1
|
Cowley AW, Dwinell MR. Chromosomal Substitution Strategies to Localize Genomic Regions Related to Complex Traits. Compr Physiol 2020; 10:365-388. [PMID: 32163204 DOI: 10.1002/cphy.c180029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chromosomal substitution strategies provide a powerful tool to anonymously reveal the relationship between DNA sequence variants and a normal or disease phenotype of interest. Even in this age of CRISPR-Cas9 genome engineering, the knockdown or overexpression of a gene provides relevant information to our understanding of complex disease only when a close association of an allelic variant with the phenotype has first been established. Limitations of genetic linkage approaches led to the development of more efficient breeding strategies to substitute chromosomal segments from one animal strain into the genetic background of a different strain, enabling a direct comparison of the phenotypes of the strains with variant(s) that differ only at a defined locus. This substitution can be a whole chromosome (consomic), a part of a chromosome (congenic), or as small as only a single or several alleles (subcongenics). In contrast to complete knockout of a specific candidate gene of interest, which simply studies the effects of complete elimination of the gene, the substitution of naturally occurring variants can provide special insights into the functional actions of wild-type alleles. Strategies for production of these inbred strains are reviewed, and a number of examples are used to illustrate the utility of these model systems. Consomic/congenic strains provide a number of experimental advantages in the study of functions of genes and their variants, which are emphasized in this article, such as replication of experimental studies; determination of temporal relationships throughout a life; rigorously controlled experiments in which relations between genotype and phenotype can be tested with the confounding effects of heterogeneous genetic backgrounds, both targeted and multilayered; and "omic" studies performed at many levels of functionality, from molecules to organelles, cells to organs, and organs to organismal behavior across the life span. The application of chromosomal substitution strategies and development of consomic/congenic rat and mouse strains have greatly expanded our knowledge of genomic variants and their phenotypic relationship to physiological functions and to complex diseases such as hypertension and cancer. © 2020 American Physiological Society. Compr Physiol 10:365-388, 2020.
Collapse
Affiliation(s)
- Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Melinda R Dwinell
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Uncovering the liver's role in immunity through RNA co-expression networks. Mamm Genome 2016; 27:469-84. [PMID: 27401171 PMCID: PMC5002042 DOI: 10.1007/s00335-016-9656-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/27/2016] [Indexed: 01/16/2023]
Abstract
Gene co-expression analysis has proven to be a powerful tool for ascertaining the organization of gene products into networks that are important for organ function. An organ, such as the liver, engages in a multitude of functions important for the survival of humans, rats, and other animals; these liver functions include energy metabolism, metabolism of xenobiotics, immune system function, and hormonal homeostasis. With the availability of organ-specific transcriptomes, we can now examine the role of RNA transcripts (both protein-coding and non-coding) in these functions. A systems genetic approach for identifying and characterizing liver gene networks within a recombinant inbred panel of rats was used to identify genetically regulated transcriptional networks (modules). For these modules, biological consensus was found between functional enrichment analysis and publicly available phenotypic quantitative trait loci (QTL). In particular, the biological function of two liver modules could be linked to immune response. The eigengene QTLs for these co-expression modules were located at genomic regions coincident with highly significant phenotypic QTLs; these phenotypes were related to rheumatoid arthritis, food preference, and basal corticosterone levels in rats. Our analysis illustrates that genetically and biologically driven RNA-based networks, such as the ones identified as part of this research, provide insight into the genetic influences on organ functions. These networks can pinpoint phenotypes that manifest through the interaction of many organs/tissues and can identify unannotated or under-annotated RNA transcripts that play a role in these phenotypes.
