T, Zhai S, Hou Z, Chen S. Dynamic transcriptome changes during osteogenic differentiation of bone marrow-derived mesenchymal stem cells isolated from chicken. Front Cell Dev Biol 2022; 10:940248. [PMID: 36120570 PMCID: PMC9478182 DOI: 10.3389/fcell.2022.940248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Osteoblasts are indispensable for skeletal growth and maintenance. Bone marrow-derived mesenchymal stem cells (BMSCs) are useful in studying osteogenesis. In this study, BMSCs isolated from White Leghorns were differentiated into osteoblasts in vitro. Cells induced for -1, 0, 1, 11, and 22 d were used for transcriptomic analyses using the HISAT2-Stringtie-DESeq2 pipeline. Weighted correlation network analysis was processed to investigate significant modules, including differentially expressed genes (DEGs), correlated with osteogenic differentiation. Gene ontology and pathway enrichment analyses of DEGs were performed to elucidate the mechanisms of osteoblast differentiation. A total of 534, 1,144, 1,077, and 337 DEGs were identified between cells induced for -1 and 0, 0 and 1, 1 and 11, and 11 and 22 d, respectively (|log2FC| > 1.0, FDR <0.05). DEGs were mainly enriched in pathways related to cell proliferation in the early stage of osteogenic differentiation and pathways, such as the TGF-β signaling pathway, in the middle and late stages of osteogenic differentiation. A protein–protein interaction network of the 87 DEGs in the MEturquoise module within top 5-%-degree value was built utilizing the STRING database. This study is the first to elucidate the transcriptomic changes in the osteogenic differentiation of BMSCs isolated from White Leghorns at different times. Our results provide insight into the dynamic transcriptome changes during BMSC differentiation into osteoblasts in chicken.
Collapse
|
4
|
Jansen S, Baulain U, Habig C, Ramzan F, Schauer J, Schmitt AO, Scholz AM, Sharifi AR, Weigend A, Weigend S. Identification and Functional Annotation of Genes Related to Bone Stability in Laying Hens Using Random Forests. Genes (Basel) 2021; 12:702. [PMID: 34066823 PMCID: PMC8151682 DOI: 10.3390/genes12050702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
Skeletal disorders, including fractures and osteoporosis, in laying hens cause major welfare and economic problems. Although genetics have been shown to play a key role in bone integrity, little is yet known about the underlying genetic architecture of the traits. This study aimed to identify genes associated with bone breaking strength and bone mineral density of the tibiotarsus and the humerus in laying hens. Potentially informative single nucleotide polymorphisms (SNP) were identified using Random Forests classification. We then searched for genes known to be related to bone stability in close proximity to the SNPs and identified 16 potential candidates. Some of them had human orthologues. Based on our findings, we can support the assumption that multiple genes determine bone strength, with each of them having a rather small effect, as illustrated by our SNP effect estimates. Furthermore, the enrichment analysis showed that some of these candidates are involved in metabolic pathways critical for bone integrity. In conclusion, the identified candidates represent genes that may play a role in the bone integrity of chickens. Although further studies are needed to determine causality, the genes reported here are promising in terms of alleviating bone disorders in laying hens.
Collapse
Affiliation(s)
- Simon Jansen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (U.B.); (C.H.); (J.S.); (A.W.); (S.W.)
| | - Ulrich Baulain
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (U.B.); (C.H.); (J.S.); (A.W.); (S.W.)
| | - Christin Habig
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (U.B.); (C.H.); (J.S.); (A.W.); (S.W.)
| | - Faisal Ramzan
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, 37075 Göttingen, Germany; (F.R.); (A.O.S.)
| | - Jens Schauer
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (U.B.); (C.H.); (J.S.); (A.W.); (S.W.)
| | - Armin Otto Schmitt
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, 37075 Göttingen, Germany; (F.R.); (A.O.S.)
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany;
| | - Armin Manfred Scholz
- Livestock Center of the Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, 85764 Oberschleissheim, Germany;
| | - Ahmad Reza Sharifi
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany;
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Göttingen, 37075 Göttingen, Germany
| | - Annett Weigend
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (U.B.); (C.H.); (J.S.); (A.W.); (S.W.)
| | - Steffen Weigend
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (U.B.); (C.H.); (J.S.); (A.W.); (S.W.)
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany;
| |
Collapse
|
5
|
De Koning DJ, Dominguez-Gasca N, Fleming RH, Gill A, Kurian D, Law A, McCormack HA, Morrice D, Sanchez-Rodriguez E, Rodriguez-Navarro AB, Preisinger R, Schmutz M, Šmídová V, Turner F, Wilson PW, Zhou R, Dunn IC. An eQTL in the cystathionine beta synthase gene is linked to osteoporosis in laying hens. Genet Sel Evol 2020; 52:13. [PMID: 32093603 PMCID: PMC7038551 DOI: 10.1186/s12711-020-00532-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Skeletal damage is a challenge for laying hens because the physiological adaptations required for egg laying make them susceptible to osteoporosis. Previously, we showed that genetic factors explain 40% of the variation in end of lay bone quality and we detected a quantitative trait locus (QTL) of large effect on chicken chromosome 1. The aim of this study was to combine data from the commercial founder White Leghorn population and the F2 mapping population to fine-map this QTL and understand its function in terms of gene expression and physiology. RESULTS Several single nucleotide polymorphisms on chromosome 1 between 104 and 110 Mb (galGal6) had highly significant associations with tibial breaking strength. The alternative genotypes of markers of large effect that flanked the region had tibial breaking strengths of 200.4 vs. 218.1 Newton (P < 0.002) and, in a subsequent founder generation, the higher breaking strength genotype was again associated with higher breaking strength. In a subsequent generation, cortical bone density and volume were increased in individuals with the better bone genotype but with significantly reduced medullary bone quality. The effects on cortical bone density were confirmed in a further generation and was accompanied by increased mineral maturity of the cortical bone as measured by infrared spectrometry and there was evidence of better collagen cross-linking in the cortical bone. Comparing the transcriptome of the tibia from individuals with good or poor bone quality genotypes indicated four differentially-expressed genes at the locus, one gene, cystathionine beta synthase (CBS), having a nine-fold higher expression in the genotype for low bone quality. The mechanism was cis-acting and although there was an amino-acid difference in the CBS protein between the genotypes, there was no difference in the activity of the enzyme. Plasma homocysteine concentration, the substrate of CBS, was higher in the poor bone quality genotype. CONCLUSIONS Validated markers that predict bone strength have been defined for selective breeding and a gene was identified that may suggest alternative ways to improve bone health in addition to genetic selection. The identification of how genetic variants affect different aspects of bone turnover shows potential for translational medicine.
