1
|
Tasma Z, Garelja ML, Jamaluddin A, Alexander TI, Rees TA. Where are we now? Biased signalling of Class B G protein-coupled receptor-targeted therapeutics. Pharmacol Ther 2025; 270:108846. [PMID: 40216261 DOI: 10.1016/j.pharmthera.2025.108846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/07/2025] [Accepted: 03/24/2025] [Indexed: 04/19/2025]
Abstract
Class B G protein-coupled receptors (GPCRs) are a subfamily of 15 peptide hormone receptors with diverse roles in physiological functions and disease pathogenesis. Over the past decade, several novel therapeutics targeting these receptors have been approved for conditions like migraine, diabetes, and obesity, many of which are ground-breaking and first-in-class. Most of these therapeutics are agonist analogues with modified endogenous peptide sequences to enhance receptor activation or stability. Several small molecule and monoclonal antibody antagonists have also been approved or are in late-stage development. Differences in the sequence and structure of these therapeutic ligands lead to distinct signalling profiles, including biased behaviour or inhibition of specific pathways. Understanding this biased pharmacology offers unique development opportunities for improving therapeutic efficacy and reducing adverse effects. This review summarises current knowledge on the ligand bias of approved class B GPCR drugs, highlights strategies to refine and exploit their pharmacological profiles, and discusses key considerations related to receptor structure, localisation, and regulation for developing new therapies.
Collapse
Affiliation(s)
- Zoe Tasma
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Michael L Garelja
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Aqfan Jamaluddin
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Tyla I Alexander
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Tayla A Rees
- Headache Group, Wolfson Sensory Pain and Regeneration Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
2
|
Naik A, Kale AA, Rajwade JM. Sensing the future: A review on emerging technologies for assessing and monitoring bone health. BIOMATERIALS ADVANCES 2024; 165:214008. [PMID: 39213957 DOI: 10.1016/j.bioadv.2024.214008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Bone health is crucial at all stages of life. Several medical conditions and changes in lifestyle affect the growth, structure, and functions of bones. This may lead to the development of bone degenerative disorders, such as osteoporosis, osteoarthritis, rheumatoid arthritis, etc., which are major public health concerns worldwide. Accurate and reliable measurement and monitoring of bone health are important aspects for early diagnosis and interventions to prevent such disorders. Significant progress has recently been made in developing new sensing technologies that offer non-invasive, low-cost, and accurate measurements of bone health. In this review, we have described bone remodeling processes and common bone disorders. We have also compiled information on the bone turnover markers for their use as biomarkers in biosensing devices to monitor bone health. Second, this review details biosensing technology for bone health assessment, including the latest developments in various non-invasive techniques, including dual-energy X-ray absorptiometry, magnetic resonance imaging, computed tomography, and biosensors. Further, we have also discussed the potential of emerging technologies, such as biosensors based on nano- and micro-electromechanical systems and application of artificial intelligence in non-invasive techniques for improving bone health assessment. Finally, we have summarized the advantages and limitations of each technology and described clinical applications for detecting bone disorders and monitoring treatment outcomes. Overall, this review highlights the potential of emerging technologies for improving bone health assessment with the potential to revolutionize clinical practice and improve patient outcomes. The review highlights key challenges and future directions for biosensor research that pave the way for continued innovations to improve diagnosis, monitoring, and treatment of bone-related diseases.
Collapse
Affiliation(s)
- Amruta Naik
- Department of Biosciences and Technology, School of Science and Environmental Studies, Dr. Vishwanath Karad MIT World Peace University, Pune 411038, Maharashtra, India.
| | - Anup A Kale
- Department of Biosciences and Technology, School of Science and Environmental Studies, Dr. Vishwanath Karad MIT World Peace University, Pune 411038, Maharashtra, India
| | - Jyutika M Rajwade
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, Maharashtra, India.
| |
Collapse
|
3
|
Jin Y, Zhou BH, Zhao J, Ommati MM, Wang S, Wang HW. Fluoride-induced osteoporosis via interfering with the RANKL/RANK/OPG pathway in ovariectomized rats: Oophorectomy shifted skeletal fluorosis from osteosclerosis to osteoporosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122407. [PMID: 37597730 DOI: 10.1016/j.envpol.2023.122407] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Osteosclerosis and osteoporosis are the two main clinical manifestations of skeletal fluorosis. However, the reasons for the different clinical manifestations are unclear. In this study, we established the fluoride (F) -exposed ovariectomized (OVX) and non-OVX rat models to assess the potential role of ovarian function loss in osteosclerosis and osteoporosis. Micro-CT scanning showed that excessive F significantly induced a high bone mass in non-OVX rats. In contrast, a low bone mass manifestation was presented in OVX F-exposed rats. Also, a prominent feature of increasing trabecular connectivity, collagen area, growth plate thickness, and reduced trabecular space was found by histopathological morphology in non-OVX F-exposed rats; an opposite result was observed in OVX F-exposed. These alterations indicated ovariectomy was a vital factor leading to osteosclerosis or osteoporosis in skeletal fluorosis. Furthermore, levels of bone alkaline phosphatase (BALP) and tartrate-resistant acid phosphatase (TRAP) increased, combined with the increasing osteoclasts number, showing a sign of high bone turnover in both OVX and non-OVX F-exposed rats. Mechanistically, oophorectomy considerably activated the RANKL/RANK/OPG signaling pathway. Meanwhile, it was discovered that upregulated NF-κB positively facilitated the accumulation of nuclear factor of activated T-cells 1 (NFATC1), significantly promoting osteoclast differentiation. To sum up, this study greatly enriched the causes of clinical skeletal fluorosis and provided a new perspective for studying the pathogenesis of skeletal fluorosis.