Collapse
|
3
|
Tyler AL, Donahue LR, Churchill GA, Carter GW. Weak Epistasis Generally Stabilizes Phenotypes in a Mouse Intercross. PLoS Genet 2016; 12:e1005805. [PMID: 26828925 PMCID: PMC4734753 DOI: 10.1371/journal.pgen.1005805] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/21/2015] [Indexed: 01/11/2023] Open
Abstract
The extent and strength of epistasis is commonly unresolved in genetic studies, and observed epistasis is often difficult to interpret in terms of biological consequences or overall genetic architecture. We investigated the prevalence and consequences of epistasis by analyzing four body composition phenotypes—body weight, body fat percentage, femoral density, and femoral circumference—in a large F2 intercross of B6-lit/lit and C3.B6-lit/lit mice. We used Combined Analysis of Pleiotropy and Epistasis (CAPE) to examine interactions for the four phenotypes simultaneously, which revealed an extensive directed network of genetic loci interacting with each other, circulating IGF1, and sex to influence these phenotypes. The majority of epistatic interactions had small effects relative to additive effects of individual loci, and tended to stabilize phenotypes towards the mean of the population rather than extremes. Interactive effects of two alleles inherited from one parental strain commonly resulted in phenotypes closer to the population mean than the additive effects from the two loci, and often much closer to the mean than either single-locus model. Alternatively, combinations of alleles inherited from different parent strains contribute to more extreme phenotypes not observed in either parental strain. This class of phenotype-stabilizing interactions has effects that are close to additive and are thus difficult to detect except in very large intercrosses. Nevertheless, we found these interactions to be useful in generating hypotheses for functional relationships between genetic loci. Our findings suggest that while epistasis is often weak and unlikely to account for a large proportion of heritable variance, even small-effect genetic interactions can facilitate hypotheses of underlying biology in well-powered studies. The role of statistical epistasis in the genetic architecture of complex traits has been of great interest to the genetics community since Fisher introduced the concept in 1918. However, assessing epistasis in human and model organism populations has been impeded by limited statistical power. To mitigate this limitation, we analyzed bone and body composition traits in an unusually large mouse intercross population of over 2000 mice, paired with a recently-developed computational approach that leverages information to detect interactions across multiple phenotypes. We discovered a large network of highly significant genetic interactions between variants that influence complex body composition traits. Although epistasis was abundant, the interaction network was dominated by epistasis that stabilizes phenotypes by reducing phenotypic deviation from the parent strains. Nevertheless, the observed network provides an overview of genetic architecture and specific hypotheses of how QTL combine to affect phenotypes. These findings suggest that epistatic effects are generally of lesser magnitude than main QTL effects, and therefore are unlikely to account for major components of variance, but also reinforce genetic interaction analysis as a potent tool for dissecting the biology of complex traits.
Collapse
Affiliation(s)
- Anna L. Tyler
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Leah Rae Donahue
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Gregory W. Carter
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail:
| |
Collapse
|
4
|
Alam I, Koller DL, Cañete T, Blázquez G, Mont-Cardona C, López-Aumatell R, Martínez-Membrives E, Díaz-Morán S, Tobeña A, Fernández-Teruel A, Stridh P, Diez M, Olsson T, Johannesson M, Baud A, Econs MJ, Foroud T. Fine mapping of bone structure and strength QTLs in heterogeneous stock rat. Bone 2015; 81:417-426. [PMID: 26297441 PMCID: PMC4641024 DOI: 10.1016/j.bone.2015.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 11/26/2022]
Abstract
We previously demonstrated that skeletal structure and strength phenotypes vary considerably in heterogeneous stock (HS) rats. These phenotypes were found to be strongly heritable, suggesting that the HS rat model represents a unique genetic resource for dissecting the complex genetic etiology underlying bone fragility. The purpose of this study was to identify and localize genes associated with bone structure and strength phenotypes using 1524 adult male and female HS rats between 17 to 20 weeks of age. Structure measures included femur length, neck width, head width; femur and lumbar spine (L3-5) areas obtained by DXA; and cross-sectional areas (CSA) at the midshaft, distal femur and femoral neck, and the 5th lumbar vertebra measured by CT. In addition, measures of strength of the whole femur and femoral neck were obtained. Approximately 70,000 polymorphic SNPs distributed throughout the rat genome were selected for genotyping, with a mean linkage disequilibrium coefficient between neighboring SNPs of 0.95. Haplotypes were estimated across the entire genome for each rat using a multipoint haplotype reconstruction method, which calculates the probability of descent at each locus from each of the 8 HS founder strains. The haplotypes were then tested for association with each structure and strength phenotype via a mixed model with covariate adjustment. We identified quantitative trait loci (QTLs) for structure phenotypes on chromosomes 3, 8, 10, 12, 17 and 20, and QTLs for strength phenotypes on chromosomes 5, 10 and 11 that met a conservative genome-wide empiric significance threshold (FDR=5%; P<3×10(-6)). Importantly, most QTLs were localized to very narrow genomic regions (as small as 0.3 Mb and up to 3 Mb), each harboring a small set of candidate genes, both novel and previously shown to have roles in skeletal development and homeostasis.