Collapse
Affiliation(s)
| | | | - Robert H Fleming
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | - Andrew Gill
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK.,School of Chemistry, The University of Lincoln, Lincoln, LN6 7TS, England, UK
| | - Dominic Kurian
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | - Andrew Law
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | - Heather A McCormack
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | - David Morrice
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | | | | | | | | | - Veronica Šmídová
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK.,Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Frances Turner
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | - Peter W Wilson
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | - Rongyan Zhou
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK.,Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Ian C Dunn
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK.
| |
Collapse
|
6
|
Pagnotti GM, Styner M, Uzer G, Patel VS, Wright LE, Ness KK, Guise TA, Rubin J, Rubin CT. Combating osteoporosis and obesity with exercise: leveraging cell mechanosensitivity. Nat Rev Endocrinol 2019; 15:339-355. [PMID: 30814687 PMCID: PMC6520125 DOI: 10.1038/s41574-019-0170-1] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteoporosis, a condition of skeletal decline that undermines quality of life, is treated with pharmacological interventions that are associated with poor adherence and adverse effects. Complicating efforts to improve clinical outcomes, the incidence of obesity is increasing, predisposing the population to a range of musculoskeletal complications and metabolic disorders. Pharmacological management of obesity has yet to deliver notable reductions in weight and debilitating complications are rarely avoided. By contrast, exercise shows promise as a non-invasive and non-pharmacological method of regulating both osteoporosis and obesity. The principal components of exercise - mechanical signals - promote bone and muscle anabolism while limiting formation and expansion of fat mass. Mechanical regulation of bone and marrow fat might be achieved by regulating functions of differentiated cells in the skeletal tissue while biasing lineage selection of their common progenitors - mesenchymal stem cells. An inverse relationship between adipocyte versus osteoblast fate selection from stem cells is implicated in clinical conditions such as childhood obesity and increased marrow adiposity in type 2 diabetes mellitus, as well as contributing to skeletal frailty. Understanding how exercise-induced mechanical signals can be used to improve bone quality while decreasing fat mass and metabolic dysfunction should lead to new strategies to treat chronic diseases such as osteoporosis and obesity.
Collapse
Affiliation(s)
- Gabriel M Pagnotti
- School of Medicine, Division of Endocrinology, Indiana University, Indianapolis, IN, USA
| | - Maya Styner
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina, Chapel Hill, NC, USA
| | - Gunes Uzer
- College of Mechanical and Biomedical Engineering, Boise State University, Boise, ID, USA
| | - Vihitaben S Patel
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Laura E Wright
- School of Medicine, Division of Endocrinology, Indiana University, Indianapolis, IN, USA
| | - Kirsten K Ness
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Theresa A Guise
- School of Medicine, Division of Endocrinology, Indiana University, Indianapolis, IN, USA
| | - Janet Rubin
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina, Chapel Hill, NC, USA
| | - Clinton T Rubin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
7
|
Cosman MN, Britz HM, Rolian C. Selection for longer limbs in mice increases bone stiffness and brittleness, but does not alter bending strength. ACTA ACUST UNITED AC 2019; 222:jeb.203125. [PMID: 31043455 DOI: 10.1242/jeb.203125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/24/2019] [Indexed: 12/14/2022]
Abstract
The ability of a bone to withstand loads depends on its structural and material properties. These tend to differ among species with different modes of locomotion, reflecting their unique loading patterns. The evolution of derived limb morphologies, such as the long limbs associated with jumping, may compromise overall bone strength. We evaluated bone mechanical properties in the Longshanks mouse, which was selectively bred for increased tibia length relative to body mass. We combined analyses of 3D shape and cross-sectional geometry of the tibia, with mechanical testing and bone composition assays, to compare bone strength, elastic properties and mineral composition in Longshanks mice and randomly bred controls. Our data show that, despite being more slender, cortical geometry and predicted bending strength of the Longshanks tibia were similar to controls. In whole bone bending tests, measures of bone bending strength were similar across groups; however, Longshanks tibiae were significantly more rigid, more brittle, and required less than half the energy to fracture. Tissue-level elastic properties were also altered in Longshanks mice, but the bones did not differ from the control in water content, ash content or density. These results indicate that while Longshanks bones are as strong as control tibiae, selection for increased tibia length has altered its elastic properties, possibly through changes in organic bony matrix composition. We conclude that selection for certain limb morphologies, and/or selection for rapid skeletal growth, can lead to tissue-level changes that can increase the risk of skeletal fracture, which in turn may favor the correlated evolution of compensatory mechanisms to mitigate increased fracture risk, such as delayed skeletal maturity.
Collapse
Affiliation(s)
- Miranda N Cosman
- Department of Anthropology, University of Michigan, 101 West Hall 1085 S. University Ave, Ann Arbor, MI 48109, United States
| | - Hayley M Britz
- Department of Cell Biology and Anatomy, Cumming School or Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Campbell Rolian
- McCaig Institute for Bone and Joint Health, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada .,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| |
Collapse
|
8
|
Wang Y, Guo F, Qu H, Luo C, Wang J, Shu D. Associations between variants of bone morphogenetic protein 7 gene and growth traits in chickens. Br Poult Sci 2018; 59:264-269. [PMID: 29667421 DOI: 10.1080/00071668.2018.1454586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
1. Enhancing bone strength to solve leg disorders in poultry has become an important goal in broiler production. Bone morphogenetic protein 7 (BMP7), a member of the BMP family, represents an attractive therapeutic target for bone regeneration in humans and plays critical roles in skeletal development. 2. The objective of this study was to investigate the relationship between BMP7 gene expression, single-nucleotide polymorphisms (SNPs) and growth traits in chickens. Here, a SNP (c.1995T>C) in the chicken (Gallus gallus) BMP7 gene was identified, that was associated with growth and carcass traits. 3. Genotyping revealed that the T allele occurred more frequently in breeds with high growth rates, whereas the C allele was predominant in those with low growth rates. The expression level of BMP7 in the thigh bone of birds with the TT genotype was significantly higher than in those with the CC genotype at 21, 42 and 91 d of age. 4. These findings suggest that selecting the birds with the TT genotype of SNP c.1995T>C could improve bone growth, could reduce leg disorders in fast-growing birds. The SNP c.1995T>C may serve as a selective marker for improving bone growth and increasing the consistency of body weights in poultry breeding.