Collapse
Affiliation(s)
- Ye Jin
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Bian-Hua Zhou
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Jing Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Mohammad Mehdi Ommati
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Shuai Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| |
Collapse
|
4
|
Kim SY, Park GI, Park SY, Lee EH, Choi H, Koh JT, Han S, Choi MH, Park EK, Kim IS, Kim JE. Gulp1 deficiency augments bone mass in male mice by affecting osteoclasts due to elevated 17β-estradiol levels. J Cell Physiol 2023; 238:1006-1019. [PMID: 36870066 DOI: 10.1002/jcp.30987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/19/2023] [Accepted: 02/14/2023] [Indexed: 03/05/2023]
Abstract
The engulfment adaptor phosphotyrosine-binding domain containing 1 (GULP1) is an adaptor protein involved in the engulfment of apoptotic cells via phagocytosis. Gulp1 was first found to promote the phagocytosis of apoptotic cells by macrophages, and its role in various tissues, including neurons and ovaries, has been well studied. However, the expression and function of GULP1 in bone tissue are poorly understood. Consequently, to determine whether GULP1 plays a role in the regulation of bone remodeling in vitro and in vivo, we generated Gulp1 knockout (KO) mice. Gulp1 was expressed in bone tissue, mainly in osteoblasts, while its expression is very low in osteoclasts. Microcomputed tomography and histomorphometry analysis in 8-week-old male Gulp1 KO mice revealed a high bone mass in comparison with male wild-type (WT) mice. This was a result of decreased osteoclast differentiation and function in vivo and in vitro as confirmed by a reduced actin ring and microtubule formation in osteoclasts. Gas chromatography-mass spectrometry analysis further showed that both 17β-estradiol (E2) and 2-hydroxyestradiol levels, and the E2/testosterone metabolic ratio, reflecting aromatase activity, were also higher in the bone marrow of male Gulp1 KO mice than in male WT mice. Consistent with mass spectrometry analysis, aromatase enzymatic activity was significantly higher in the bone marrow of male Gulp1 KO mice. Altogether, our results suggest that GULP1 deficiency decreases the differentiation and function of osteoclasts themselves and increases sex steroid hormone-mediated inhibition of osteoclast differentiation and function, rather than affecting osteoblasts, resulting in a high bone mass in male mice. To the best of our knowledge, this is the first study to explore the direct and indirect roles of GULP1 in bone remodeling, providing new insights into its regulation.
Collapse
Affiliation(s)
- Soon-Young Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,BK21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea
| | - Gun-Il Park
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung-Yoon Park
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju, Republic of Korea
| | - Eun-Hye Lee
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyuck Choi
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong-Tae Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Soyun Han
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Man Ho Choi
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - In-San Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute Science and Technology, Seoul, Republic of Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,BK21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
5
|
Li H, Gou Y, Tian F, Lian Q, Hu Y, Zhang L. The combined anti-osteoporotic effects of simvastatin and exercise in ovariectomized mice fed a high-fat diet. Exp Gerontol 2022; 164:111794. [PMID: 35421557 DOI: 10.1016/j.exger.2022.111794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/13/2022] [Accepted: 03/29/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND To evaluate and compare the effects of the combined intervention of simvastatin and exercise on the bone degeneration in a mice model of osteoporosis (OP) induced by obesity and estrogen deficiency. METHODS 56 female 3-month-old C57BL/6 mice were given a standard diet or a high-fat diet after ovariectomy (OVX) or sham surgery. Drug administration and exercise training were initiated 72 h after surgical operation, which were treated with simvastatin (10 mg/kg/day) or exercise (15 m/min for 30 min/day) or combined with simvastatin and exercise at 72 h for 8 weeks. The pathology of OP was assessed by histomorphology analyses, immunohistochemistry (IHC), micro-computed tomography (Micro-CT), enzyme-linked immunosorbent assay (ELISA) and cell culture. RESULTS The coexistence of obesity and estrogen deficiency significantly further exacerbated OP pathology, and combined intervention showed a better significant anti-osteoporosis effect than monotherapy. In details, simvastatin combined with exercise ameliorated the abnormal bone mass, microstructure and bone marrow adipocyte differentiation, significantly increased osteoprotegerin (OPG), type 1 collagen (Col-I), RUNX2 and osteocalcin (OCN) expression, decreased the expression of receptor activator of nuclear factor-kappaB ligand (RANKL) and peroxisome proliferator-activated receptor γ (PPARγ). Furthermore, combined intervention markedly improved abnormal metabolic status, reduced the levels of serum glucose, insulin, triglycerides (TG), low-density lipoprotein (LDL), leptin, CTX-1 and IL-1β, and increased the level of OCN. CONCLUSIONS The coexistence of obesity and estrogen deficiency further aggravates bone tissue degeneration and abnormal metabolic pathology, which could be better inhibited by the combination with simvastatin and exercise instead of single intervention, suggesting that combined intervention may be a potential candidate for amelioration of the progression of OP.
