1
|
Tyler AL, Donahue LR, Churchill GA, Carter GW. Weak Epistasis Generally Stabilizes Phenotypes in a Mouse Intercross. PLoS Genet 2016; 12:e1005805. [PMID: 26828925 PMCID: PMC4734753 DOI: 10.1371/journal.pgen.1005805] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/21/2015] [Indexed: 01/11/2023] Open
Abstract
The extent and strength of epistasis is commonly unresolved in genetic studies, and observed epistasis is often difficult to interpret in terms of biological consequences or overall genetic architecture. We investigated the prevalence and consequences of epistasis by analyzing four body composition phenotypes—body weight, body fat percentage, femoral density, and femoral circumference—in a large F2 intercross of B6-lit/lit and C3.B6-lit/lit mice. We used Combined Analysis of Pleiotropy and Epistasis (CAPE) to examine interactions for the four phenotypes simultaneously, which revealed an extensive directed network of genetic loci interacting with each other, circulating IGF1, and sex to influence these phenotypes. The majority of epistatic interactions had small effects relative to additive effects of individual loci, and tended to stabilize phenotypes towards the mean of the population rather than extremes. Interactive effects of two alleles inherited from one parental strain commonly resulted in phenotypes closer to the population mean than the additive effects from the two loci, and often much closer to the mean than either single-locus model. Alternatively, combinations of alleles inherited from different parent strains contribute to more extreme phenotypes not observed in either parental strain. This class of phenotype-stabilizing interactions has effects that are close to additive and are thus difficult to detect except in very large intercrosses. Nevertheless, we found these interactions to be useful in generating hypotheses for functional relationships between genetic loci. Our findings suggest that while epistasis is often weak and unlikely to account for a large proportion of heritable variance, even small-effect genetic interactions can facilitate hypotheses of underlying biology in well-powered studies. The role of statistical epistasis in the genetic architecture of complex traits has been of great interest to the genetics community since Fisher introduced the concept in 1918. However, assessing epistasis in human and model organism populations has been impeded by limited statistical power. To mitigate this limitation, we analyzed bone and body composition traits in an unusually large mouse intercross population of over 2000 mice, paired with a recently-developed computational approach that leverages information to detect interactions across multiple phenotypes. We discovered a large network of highly significant genetic interactions between variants that influence complex body composition traits. Although epistasis was abundant, the interaction network was dominated by epistasis that stabilizes phenotypes by reducing phenotypic deviation from the parent strains. Nevertheless, the observed network provides an overview of genetic architecture and specific hypotheses of how QTL combine to affect phenotypes. These findings suggest that epistatic effects are generally of lesser magnitude than main QTL effects, and therefore are unlikely to account for major components of variance, but also reinforce genetic interaction analysis as a potent tool for dissecting the biology of complex traits.
Collapse
Affiliation(s)
- Anna L. Tyler
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Leah Rae Donahue
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Gregory W. Carter
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail:
| |
Collapse
|
2
|
Lagerholm S, Park HB, Luthman H, Nilsson M, McGuigan F, Swanberg M, Akesson K. Genetic loci for bone architecture determined by three-dimensional CT in crosses with the diabetic GK rat. Bone 2010; 47:1039-47. [PMID: 20699128 DOI: 10.1016/j.bone.2010.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 07/30/2010] [Accepted: 08/04/2010] [Indexed: 10/19/2022]
Abstract
The F344 rat carries alleles contributing to bone fragility while the GK rat spontaneously develops type-2 diabetes. These characteristics make F344×GK crosses well suited for the identification of genes related to bone size and allow for future investigation on the association with type-2 diabetes. The aim of this study was to identify quantitative trait loci (QTLs) for bone size phenotypes measured by a new application of three-dimensional computed tomography (3DCT) and to investigate the effects of sex- and reciprocal cross. Tibia from male and female GK and F344 rats, representing the parental, F1 and F2 generations, were examined with 3DCT and analyzed for: total and cortical volumetric BMD, straight and curved length, peri- and endosteal area at mid-shaft. F2 progeny (108 male and 98 female) were genotyped with 192 genome-wide microsatellite markers (average distance 10 cM). Sex- and reciprocal cross-separated QTL analyses were performed for the identification of QTLs linked to 3DCT phenotypes and true interactions were confirmed by likelihood ratio analysis in all F2 animals. Several genome-wide significant QTLs were found in the sex- and reciprocal cross-separated progeny on chromosomes (chr) 1, 3, 4, 9, 10, 14, and 17. Overlapping QTLs for both males and females in the (GK×F344)F2 progeny were located on chr 1 (39-67 cM). This region confirms previously reported pQCT QTLs and overlaps loci for fasting glucose. Sex separated linkage analysis confirmed a male specific QTL on chr 9 (67-82 cM) for endosteal area at the fibula site. Analyses separating the F2 population both by sex and reciprocal cross identified cross specific QTLs on chr 14 (males) and chr 3 and 4 (females). Two loci, chr 4 and 6, are unique to 3DCT and separate from pQCT generated loci. The 3DCT method was highly reproducible and provided high precision measurements of bone size in the rat enabling identification of new sex- and cross-specific loci. The QTLs on chr 1 indicate potential genetic association between bone-related phenotypes and traits affecting type-2 diabetes. The results illustrate the complexity of the genetic architecture of bone size phenotypes and demonstrate the importance of complementary methods for bone analysis.