Collapse
Affiliation(s)
- Y Wang
- a Institute of Animal Science , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , China.,b State Key Laboratory of Livestock and Poultry Breeding & Guangdong Key Laboratory of Animal Breeding and Nutrition , Guangzhou 510640 , China
| | - F Guo
- a Institute of Animal Science , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , China.,b State Key Laboratory of Livestock and Poultry Breeding & Guangdong Key Laboratory of Animal Breeding and Nutrition , Guangzhou 510640 , China
| | - H Qu
- a Institute of Animal Science , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , China.,b State Key Laboratory of Livestock and Poultry Breeding & Guangdong Key Laboratory of Animal Breeding and Nutrition , Guangzhou 510640 , China
| | - C Luo
- a Institute of Animal Science , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , China.,b State Key Laboratory of Livestock and Poultry Breeding & Guangdong Key Laboratory of Animal Breeding and Nutrition , Guangzhou 510640 , China
| | - J Wang
- a Institute of Animal Science , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , China.,b State Key Laboratory of Livestock and Poultry Breeding & Guangdong Key Laboratory of Animal Breeding and Nutrition , Guangzhou 510640 , China
| | - D Shu
- a Institute of Animal Science , Guangdong Academy of Agricultural Sciences , Guangzhou 510640 , China.,b State Key Laboratory of Livestock and Poultry Breeding & Guangdong Key Laboratory of Animal Breeding and Nutrition , Guangzhou 510640 , China
| |
Collapse
|
9
|
Genetic architecture of bone quality variation in layer chickens revealed by a genome-wide association study. Sci Rep 2017; 7:45317. [PMID: 28383518 PMCID: PMC5382839 DOI: 10.1038/srep45317] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/23/2017] [Indexed: 11/15/2022] Open
Abstract
Skeletal problems in layer chickens are gaining attention due to animal welfare and economic losses in the egg industry. The genetic improvement of bone traits has been proposed as a potential solution to these issues; however, genetic architecture is not well understood. We conducted a genome-wide association study (GWAS) on bone quality using a sample of 1534 hens genotyped with a 600 K Chicken Genotyping Array. Using a linear mixed model approach, a novel locus close to GSG1L, associated with femur bone mineral density (BMD), was uncovered in this study. In addition, nine SNPs in genes were associated with bone quality. Three of these genes, RANKL, ADAMTS and SOST, were known to be associated with osteoporosis in humans, which makes them good candidate genes for osteoporosis in chickens. Genomic partitioning analysis supports the fact that common variants contribute to the variations of bone quality. We have identified several strong candidate genes and genomic regions associated with bone traits measured in end-of-lay cage layers, which accounted for 1.3–7.7% of the phenotypic variance. These SNPs could provide the relevant information to help elucidate which genes affect bone quality in chicken.
Collapse
|
10
|
Henriksen R, Johnsson M, Andersson L, Jensen P, Wright D. The domesticated brain: genetics of brain mass and brain structure in an avian species. Sci Rep 2016; 6:34031. [PMID: 27687864 PMCID: PMC5043184 DOI: 10.1038/srep34031] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/05/2016] [Indexed: 11/08/2022] Open
Abstract
As brain size usually increases with body size it has been assumed that the two are tightly constrained and evolutionary studies have therefore often been based on relative brain size (i.e. brain size proportional to body size) rather than absolute brain size. The process of domestication offers an excellent opportunity to disentangle the linkage between body and brain mass due to the extreme selection for increased body mass that has occurred. By breeding an intercross between domestic chicken and their wild progenitor, we address this relationship by simultaneously mapping the genes that control inter-population variation in brain mass and body mass. Loci controlling variation in brain mass and body mass have separate genetic architectures and are therefore not directly constrained. Genetic mapping of brain regions indicates that domestication has led to a larger body mass and to a lesser extent a larger absolute brain mass in chickens, mainly due to enlargement of the cerebellum. Domestication has traditionally been linked to brain mass regression, based on measurements of relative brain mass, which confounds the large body mass augmentation due to domestication. Our results refute this concept in the chicken.
Collapse
Affiliation(s)
- R. Henriksen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping 58183, Sweden
| | - M. Johnsson
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping 58183, Sweden
| | - L. Andersson
- Dept of Medical Biochemistry and Microbiology, Uppsala University, BMC, Husargatan 3, Uppsala 75123, Sweden
| | - P. Jensen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping 58183, Sweden
| | - D. Wright
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping 58183, Sweden
| |
Collapse
|
11
|
Mignon-Grasteau S, Chantry-Darmon C, Boscher MY, Sellier N, Chabault-Dhuit M, Le Bihan-Duval E, Narcy A. Genetic determinism of bone and mineral metabolism in meat-type chickens: A QTL mapping study. Bone Rep 2016; 5:43-50. [PMID: 28326346 PMCID: PMC4926819 DOI: 10.1016/j.bonr.2016.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/09/2016] [Accepted: 02/24/2016] [Indexed: 01/01/2023] Open
Abstract
Skeletal integrity in meat-type chickens is affected by many factors including rapid growth rate, nutrition and genetics. To investigate the genetic basis of bone and mineral metabolism, a QTL detection study was conducted in an intercross between two lines of meat-type chickens divergently selected for their high (D +) or low (D -) digestive efficiency. Tibia size (length, diameter, volume) and ash content were determined at 3 weeks of age as well as phosphorus (P) retention and plasma concentration. Heritability of these traits and their genetic correlations with digestive efficiency were estimated. A QTL mapping study was performed using 3379 SNP markers. Tibia size, weight, ash content and breaking strength were highly heritable (0.42 to 0.61). Relative tibia diameter and volume as well as P retention were strongly and positively genetically correlated with digestive efficiency (0.57 to 0.80). A total of 35 QTL were identified (9 for tibia weight, 13 for tibia size, 5 for bone strength, 5 for bone mineralization, 2 for plasma P concentration and 1 for P retention). Six QTL were genome-wide significant, and 3 QTL for tibia relative volume, weight and ash weight on chromosome 6 were fixed, the positive allele coming from the D-line. For two QTL for ash content on chromosome 18 and relative tibia length on chromosome 26, the confidence intervals were small enough to identify potential candidate genes. These findings support the evidence of multiple genetic loci controlling bone and mineral metabolism. The identification of candidate genes may provide new perspectives in the understanding of bone regulation, even beyond avian species.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Agnès Narcy
- INRA, UR83 Recherches Avicoles, F-37380 Nouzilly, France
| |
Collapse
|
12
|
Packialakshmi B, Rath NC, Huff WE, Huff GR. Poultry Femoral Head Separation and Necrosis: A Review. Avian Dis 2015; 59:349-54. [PMID: 26478152 DOI: 10.1637/11082-040715-review.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Femoral head separation (FHS) is a degenerative skeletal problem in fast-growing poultry wherein the growth plate of the proximal femur separates from its articular cartilage. At its early phase, FHS may remain asymptomatic but lead to epiphyseal breakage, infection, and femoral head necrosis (FHN). Healthy femoral head is viewed as a positive trait for genetic selection. However, the etiology of FHS is poorly understood for use in noninvasive diagnosis and genetic selection. Focal cell death and atrophic changes are likely associated with separation of tissues and necrotic changes. Fibrotic thickening of the articular surface can also impair free movement of the proximal epiphysis in the acetabulum, leading to FHS, under strain. The major limitation to understanding the pathophysiology of FHN is the lack of suitable experimental models and biomarkers to diagnose the problem. In this review, we discuss the possible etiologic factors, anatomic features of the chicken femoral head, biomarkers, and molecular mechanisms relevant to FHN.