Collapse
Affiliation(s)
- Imranul Alam
- Medicine, Indiana University School of Medicine, IN, USA.
| | - Daniel L Koller
- Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| | - Toni Cañete
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Gloria Blázquez
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Carme Mont-Cardona
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | | | - Esther Martínez-Membrives
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Sira Díaz-Morán
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Adolf Tobeña
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Alberto Fernández-Teruel
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, School of Medicine, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Pernilla Stridh
- Clinical Neuroscience, Center for Molecular Medicine, Neuroimmunolgy Unit, Karolinska Institutet, S171 76 Stockholm, Sweden
| | - Margarita Diez
- Clinical Neuroscience, Center for Molecular Medicine, Neuroimmunolgy Unit, Karolinska Institutet, S171 76 Stockholm, Sweden
| | - Tomas Olsson
- Clinical Neuroscience, Center for Molecular Medicine, Neuroimmunolgy Unit, Karolinska Institutet, S171 76 Stockholm, Sweden
| | - Martina Johannesson
- Clinical Neuroscience, Center for Molecular Medicine, Neuroimmunolgy Unit, Karolinska Institutet, S171 76 Stockholm, Sweden
| | - Amelie Baud
- Wellcome Trust Center for Human Genetics, Oxford OX3 7BN, United Kingdom
| | - Michael J Econs
- Medicine, Indiana University School of Medicine, IN, USA; Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| | - Tatiana Foroud
- Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| |
Collapse
|
5
|
Medeiros GFD, Corrêa FJ, Corvino ME, Izídio GDS, Ramos A. The Long Way from Complex Phenotypes to Genes: The Story of Rat Chromosome 4 and Its Behavioral Effects. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/wjns.2014.43024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Alam I, Sun Q, Koller DL, Liu L, Liu Y, Edenberg HJ, Foroud T, Turner CH. Genes influencing spinal bone mineral density in inbred F344, LEW, COP, and DA rats. Funct Integr Genomics 2010; 10:63-72. [PMID: 19841953 PMCID: PMC2835802 DOI: 10.1007/s10142-009-0147-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 09/24/2009] [Accepted: 09/27/2009] [Indexed: 10/20/2022]
Abstract
Previously, we identified the regions of chromosomes 10q12-q31 and 15p16-q21 harbor quantitative trait loci (QTLs) for lumbar volumetric bone mineral density (vBMD) in female F2 rats derived from Fischer 344 (F344) x Lewis (LEW) and Copenhagen 2331 (COP) x Dark Agouti (DA) crosses. The purpose of this study is to identify the candidate genes within these QTL regions contributing to the variation in lumbar vBMD. RNA was extracted from bone tissue of F344, LEW, COP, and DA rats. Microarray analysis was performed using Affymetrix Rat Genome 230 2.0 Arrays. Genes differentially expressed among the rat strains were then ranked based on the strength of the correlation with lumbar vBMD in F2 animals derived from these rats. Quantitative PCR (qPCR) analysis was performed to confirm the prioritized candidate genes. A total of 285 genes were differentially expressed among all strains of rats with a false discovery rate less than 10%. Among these genes, 18 candidate genes were prioritized based on their strong correlation (r (2) > 0.90) with lumbar vBMD. Of these, 14 genes (Akap1, Asgr2, Esd, Fam101b, Irf1, Lcp1, Ltc4s, Mdp-1, Pdhb, Plxdc1, Rabep1, Rhot1, Slc2a4, Xpo4) were confirmed by qPCR. We identified several novel candidate genes influencing spinal vBMD in rats.