Collapse
Affiliation(s)
- Hetong Li
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yu Gou
- Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin University, Tianjin, PR China
| | - Faming Tian
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, PR China
| | - Qiangqiang Lian
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, PR China
| | - Yunpeng Hu
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Liu Zhang
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, PR China.
| |
Collapse
|
6
|
van Gastel J, Leysen H, Boddaert J, Vangenechten L, Luttrell LM, Martin B, Maudsley S. Aging-related modifications to G protein-coupled receptor signaling diversity. Pharmacol Ther 2020; 223:107793. [PMID: 33316288 DOI: 10.1016/j.pharmthera.2020.107793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Aging is a highly complex molecular process, affecting nearly all tissue systems in humans and is the highest risk factor in developing neurodegenerative disorders such as Alzheimer's and Parkinson's disease, cardiovascular disease and Type 2 diabetes mellitus. The intense complexity of the aging process creates an incentive to develop more specific drugs that attenuate or even reverse some of the features of premature aging. As our current pharmacopeia is dominated by therapeutics that target members of the G protein-coupled receptor (GPCR) superfamily it may be prudent to search for effective anti-aging therapeutics in this fertile domain. Since the first demonstration of GPCR-based β-arrestin signaling, it has become clear that an enhanced appreciation of GPCR signaling diversity may facilitate the creation of therapeutics with selective signaling activities. Such 'biased' ligand signaling profiles can be effectively investigated using both standard molecular biological techniques as well as high-dimensionality data analyses. Through a more nuanced appreciation of the quantitative nature across the multiple dimensions of signaling bias that drugs possess, researchers may be able to further refine the efficacy of GPCR modulators to impact the complex aberrations that constitute the aging process. Identifying novel effector profiles could expand the effective pharmacopeia and assist in the design of precision medicines. This review discusses potential non-G protein effectors, and specifically their potential therapeutic suitability in aging and age-related disorders.
Collapse
Affiliation(s)
- Jaana van Gastel
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Hanne Leysen
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Jan Boddaert
- Molecular Pathology Group, Faculty of Medicine and Health Sciences, Laboratory of Cell Biology and Histology, Antwerp, Belgium
| | - Laura Vangenechten
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Louis M Luttrell
- Division of Endocrinology, Diabetes & Medical Genetics, Medical University of South Carolina, USA
| | - Bronwen Martin
- Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Stuart Maudsley
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
7
|
Gkastaris K, Goulis DG, Potoupnis M, Anastasilakis AD, Kapetanos G. Obesity, osteoporosis and bone metabolism. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2020; 20:372-381. [PMID: 32877973 DOI: pmid/32877973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Obesity and osteoporosis have become major global health problems over the last decades as their prevalence is increasing. The interaction between obesity and bone metabolism is complex and not fully understood. Historically, obesity was thought to be protective against osteoporosis;however, several studies have challenged this belief. Even though the majority of the studies suggest that obesity has a favourable effect on bone density, it is unclear what the effect of obesity is on skeletal microarchitecture. Additionally, the effects of obesity on skeletal strength might be site-dependent as obese individuals are at higher risk of certain fractures. Several mechanical, biochemical and hormonal mechanisms have been proposed to explain the association between the adipose tissue and bone. Mechanical loading has positive effects on bone health, but this may not suffice in obesity. Low-grade systemic inflammation is probably harmful to the bone and increased bone marrow adipogenesis may lead to decreased bone mass in obese individuals. Finally, visceral abdominal fat may exert different actions to the bone compared with the subcutaneous fat. Achieving a better understanding of the association between adipose and bone tissue may help to identify new molecular therapeutic targets that will promote osteoblastic activity and/or inhibit adipogenesis and osteoclastic activity.