Collapse
|
13
|
Wright D. The Genetic Architecture of Domestication in Animals. Bioinform Biol Insights 2015; 9:11-20. [PMID: 26512200 PMCID: PMC4603525 DOI: 10.4137/bbi.s28902] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 12/12/2022] Open
Abstract
Domestication has been essential to the progress of human civilization, and the process itself has fascinated biologists for hundreds of years. Domestication has led to a series of remarkable changes in a variety of plants and animals, in what is termed the “domestication phenotype.” In domesticated animals, this general phenotype typically consists of similar changes in tameness, behavior, size/morphology, color, brain composition, and adrenal gland size. This domestication phenotype is seen in a range of different animals. However, the genetic basis of these associated changes is still puzzling. The genes for these different traits tend to be grouped together in clusters in the genome, though it is still not clear whether these clusters represent pleiotropic effects, or are in fact linked clusters. This review focuses on what is currently known about the genetic architecture of domesticated animal species, if genes of large effect (often referred to as major genes) are prevalent in driving the domestication phenotype, and whether pleiotropy can explain the loci underpinning these diverse traits being colocated.
Collapse
Affiliation(s)
- Dominic Wright
- IFM Biology, AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| |
Collapse
|
14
|
Genetic regulation of bone strength: a review of animal model studies. BONEKEY REPORTS 2015; 4:714. [PMID: 26157577 DOI: 10.1038/bonekey.2015.83] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 04/16/2015] [Indexed: 12/24/2022]
Abstract
Population- and family-based studies have established that fragility fracture risk is heritable; yet, the genome-wide association studies published to date have only accounted for a small fraction of the known variation for fracture risk of either the femur or the lumbar spine. Much work has been carried out using animal models toward finding genetic loci that are associated with bone strength. Studies using animal models overcome some of the issues associated with using patient data, but caution is needed when interpreting the results. In this review, we examine the types of tests that have been used for forward genetics mapping in animal models to identify loci and/or genes that regulate bone strength and discuss the limitations of these test methods. In addition, we present a summary of the quantitative trait loci that have been mapped for bone strength in mice, rats and chickens. The majority of these loci co-map with loci for bone size and/or geometry and thus likely dictate strength via modulating bone size. Differences in bone matrix composition have been demonstrated when comparing inbred strains of mice, and these matrix differences may be associated with differences in bone strength. However, additional work is needed to identify loci that act on bone strength at the materials level.
Collapse
|
15
|
Johnsson M, Jonsson KB, Andersson L, Jensen P, Wright D. Genetic regulation of bone metabolism in the chicken: similarities and differences to Mammalian systems. PLoS Genet 2015; 11:e1005250. [PMID: 26023928 PMCID: PMC4449198 DOI: 10.1371/journal.pgen.1005250] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/28/2015] [Indexed: 11/19/2022] Open
Abstract
Birds have a unique bone physiology, due to the demands placed on them through egg production. In particular their medullary bone serves as a source of calcium for eggshell production during lay and undergoes continuous and rapid remodelling. We take advantage of the fact that bone traits have diverged massively during chicken domestication to map the genetic basis of bone metabolism in the chicken. We performed a quantitative trait locus (QTL) and expression QTL (eQTL) mapping study in an advanced intercross based on Red Junglefowl (the wild progenitor of the modern domestic chicken) and White Leghorn chickens. We measured femoral bone traits in 456 chickens by peripheral computerised tomography and femoral gene expression in a subset of 125 females from the cross with microarrays. This resulted in 25 loci for female bone traits, 26 loci for male bone traits and 6318 local eQTL loci. We then overlapped bone and gene expression loci, before checking for an association between gene expression and trait values to identify candidate quantitative trait genes for bone traits. A handful of our candidates have been previously associated with bone traits in mice, but our results also implicate unexpected and largely unknown genes in bone metabolism. In summary, by utilising the unique bone metabolism of an avian species, we have identified a number of candidate genes affecting bone allocation and metabolism. These findings can have ramifications not only for the understanding of bone metabolism genetics in general, but could also be used as a potential model for osteoporosis as well as revealing new aspects of vertebrate bone regulation or features that distinguish avian and mammalian bone. In this work we seek to further the understanding of bone genetics by mapping bone traits and gene expression in the chicken. Bone in female birds is special due to egg production. In this study, we combine the genetic mapping of bone traits with bone gene expression to find candidate quantitative trait genes that explain the differences between wild and domestic chickens in terms of bone production. The concept of combining genetic mapping and gene expression mapping is not new, and has already been successful in isolating bone-related genes in mammals, however this is the first time it has been applied to an avian system with such unique bone modelling processes. We aim to reveal new molecular mechanisms of bone regulation, and many of the candidates we find are new, highlighting the potential this technique has to identify the potential differences between avian and mammalian bone biology.
Collapse
Affiliation(s)
- Martin Johnsson
- AVIAN Behavioural Genomics and Physiology group, IFM Biology, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Kenneth B. Jonsson
- Department of Surgical Sciences, Orthopaedics, Akademiska Sjukhuset, Uppsala University, Uppsala, Sweden
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden
| | - Per Jensen
- AVIAN Behavioural Genomics and Physiology group, IFM Biology, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Dominic Wright
- AVIAN Behavioural Genomics and Physiology group, IFM Biology, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
16
|
Gheyas AA, Boschiero C, Eory L, Ralph H, Kuo R, Woolliams JA, Burt DW. Functional classification of 15 million SNPs detected from diverse chicken populations. DNA Res 2015; 22:205-17. [PMID: 25926514 PMCID: PMC4463845 DOI: 10.1093/dnares/dsv005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/20/2015] [Indexed: 12/11/2022] Open
Abstract
Next-generation sequencing has prompted a surge of discovery of millions of genetic variants from vertebrate genomes. Besides applications in genetic association and linkage studies, a fraction of these variants will have functional consequences. This study describes detection and characterization of 15 million SNPs from chicken genome with the goal to predict variants with potential functional implications (pfVars) from both coding and non-coding regions. The study reports: 183K amino acid-altering SNPs of which 48% predicted as evolutionary intolerant, 13K splicing variants, 51K likely to alter RNA secondary structures, 500K within most conserved elements and 3K from non-coding RNAs. Regions of local fixation within commercial broiler and layer lines were investigated as potential selective sweeps using genome-wide SNP data. Relationships with phenotypes, if any, of the pfVars were explored by overlaying the sweep regions with known QTLs. Based on this, the candidate genes and/or causal mutations for a number of important traits are discussed. Although the fixed variants within sweep regions were enriched with non-coding SNPs, some non-synonymous-intolerant mutations reached fixation, suggesting their possible adaptive advantage. The results presented in this study are expected to have important implications for future genomic research to identify candidate causal mutations and in poultry breeding.