Collapse
Affiliation(s)
- Sofia Lagerholm
- Lund University, Department of Clinical Sciences-Malmö, Clinical and Molecular Osteoporosis Unit, Malmö, Sweden.
| | | | | | | | | | | | | |
Collapse
|
3
|
Grosse-Brinkhaus C, Jonas E, Buschbell H, Phatsara C, Tesfaye D, Jüngst H, Looft C, Schellander K, Tholen E. Epistatic QTL pairs associated with meat quality and carcass composition traits in a porcine Duroc × Pietrain population. Genet Sel Evol 2010; 42:39. [PMID: 20977705 PMCID: PMC2984386 DOI: 10.1186/1297-9686-42-39] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 10/26/2010] [Indexed: 11/10/2022] Open
Abstract
Background Quantitative trait loci (QTL) analyses in pig have revealed numerous individual QTL affecting growth, carcass composition, reproduction and meat quality, indicating a complex genetic architecture. In general, statistical QTL models consider only additive and dominance effects and identification of epistatic effects in livestock is not yet widespread. The aim of this study was to identify and characterize epistatic effects between common and novel QTL regions for carcass composition and meat quality traits in pig. Methods Five hundred and eighty five F2 pigs from a Duroc × Pietrain resource population were genotyped using 131 genetic markers (microsatellites and SNP) spread over the 18 pig autosomes. Phenotypic information for 26 carcass composition and meat quality traits was available for all F2 animals. Linkage analysis was performed in a two-step procedure using a maximum likelihood approach implemented in the QxPak program. Results A number of interacting QTL was observed for different traits, leading to the identification of a variety of networks among chromosomal regions throughout the porcine genome. We distinguished 17 epistatic QTL pairs for carcass composition and 39 for meat quality traits. These interacting QTL pairs explained up to 8% of the phenotypic variance. Conclusions Our findings demonstrate the significance of epistasis in pigs. We have revealed evidence for epistatic relationships between different chromosomal regions, confirmed known QTL loci and connected regions reported in other studies. Considering interactions between loci allowed us to identify several novel QTL and trait-specific relationships of loci within and across chromosomes.
Collapse
|
4
|
Duncan EL, Brown MA. Clinical review 2: Genetic determinants of bone density and fracture risk--state of the art and future directions. J Clin Endocrinol Metab 2010; 95:2576-87. [PMID: 20375209 DOI: 10.1210/jc.2009-2406] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
CONTEXT Osteoporosis is a common, highly heritable condition that causes substantial morbidity and mortality, the etiopathogenesis of which is poorly understood. Genetic studies are making increasingly rapid progress in identifying the genes involved. EVIDENCE ACQUISITION AND SYNTHESIS In this review, we will summarize the current understanding of the genetics of osteoporosis based on publications from PubMed from the year 1987 onward. CONCLUSIONS Most genes involved in osteoporosis identified to date encode components of known pathways involved in bone synthesis or resorption, but as the field progresses, new pathways are being identified. Only a small proportion of the total genetic variation involved in osteoporosis has been identified, and new approaches will be required to identify most of the remaining genes.