Collapse
Affiliation(s)
- Imranul Alam
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, 1120 South Drive, Fesler Hall 115, Indianapolis, IN 46202-5251, USA
| | - Qiwei Sun
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, 1120 South Drive, Fesler Hall 115, Indianapolis, IN 46202-5251, USA
| | - Daniel L. Koller
- Medical and Molecular Genetics, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, IN, USA
| | - Lixiang Liu
- Medical and Molecular Genetics, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, IN, USA
| | - Yunlong Liu
- Medicine, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, IN, USA
| | - Howard J. Edenberg
- Biochemistry and Molecular Biology, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, IN, USA
| | - Tatiana Foroud
- Medical and Molecular Genetics, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, IN, USA
| | - Charles H. Turner
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, 1120 South Drive, Fesler Hall 115, Indianapolis, IN 46202-5251, USA
| |
Collapse
|
7
|
Peacock M, Koller DL, Lai D, Hui S, Foroud T, Econs MJ. Bone mineral density variation in men is influenced by sex-specific and non sex-specific quantitative trait loci. Bone 2009; 45:443-8. [PMID: 19427925 PMCID: PMC2725190 DOI: 10.1016/j.bone.2009.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 05/01/2009] [Accepted: 05/05/2009] [Indexed: 11/19/2022]
Abstract
INTRODUCTION A major predictor of age-related osteoporotic fracture is peak areal bone mineral density (aBMD) which is a highly heritable trait. However, few linkage and association studies have been performed in men to identify the genes contributing to normal variation in aBMD. The aim of this study was to perform a genome wide scan in healthy men to identify quantitative trait loci (QTL) that were significantly linked to aBMD and to test whether any of these might be sex-specific. METHODS aBMD at the spine and hip were measured in 515 pairs of brothers, aged 18-61 (405 white pairs, 110 black pairs). Linkage analysis in the brother sample was compared with results in a previously published sample of 774 sister pairs to identify sex-specific quantitative trait loci (QTL). RESULTS A genome wide scan identified significant QTL (LOD>3.6) for aBMD on chromosomes 4q21 (hip), 7q34 (spine), 14q32 (hip), 19p13 (hip), 21q21 (hip), and 22q13 (hip). Analysis suggested that the QTL on chromosomes 7q34, 14q32, and 21q21 were male-specific whereas the others were not sex-specific. CONCLUSIONS This study demonstrates that six QTL were significantly linked with aBMD in men. One was linked to the spine and five were linked to the hip. When compared to published data in women from the same geographical region, the QTL on chromosomes 7, 14 and 21 were male-specific. The occurrence of sex-specific genes in humans for aBMD has important implications for the pathogenesis and treatment of osteoporosis.
Collapse
Affiliation(s)
- Munro Peacock
- Department of Medicine, Indiana University School of Medicine
| | - Daniel L. Koller
- Department of Medical and Molecular Genetics, Indiana University School of Medicine
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine
| | - Siu Hui
- Department of Medicine, Indiana University School of Medicine
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine
| | - Michael J. Econs
- Department of Medicine, Indiana University School of Medicine
- Department of Medical and Molecular Genetics, Indiana University School of Medicine
| |
Collapse
|
8
|
Koller DL, Liu L, Alam I, Sun Q, Econs MJ, Foroud T, Turner CH. Epistasis between QTLs for bone density variation in Copenhagen x dark agouti F2 rats. Mamm Genome 2009; 20:180-6. [PMID: 19153792 PMCID: PMC3628817 DOI: 10.1007/s00335-008-9161-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 11/05/2008] [Indexed: 01/19/2023]
Abstract
The variation in several of the risk factors for osteoporotic fracture, including bone mineral density (BMD), has been shown to be strongly influenced by genetic differences. However, the genetic architecture of BMD is complex in both humans and in model organisms. We previously reported quantitative trait locus (QTL) results for BMD from a genome screen of 828 F2 progeny of Copenhagen and dark agouti rats. These progeny also provide an excellent opportunity to search for epistatic effects, or interaction between genetic loci, that contribute to fracture risk. Microsatellite marker data from a 20-cM genome screen was analyzed along with weight-adjusted bone density (DXA and pQCT) phenotypic data using the R/qtl software package. Genotype and phenotype data were permuted to determine genome-wide significance thresholds for the full model and epistasis (interaction) LOD scores corresponding to an alpha level of 0.01. A novel locus on chromosome 15 and a previously reported chromosome 14 QTL demonstrated a strong epistatic effect on BMD at the femur by DXA (LOD = 5.4). Two novel QTLs on chromosomes 2 and 12 were found to interact to affect total BMD at the femur midshaft by pQCT (LOD = 5.0). These results provide new information regarding the mode of action of previously identified QTL in the rat, as well as identifying novel loci that act in combination with known QTL or with other novel loci to contribute to BMD variation.
Collapse
Affiliation(s)
- Daniel L Koller
- Department of Medical and Molecular Genetics, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | |
Collapse
|