Collapse
Affiliation(s)
- Almas A Gheyas
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Clarissa Boschiero
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Lel Eory
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Hannah Ralph
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Richard Kuo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - John A Woolliams
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - David W Burt
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| |
Collapse
|
17
|
Johnsson M, Rubin CJ, Höglund A, Sahlqvist AS, Jonsson KB, Kerje S, Ekwall O, Kämpe O, Andersson L, Jensen P, Wright D. The role of pleiotropy and linkage in genes affecting a sexual ornament and bone allocation in the chicken. Mol Ecol 2014; 23:2275-86. [DOI: 10.1111/mec.12723] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 12/18/2022]
Affiliation(s)
- M. Johnsson
- IFM Biologi; AVIAN Behavioural Genomics and Physiology group; Linköping University; SE-58183 Linköping Sweden
| | - C.-J. Rubin
- Department of Medical Biochemistry and Microbiology; Uppsala University; PO Box 582 SE-751 23 Uppsala Sweden
| | - A. Höglund
- IFM Biologi; AVIAN Behavioural Genomics and Physiology group; Linköping University; SE-58183 Linköping Sweden
| | - A.-S. Sahlqvist
- Research group of Autoimmunity; Akademiska Sjukhuset; Uppsala University; 751 85 Uppsala Sweden
| | - K. B. Jonsson
- Department of Surgical Sciences, Orthopaedics; Akademiska Sjukhuset; Uppsala University; 751 85 Uppsala Sweden
| | - S. Kerje
- Research group of Autoimmunity; Akademiska Sjukhuset; Uppsala University; 751 85 Uppsala Sweden
| | - O. Ekwall
- Research group of Autoimmunity; Akademiska Sjukhuset; Uppsala University; 751 85 Uppsala Sweden
- Rheumatology and Inflammation Research; Institute of Medicine; Sahlgrenska Academy; Guldhedsgatan 10A SE-413 46 Gothenburg Sweden
| | - O. Kämpe
- Research group of Autoimmunity; Akademiska Sjukhuset; Uppsala University; 751 85 Uppsala Sweden
| | - L. Andersson
- Department of Medical Biochemistry and Microbiology; Uppsala University; PO Box 582 SE-751 23 Uppsala Sweden
| | - P. Jensen
- IFM Biologi; AVIAN Behavioural Genomics and Physiology group; Linköping University; SE-58183 Linköping Sweden
| | - D. Wright
- IFM Biologi; AVIAN Behavioural Genomics and Physiology group; Linköping University; SE-58183 Linköping Sweden
| |
Collapse
|
18
|
Podisi BK, Knott SA, Dunn IC, Burt DW, Hocking PM. Bone mineral density QTL at sexual maturity and end of lay. Br Poult Sci 2013; 53:763-9. [PMID: 23398420 DOI: 10.1080/00071668.2012.747674] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
1. An F₂ cross of a broiler male line and a White Leghorn layer line was used to identify quantitative trait loci (QTL) for bone density at the onset of lay and at the end of the laying period. A total of 686 measures of humeral bone density were available for analysis. 2. There was no evidence for epistasis. 3. Genome-wide significant QTL for bone density at the onset of lay were identified on chromosomes 1 (311 cM) and 8 (2 cM) and on chromosomes 1 (311 cM), 3 (57 cM) and 8 (2 cM) with a covariate for the number of yellow follicles (a proxy for the concentration of circulating oestrogen). 4. Evidence for only 4 chromosome-wide suggestive QTL were detected at the end of lay (72 weeks). 5. Analysis of the combined data confirmed two genome-wide suggestive QTL on chromosome 1 (137 and 266 cM) and on chromosomes 8 (2 cM) and 9 (10 cM) in analyses with or without the covariate. 6. Positive QTL alleles came from the broiler line with the exception of 2 suggestive QTL at the onset of lay on chromosomes 3 and 5 in an analysis with the covariate. 7. In general, QTL acted additively, except that dominant effects were identified for three suggestive QTL at the onset of lay on chromosomes 3 (57 and 187 cM) and 5 (9 cM). 8. The significant QTL in this study were at similar locations to QTL identified in a range of crosses in other publications, suggesting that they are prime candidates for the search for genes and mutations that could be used as selection criteria to improve bone strength and decrease fractures in commercial laying hens.
Collapse
Affiliation(s)
- B K Podisi
- Department of Agricultural Research, P/Bag 0033, Gaborone, Botswana
| | | | | | | | | |
Collapse
|
19
|
Johnsson M, Gustafson I, Rubin CJ, Sahlqvist AS, Jonsson KB, Kerje S, Ekwall O, Kämpe O, Andersson L, Jensen P, Wright D. A sexual ornament in chickens is affected by pleiotropic alleles at HAO1 and BMP2, selected during domestication. PLoS Genet 2012; 8:e1002914. [PMID: 22956912 PMCID: PMC3431302 DOI: 10.1371/journal.pgen.1002914] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 07/05/2012] [Indexed: 12/03/2022] Open
Abstract
Domestication is one of the strongest forms of short-term, directional selection. Although selection is typically only exerted on one or a few target traits, domestication can lead to numerous changes in many seemingly unrelated phenotypes. It is unknown whether such correlated responses are due to pleiotropy or linkage between separate genetic architectures. Using three separate intercrosses between wild and domestic chickens, a locus affecting comb mass (a sexual ornament in the chicken) and several fitness traits (primarily medullary bone allocation and fecundity) was identified. This locus contains two tightly-linked genes, BMP2 and HAO1, which together produce the range of pleiotropic effects seen. This study demonstrates the importance of pleiotropy (or extremely close linkage) in domestication. The nature of this pleiotropy also provides insights into how this sexual ornament could be maintained in wild populations. The genetic analysis of phenotypes and the identification of the causative underlying genes remain central to molecular and evolutionary biology. By utilizing the domestication process, it is possible to exploit the large differences between domesticated animals and their wild counterparts to study both this and the mechanism of domestication itself. Domestication has been central to the advent of modern civilization; and yet, despite domesticated animals displaying similar adaptations in morphology, physiology, and behaviour, the genetic basis of these changes are unknown. In addition, though sexual selection theory has been the subject of a vast amount of study, very little is known about which genes are underpinning such traits. We have generated multiple intercrosses and advanced intercrosses based on wild-derived and domestic chickens to fine-map genomic regions affecting a sexual ornament. These regions have been over-laid with putative selective sweeps identified in domestic chickens and found to be significantly associated with them. By using expression QTL analysis, we show that two genes in one region, HAO1 and BMP2, are controlling multiple aspects of the domestication phenotype, from a sexual ornament to multiple life history traits. This demonstrates the importance of pleiotropy (or extremely close linkage) in controlling these genetic changes.