Collapse
Affiliation(s)
- Emma L Duncan
- University of Queensland Diamantina Institute for Cancer, Immunology and Metabolic Medicine, Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Queensland 4102, Australia.
| | | |
Collapse
|
5
|
Autosomal-recessive hypophosphatemic rickets is associated with an inactivation mutation in the ENPP1 gene. Am J Hum Genet 2010; 86:273-8. [PMID: 20137772 DOI: 10.1016/j.ajhg.2010.01.010] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 12/23/2009] [Accepted: 01/11/2010] [Indexed: 12/31/2022] Open
Abstract
Human disorders of phosphate (Pi) handling and hypophosphatemic rickets have been shown to result from mutations in PHEX, FGF23, and DMP1, presenting as X-linked recessive, autosomal-dominant, and autosomal-recessive patterns, respectively. We present the identification of an inactivating mutation in the ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) gene causing autosomal-recessive hypophosphatemic rickets (ARHR) with phosphaturia by positional cloning. ENPP1 generates inorganic pyrophosphate (PPi), an essential physiologic inhibitor of calcification, and previously described inactivating mutations in this gene were shown to cause aberrant ectopic calcification disorders, whereas no aberrant calcifications were present in our patients. Our surprising result suggests a different pathway involved in the generation of ARHR and possible additional functions for ENPP1.
Collapse
|
6
|
Hansen HL, Bredbenner TL, Nicolella DP, Mahaney MC, Havill LM. Cross-sectional geometry of the femoral midshaft in baboons is heritable. Bone 2009; 45:892-7. [PMID: 19523547 PMCID: PMC3014089 DOI: 10.1016/j.bone.2009.05.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 05/08/2009] [Accepted: 05/29/2009] [Indexed: 11/20/2022]
Abstract
A great deal of research into the determinants of bone strength has unequivocally demonstrated that variation in bone strength is highly subject to genetic factors. Increasing attention in skeletal genetic studies is being paid to indicators of bone quality that complement studies of BMD, including studies of the genetic control of bone geometry. The aim of this study is to investigate the degree to which normal population-level variation in femoral midshaft geometry in a population of pedigreed baboons (Papio hamadryas spp.) can be attributed to the additive effect of genes. Using 110 baboons (80 females, 30 males), we 1) characterize normal variation in midshaft geometry of the femur with regard to age and sex, and 2) determine the degree to which the residual variation is attributable to additive genetic effects. Cross-sectional area (CSA), minimum (I(MIN)) and maximum (I(MAX)) principal moments of inertia, and polar moment of inertia (J) were calculated from digitized images of transverse midshaft sections. Maximum likelihood-based variance decomposition methods were used to estimate the mean effects of age, sex, and genes. Together age and sex effects account for approximately 56% of the variance in each property. In each case the effect of female sex is negative and that of age is positive, although of a lower magnitude than the effect of female sex. Increased age is associated with decreased mean cross-sectional geometry measures in the oldest females. Residual h(2) values range from 0.36 to 0.50, reflecting genetic effects accounting for 15% to 23% of the total phenotypic variance in individual properties. This study establishes the potential of the baboon model for the identification of genes that regulate bone geometric properties in primates. This model is particularly valuable because it allows for experimental designs, environmental consistency, availability of tissues, and comprehensive assessments of multiple integrated bone phenotypes that are not possible in human populations. The baboon is of particular importance in genetic studies, because it provides results that are likely highly relevant to the human condition due to the phylogenetic proximity of baboons to humans.