Collapse
Affiliation(s)
- Martin Johnsson
- IFM Biology, AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| | - Ida Gustafson
- IFM Biology, AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| | - Carl-Johan Rubin
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden
| | - Anna-Stina Sahlqvist
- Department of Medical Sciences, The Research Group of Autoimmunity, Akademiska Sjukhuset, Uppsala University, Uppsala, Sweden
| | - Kenneth B. Jonsson
- Department of Surgical Sciences, Orthopaedics, Akademiska Sjukhuset, Uppsala University, Uppsala, Sweden
| | - Susanne Kerje
- Department of Medical Sciences, The Research Group of Autoimmunity, Akademiska Sjukhuset, Uppsala University, Uppsala, Sweden
| | - Olov Ekwall
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, Gothenburg, Sweden
| | - Olle Kämpe
- Department of Medical Sciences, The Research Group of Autoimmunity, Akademiska Sjukhuset, Uppsala University, Uppsala, Sweden
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, Uppsala, Sweden
| | - Per Jensen
- IFM Biology, AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| | - Dominic Wright
- IFM Biology, AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
20
|
Wright D, Rubin C, Schutz K, Kerje S, Kindmark A, Brandström H, Andersson L, Pizzari T, Jensen P. Onset of sexual maturity in female chickens is genetically linked to loci associated with fecundity and a sexual ornament. Reprod Domest Anim 2012; 47 Suppl 1:31-6. [PMID: 22212210 DOI: 10.1111/j.1439-0531.2011.01963.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Onset of sexual maturation is a trait of extreme importance both evolutionarily and economically. Unsurprisingly therefore, domestication has acted to reduce the time to sexual maturation in a variety of animals, including the chicken. In comparison with wild progenitor chickens [the Red Junglefowl (RJF)], domestic layer hens attain maturity approximately 20% earlier. In addition, domestic layers also possess larger combs (a sexual ornament), produce more eggs and have denser bones. A large quantitative trait loci (QTL) analysis (n=377) was performed using an F(2) intercross between a White Leghorn layer breed and a RJF population, with onset of sexual maturity measured and mapped to three separate loci. This cross has already been analysed for comb mass, egg production and bone allocation. Onset of sexual maturity significantly correlated with comb mass, whilst the genetic architecture for sexual maturity and comb mass overlapped at all three loci. For two of these loci, the QTL for sexual maturity and comb mass were statistically indistinguishable from pleiotropy, suggesting that the alleles that increase comb mass also decrease onset of sexual maturity.
Collapse
Affiliation(s)
- D Wright
- IFM Biology, AVIAN Behaviour Genomics and Physiology Group, Linköping University, Linköping, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nones K, Ledur MC, Zanella EL, Klein C, Pinto LFB, Moura ASAMT, Ruy DC, Baron EE, Ambo M, Campos RLR, Boschiero C, Burt DW, Coutinho LL. Quantitative trait loci associated with chemical composition of the chicken carcass. Anim Genet 2012; 43:570-6. [PMID: 22497237 DOI: 10.1111/j.1365-2052.2012.02321.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2011] [Indexed: 11/29/2022]
Abstract
Major objectives of the poultry industry are to increase meat production and to reduce carcass fatness, mainly abdominal fat. Information on growth performance and carcass composition are important for the selection of leaner meat chickens. To enhance our understanding of the genetic architecture underlying the chemical composition of chicken carcasses, an F(2) population developed from a broiler × layer cross was used to map quantitative trait loci (QTL) affecting protein, fat, water and ash contents in chicken carcasses. Two genetic models were applied in the QTL analysis: the line-cross and the half-sib models, both using the regression interval mapping method. Six significant and five suggestive QTL were mapped in the line-cross analysis, and four significant and six suggestive QTL were mapped in the half-sib analysis. A total of eleven QTL were mapped for fat (ether extract), five for protein, four for ash and one for water contents in the carcass using both analyses. No study to date has reported QTL for carcass chemical composition in chickens. Some QTL mapped here for carcass fat content match, as expected, QTL regions previously associated with abdominal fat in the same or in different populations, and novel QTL for protein, ash and water contents in the carcass are presented here. The results described here also reinforce the need for fine mapping and to perform multi-trait analyses to better understand the genetic architecture of these traits.
Collapse
Affiliation(s)
- K Nones
- Departamento de Zootecnia, USP/ESALQ, C.P. 09, Piracicaba, SP, 13418-900, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
WRIGHT D, RUBIN CJ, MARTINEZ BARRIO A, SCHÜTZ K, KERJE S, BRÄNDSTRÖM H, KINDMARK A, JENSEN P, ANDERSSON L. The genetic architecture of domestication in the chicken: effects of pleiotropy and linkage. Mol Ecol 2010; 19:5140-56. [DOI: 10.1111/j.1365-294x.2010.04882.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Jepsen KJ, Courtland HW, Nadeau JH. Genetically determined phenotype covariation networks control bone strength. J Bone Miner Res 2010; 25:1581-93. [PMID: 20200957 PMCID: PMC3154000 DOI: 10.1002/jbmr.41] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 08/26/2009] [Accepted: 01/12/2010] [Indexed: 12/31/2022]
Abstract
To identify genes affecting bone strength, we studied how genetic variants regulate components of a phenotypic covariation network that was previously shown to accurately characterize the compensatory trait interactions involved in functional adaptation during growth. Quantitative trait loci (QTLs) regulating femoral robustness, morphologic compensation, and mineralization (tissue quality) were mapped at three ages during growth using AXB/BXA Recombinant Inbred (RI) mouse strains and adult B6-i(A) Chromosome Substitution Strains (CSS). QTLs for robustness were identified on chromosomes 8, 12, 18, and 19 and confirmed at all three ages, indicating that genetic variants established robustness postnatally without further modification. A QTL for morphologic compensation, which was measured as the relationship between cortical area and body weight, was identified on chromosome 8. This QTL limited the amount of bone formed during growth and thus acted as a setpoint for diaphyseal bone mass. Additional QTLs were identified from the CSS analysis. QTLs for robustness and morphologic compensation regulated bone structure independently (ie, in a nonpleiotropic manner), indicating that each trait may be targeted separately to individualize treatments aiming to improve strength. Multiple regression analyses showed that variation in morphologic compensation and tissue quality, not bone size, determined femoral strength relative to body weight. Thus an individual inheriting slender bones will not necessarily inherit weak bones unless the individual also inherits a gene that impairs compensation. This systems genetic analysis showed that genetically determined phenotype covariation networks control bone strength, suggesting that incorporating functional adaptation into genetic analyses will advance our understanding of the genetic basis of bone strength.
Collapse
Affiliation(s)
- Karl J Jepsen
- Leni and Peter W May Department of Orthopaedics, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|
24
|
Lewis PD, Danisman R, Gous RM. Photoperiodic responses of broilers. III. Tibial breaking strength and ash content. Br Poult Sci 2010; 50:673-9. [PMID: 19946820 DOI: 10.1080/00071660903365612] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
1. A total of 7960 Cobb and Ross broiler males were reared on various photoperiods or continuous illumination in two trials to 35 or 40 d. Tibial breaking strength was measured in both, and tibial ash content determined in the first of the two trials. 2. Tibial breaking strength was significantly affected by photoperiod, body weight, testicular weight, and genotype. Although peak bone strength occurred at about 7 h for Ross and at 12 h for Cobb, with reductions in strength for both shorter and longer photoperiods than these peaks, the removal of body weight effects showed that tibial breaking strength was negatively correlated with photoperiod per se. However, after removal of photoperiodic influences, breaking strength was positively correlated with both body weight and testicular weight. 3. Ross birds had greater tibial breaking strengths than Cobb, irrespective of whether the comparisons were made at the same photoperiod, the same body weight, or the same ash content. 4. Ash content increased according to the logarithm of photoperiod, but was unrelated to body weight. Tibial breaking strength increased with ash content. Ash contents were similar for Ross and Cobb birds. 5. Despite the significant differences in breaking strength and ash content, there were no broken bones or signs of leg abnormality in any of the 300 birds sampled. Tibial breaking strength data may therefore be of limited value in assessing the benefits of photoperiod to welfare in modern broilers.
Collapse
Affiliation(s)
- P D Lewis
- Animal and Poultry Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
| | | | | |
Collapse
|
25
|
Karlsson AC, Kerje S, Hallböök F, Jensen P. The Dominant white mutation in the PMEL17 gene does not cause visual impairment in chickens. Vet Ophthalmol 2009; 12:292-8. [PMID: 19751488 DOI: 10.1111/j.1463-5224.2009.00714.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To examine whether the Dominant white mutation (causing a hypopigmented phenotype in chicken) affects the visual ability and gives rise to ocular abnormalities in chickens (Gallus gallus). PROCEDURE Chickens homozygous for either the Dominant white mutation or the wild-type alleles were tested in a visual contrast behavioral test and subjected to histological and ophthalmologic examination. RESULTS There were no differences between the genotypes in the visual contrast behavioral test, and there were no abnormal structures among the Dominant white chickens in the ophthalmic examination. The histological sections from the Dominant white chickens did not differ from the wild-type chicken in structure, photoreceptor density, or RPE pigmentation. CONCLUSIONS The results indicate that the Dominant white mutation in PMEL17 does not seem to affect the visual ability or eye structures in chickens.
Collapse
Affiliation(s)
- Anna-Carin Karlsson
- IFM Biology, Division of Zoology, Linköping University, SE-581 83 Linköping, Sweden
| | | | | | | |
Collapse
|
26
|
Mao H, Guo Y, Yang G, Yang B, Ren J, Liu S, Ai H, Ma J, Brenig B, Huang L. A genome-wide scan for quantitative trait loci affecting limb bone lengths and areal bone mineral density of the distal femur in a White Duroc x Erhualian F2 population. BMC Genet 2008; 9:63. [PMID: 18840302 PMCID: PMC2613148 DOI: 10.1186/1471-2156-9-63] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 10/08/2008] [Indexed: 11/21/2022] Open
Abstract
Background Limb bone lengths and bone mineral density (BMD) have been used to assess the bone growth and the risk of bone fractures in pigs, respectively. It has been suggested that limb bone lengths and BMD are under genetic control. However, the knowledge about the genetic basis of the limb bone lengths and mineralisatinon is limited in pigs. The aim of this study was to identify quantitative trait loci (QTL) affecting limb bone lengths and BMD of the distal femur in a White Duroc × Erhualian resource population. Results Limb bone lengths and femoral bone mineral density (fBMD) were measured in a total of 1021 and 116 F2 animals, respectively. There were strong positive correlations among the lengths of limb bones and medium positive correlations between the lengths of limb bones and fBMD. A whole-genome scan involving 183 microsatellite markers across the pig genome revealed 35 QTL for the limb bone lengths and 2 for femoral BMD. The most significant QTL for the lengths of five limb bones were mapped on two chromosomes affecting all 5 limb bones traits. One was detected around 57 cM on pig chromosome (SSC) 7 with the largest F-value of more than 26 and 95% confidence intervals of less than 5 cM, providing a crucial start point to identify the causal genes for these traits. The Erhualian alleles were associated with longer limb bones. The other was located on SSCX with a peak at 50–53 cM, whereas alleles from the White Duroc breed increased the bone length. Many QTL identified are homologous to the human genomic regions containing QTL for bone-related traits and a list of interesting candidate genes. Conclusion This study detected the QTL for the lengths of scapula, ulna, humerus and tibia and fBMD in the pig for the first time. Moreover, several new QTL for the pig femoral length were found. As correlated traits, QTL for the lengths of five limb bones were mainly located in the same genomic regions. The most promising QTL for the lengths of five limb bones on SSC7 merits further investigation.
Collapse
Affiliation(s)
- Huirong Mao
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang 330045, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dissection of the genetic architecture of body weight in chicken reveals the impact of epistasis on domestication traits. Genetics 2008; 179:1591-9. [PMID: 18622035 DOI: 10.1534/genetics.108.089300] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this contribution, we study the genetic mechanisms leading to differences in the observed growth patterns of domesticated White Leghorn chickens and their wild ancestor the red jungle fowl. An epistatic QTL analysis for several body-weight measures from hatch to adulthood confirms earlier findings that polymorphisms at >15 loci contribute to body-weight determination in an F(2) intercross between these populations and that many loci are involved in complex genetic interactions. Here, we use a new genetic model to decompose the genetic effects of this multilocus epistatic genetic network. The results show how the functional modeling of genetic effects provides new insights into how genetic interactions in a large set of loci jointly contribute to phenotypic expression. By exploring the functional effects of QTL alleles, we show that some alleles can display temporal shifts in the expression of genetic effects due to their dependencies on the genetic background. Our results demonstrate that the effects of many genes are dependent on genetic interactions with other loci and how their involvement in the domestication process relies on these interactions.