Collapse
Affiliation(s)
- Heather L. Hansen
- Department of Anthropology, Indiana University, Bloomington, IN 47408
| | - Todd L. Bredbenner
- Department of Materials Engineering, Southwest Research Institute San Antonio, TX 78238
| | - Daniel P. Nicolella
- Department of Materials Engineering, Southwest Research Institute San Antonio, TX 78238
| | - Michael C. Mahaney
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX 78245-0549
- Southwest National Primate Research Center, San Antonio, TX 78227
| | - Lorena M. Havill
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX 78245-0549
- Corresponding Author: Dr. Lorena M. Havill, Department of Genetics, Southwest Foundation for Biomedical Research, P.O. Box 760549, San Antonio, Texas 78245-0549, Telephone: 210-258-9875, Fax: 210-670-3344,
| |
Collapse
|
7
|
Koller DL, Liu L, Alam I, Sun Q, Econs MJ, Foroud T, Turner CH. Epistasis between QTLs for bone density variation in Copenhagen x dark agouti F2 rats. Mamm Genome 2009; 20:180-6. [PMID: 19153792 PMCID: PMC3628817 DOI: 10.1007/s00335-008-9161-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 11/05/2008] [Indexed: 01/19/2023]
Abstract
The variation in several of the risk factors for osteoporotic fracture, including bone mineral density (BMD), has been shown to be strongly influenced by genetic differences. However, the genetic architecture of BMD is complex in both humans and in model organisms. We previously reported quantitative trait locus (QTL) results for BMD from a genome screen of 828 F2 progeny of Copenhagen and dark agouti rats. These progeny also provide an excellent opportunity to search for epistatic effects, or interaction between genetic loci, that contribute to fracture risk. Microsatellite marker data from a 20-cM genome screen was analyzed along with weight-adjusted bone density (DXA and pQCT) phenotypic data using the R/qtl software package. Genotype and phenotype data were permuted to determine genome-wide significance thresholds for the full model and epistasis (interaction) LOD scores corresponding to an alpha level of 0.01. A novel locus on chromosome 15 and a previously reported chromosome 14 QTL demonstrated a strong epistatic effect on BMD at the femur by DXA (LOD = 5.4). Two novel QTLs on chromosomes 2 and 12 were found to interact to affect total BMD at the femur midshaft by pQCT (LOD = 5.0). These results provide new information regarding the mode of action of previously identified QTL in the rat, as well as identifying novel loci that act in combination with known QTL or with other novel loci to contribute to BMD variation.
Collapse
Affiliation(s)
- Daniel L Koller
- Department of Medical and Molecular Genetics, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Osteoporosis and disorders of bone fragility are highly heritable, but despite much effort the identities of few of the genes involved has been established. Recent developments in genetics such as genome-wide association studies are revolutionizing research in this field, and it is likely that further contributions will be made through application of next-generation sequencing technologies, analysis of copy number variation polymorphisms, and high-throughput mouse mutagenesis programs. This article outlines what we know about osteoporosis genetics to date and the probable future directions of research in this field.
Collapse
Affiliation(s)
- Emma L Duncan
- The University of Queensland, Diamantina Institute for Cancer Immunology and Metabolic Medicine, Princess Alexandra Hospital, Woolloongabba Qld 4102, Australia.
| | | |
Collapse
|
9
|
Abstract
Because particular inbred strains of experimental animals are informative for only a subset of the genes underlying variability in BMD, we undertook a genome screen to identify quantitative trait loci (QTLs) in 828 F(2) progeny (405 males and 423 females) derived from the Copenhagen 2331 (COP) and dark agouti (DA) strains of rats. This screen was performed to complement our study in female Fischer 344 (F344) and Lewis (LEW) rats and to further delineate the factors underlying the complex genetic architecture of BMD in the rat model. Microsatellite genotyping was performed using markers at an average density of 20 cM. BMD was measured by pQCT and DXA. These data were analyzed in the R/qtl software to detect QTLs acting in both sexes as well as those having sex-specific effects. A QTL was detected in both sexes on chromosome 18 for midfemur volumetric BMD (vBMD; genome-wide, p < 0.01). On distal chromosome 1, a QTL was found for femur and vertebral aBMD as well as distal femur vBMD, and this QTL appears distinct from the proximal chromosome 1 QTL impacting BMD in our F344/LEW cross. Additional aBMD and vBMD QTLs and several sex-specific QTLs were also detected. These included a male-specific QTL (p < 0.01) on chromosome 8 and a female-specific QTL on chromosomes 7 and 14 (p < 0.01). Few of the QTLs identified showed overlap with the significant QTLs from the F344/LEW cross. These results confirm that the genetic influence on BMD in the rat model is quite complex and would seem to be influenced by a number of different genes, some of which have sex-specific effects.
Collapse
|