Collapse
|
28
|
Identification of quantitative trait loci affecting murine long bone length in a two-generation intercross of LG/J and SM/J Mice. J Bone Miner Res 2008; 23:887-95. [PMID: 18435578 PMCID: PMC2677087 DOI: 10.1359/jbmr.080210] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Study of mutations with large phenotypic effects has allowed the identification of key players in skeletal development. However, the molecular nature of variation in large, phenotypically normal populations tends to be characterized by smaller phenotypic effects that remain undefined. MATERIALS AND METHODS We use interval mapping and quantitative trait locus (QTL) mapping techniques in the combined F2-F3 populations (n = 2111) of an LG/J x SM/J mouse intercross to detect QTLs associated with the lengths of the humerus, ulna, femur, and tibia. RESULTS Seventy individual trait QTLs affecting long bone lengths were detected, with several chromosomes harboring multiple QTLs. The genetic architecture suggests mainly small, additive effects on long bone length, with roughly one third of the QTLs displaying dominance. Sex interactions were common, and four sex-specific QTLs were observed. Pleiotropy could not be rejected for most of the QTLs identified. Thirty-one epistatic interactions were detected, almost all affecting regions including or immediately adjacent to QTLs. CONCLUSIONS A complex regulatory network with many gene interactions modulates bone growth, possibly with integrated skeletal modules that allow fine-tuning of developmental processes present. Candidate genes in the QTL CIs include many genes known to affect endochondral bone growth and genes that have not yet been associated with bone growth or body size but have a strong potential to influence these traits.
Collapse
|
29
|
Identification of the yellow skin gene reveals a hybrid origin of the domestic chicken. PLoS Genet 2008; 4:e1000010. [PMID: 18454198 PMCID: PMC2265484 DOI: 10.1371/journal.pgen.1000010] [Citation(s) in RCA: 305] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 01/23/2008] [Indexed: 11/23/2022] Open
Abstract
Yellow skin is an abundant phenotype among domestic chickens and is caused by a recessive allele (W*Y) that allows deposition of yellow carotenoids in the skin. Here we show that yellow skin is caused by one or more cis-acting and tissue-specific regulatory mutation(s) that inhibit expression of BCDO2 (beta-carotene dioxygenase 2) in skin. Our data imply that carotenoids are taken up from the circulation in both genotypes but are degraded by BCDO2 in skin from animals carrying the white skin allele (W*W). Surprisingly, our results demonstrate that yellow skin does not originate from the red junglefowl (Gallus gallus), the presumed sole wild ancestor of the domestic chicken, but most likely from the closely related grey junglefowl (Gallus sonneratii). This is the first conclusive evidence for a hybrid origin of the domestic chicken, and it has important implications for our views of the domestication process. Many bird species possess yellow skin and legs whereas other species have white or black skin color. Yellow or white skin is due to the presence or absence of carotenoids. The genetic basis underlying this diversity is unknown. Domestic chickens with yellow skin are homozygous for a recessive allele, and white skinned chickens carry the dominant allele. As a result, chickens represent an ideal model for analyzing genetic mechanism responsible for skin color variation. In this study we demonstrate that yellow skin is caused by regulatory mutation(s) that inhibit expression of the beta-carotene dioxygenase 2 (BCDO2) enzyme in skin, but not in other tissues. Because BCDO2 cleaves colorful carotenoids into colorless apocarotenoids, a reduction in expression of this gene produces yellow skin. This study also provides the first conclusive evidence of a hybrid origin of the domestic chicken. It has been generally assumed that the red junglefowl is the sole ancestor of the domestic chicken. A phylogenetic analysis, however, demonstrates that though the white skin allele originates from the red junglefowl, the yellow skin allele originates from a different species, most likely the grey junglefowl. This result significantly advances our understanding of chicken domestication.
Collapse
|
30
|
Wright D, Kerje S, Brändström H, Schütz K, Kindmark A, Andersson L, Jensen P, Pizzari T. The genetic architecture of a female sexual ornament. Evolution 2007; 62:86-98. [PMID: 18053076 DOI: 10.1111/j.1558-5646.2007.00281.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the evolution of sexual ornaments, and particularly that of female sexual ornaments, is an enduring challenge in evolutionary biology. Key to this challenge are establishing the relationship between ornament expression and female reproductive investment, and determining the genetic basis underpinning such relationship. Advances in genomics provide unprecedented opportunities to study the genetic architecture of sexual ornaments in model species. Here, we present a quantitative trait locus (QTL) analysis of a female sexual ornament, the comb of the fowl, Gallus gallus, using a large-scale intercross between red junglefowl and a domestic line, selected for egg production. First, we demonstrate that female somatic investment in comb reflects female reproductive investment. Despite a trade-off between reproductive and skeletal investment mediated by the mobilization of skeletal minerals for egg production, females with proportionally large combs also had relatively high skeletal investment. Second, we identify a major QTL for bisexual expression of comb mass and several QTL specific to female comb mass. Importantly, QTL for comb mass were nonrandomly clustered with QTL for female reproductive and skeletal investment on chromosomes one and three. Together, these results shed light onto the physiological and genetic architecture of a female ornament.
Collapse
Affiliation(s)
- Dominic Wright
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Differential gene expression in femoral bone from red junglefowl and domestic chicken, differing for bone phenotypic traits. BMC Genomics 2007; 8:208. [PMID: 17605776 PMCID: PMC1934367 DOI: 10.1186/1471-2164-8-208] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 07/02/2007] [Indexed: 12/23/2022] Open
Abstract
Background Osteoporosis is frequently observed among aging hens from egg-producing strains (layers) of domestic chicken. White Leghorn (WL) has been intensively selected for egg production and it manifests striking phenotypic differences for a number of traits including several bone phenotypes in comparison with the wild ancestor of chicken, the red junglefowl (RJ). Previously, we have identified four Quantitative Trait Loci (QTL) affecting bone mineral density and bone strength in an intercross between RJ and WL. With the aim of further elucidating the genetic basis of bone traits in chicken, we have now utilized cDNA-microarray technology in order to compare global RNA-expression in femoral bone from adult RJ and WL (five of each sex and population). Results When contrasting microarray data for all WL-individuals to that of all RJ-individuals we observed differential expression (False discovery rate adjusted p-values < 0.015) for 604 microarray probes. In corresponding male and female contrasts, differential expression was observed for 410 and 270 probes, respectively. Altogether, the three contrasts between WL and RJ revealed differential expression of 779 unique transcripts, 57 of which are located to previously identified QTL-regions for bone traits. Some differentially expressed genes have previously been attributed roles in bone metabolism and these were: WNT inhibitory factor 1 (WIF1), WD repeat-containing protein 5 (WDR5) and Syndecan 3 (SDC3). Among differentially expressed transcripts, those encoding structural ribosomal proteins were highly enriched and all 15 had lower expression in WL. Conclusion We report the identification of 779 differentially expressed transcripts, several residing within QTL-regions for bone traits. Among differentially expressed transcripts, those encoding structural ribosomal proteins were highly enriched and all had lower expression levels in WL. In addition, transcripts encoding four translation initiation and translation elongation factor proteins also had lower expression levels in WL, possibly indicating perturbation of protein biosynthesis pathways between the two populations. Information derived from this study could be relevant to the bone research field and may also aid in further inference of genetic changes accompanying animal domestication.
Collapse
|