Collapse
Affiliation(s)
- Konstantinos Gkastaris
- Department of Endocrinology and Diabetes, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics & Gynecology, Medical School, Aristotle University of Thessaloniki, Greece
| | - Michael Potoupnis
- Academic Orthopaedic Unit of Papageorgiou General Hospital, Aristotle University of Thessaloniki, Greece
| | | | - Georgios Kapetanos
- Academic Orthopaedic Unit of Papageorgiou General Hospital, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
8
|
Dong L, Han Z, Fang M, Xiao S, Wang Z. Genome-wide association study identifies loci for body shape in the large yellow croaker (Larimichthys crocea). AQUACULTURE AND FISHERIES 2019. [DOI: 10.1016/j.aaf.2018.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Owen R, Reilly GC. In vitro Models of Bone Remodelling and Associated Disorders. Front Bioeng Biotechnol 2018; 6:134. [PMID: 30364287 PMCID: PMC6193121 DOI: 10.3389/fbioe.2018.00134] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/07/2018] [Indexed: 01/02/2023] Open
Abstract
Disruption of bone remodelling by diseases such as osteoporosis results in an imbalance between bone formation by osteoblasts and resorption by osteoclasts. Research into these metabolic bone disorders is primarily performed in vivo; however, in the last decade there has been increased interest in generating in vitro models that can reduce or replace our reliance on animal testing. With recent advances in biomaterials and tissue engineering the feasibility of laboratory-based alternatives is growing; however, to date there are no established in vitro models of bone remodelling. In vivo, remodelling is performed by organised packets of osteoblasts and osteoclasts called bone multicellular units (BMUs). The key determinant of whether osteoclasts form and remodelling occurs is the ratio between RANKL, a cytokine which stimulates osteoclastogenesis, and OPG, its inhibitor. This review initially details the different circumstances, conditions, and factors which have been found to modulate the RANKL:OPG ratio, and fundamental factors to be considered if a robust in vitro model is to be developed. Following this, an examination of what has been achieved thus far in replicating remodelling in vitro using three-dimensional co-cultures is performed, before overviewing how such systems are already being utilised in the study of associated diseases, such as metastatic cancer and dental disorders. Finally, a discussion of the most important considerations to be incorporated going forward is presented. This details the need for the use of cells capable of endogenously producing the required cytokines, application of mechanical stimulation, and the presence of appropriate hormones in order to produce a robust model of bone remodelling.
Collapse
Affiliation(s)
| | - Gwendolen C. Reilly
- Department of Materials Science and Engineering, University of Sheffield, Insigneo Institute for in silico Medicine, Sheffield, United Kingdom
| |
Collapse
|
10
|
Quercetin Stimulates Bone Marrow Mesenchymal Stem Cell Differentiation through an Estrogen Receptor-Mediated Pathway. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4178021. [PMID: 29736392 PMCID: PMC5875037 DOI: 10.1155/2018/4178021] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/01/2018] [Indexed: 01/14/2023]
Abstract
Objectives The present study aimed to investigate the overall effect of quercetin on mouse bone marrow mesenchymal stem cell (BMSC) proliferation and osteogenic differentiation in vitro. Materials and Methods BMSCs were treated with different concentrations of quercetin for 6 days. The effects of quercetin on cell proliferation were assessed at predetermined times using Cell Counting Kit-8 (CCK-8) assay. The cells were then treated with quercetin, estrogen, or an estrogen receptor (ER) antagonist (which was also administered in the presence of quercetin or estrogen) for 7 or 21 days. The effects of quercetin on BMSC osteogenic differentiation were analyzed by an alkaline phosphatase (ALP) assay kit, Alizarin Red S staining (ARS), quantitative real-time PCR (qPCR), and western blotting. Results The CCK-8 and ALP assays and ARS staining showed that quercetin significantly enhanced BMSC proliferation, ALP activity, and extracellular matrix production and mineralization, respectively. The qPCR results indicated that quercetin promoted osterix (OSX), runt-related transcription factor 2 (RUNX2), and osteopontin (OPN) transcription in the presence of osteoinduction medium, and the western blotting results indicated that quercetin enhanced bone morphogenetic protein 2 (BMP2), Smad1, Smad4, RUNX2, OSX, and OPN expression and Smad1 phosphorylation. Treatment with the ER inhibitor ICI182780 blocked the effects of quercetin. Conclusions Our data demonstrated that quercetin promotes BMSC proliferation and osteogenic differentiation. Quercetin enhances BMP signaling pathway activation and upregulates the expression of downstream genes, such as OSX, RUNX2, and OPN, via the ER.
Collapse
|
11
|
Cappariello A, Loftus A, Muraca M, Maurizi A, Rucci N, Teti A. Osteoblast-Derived Extracellular Vesicles Are Biological Tools for the Delivery of Active Molecules to Bone. J Bone Miner Res 2018; 33:517-533. [PMID: 29091316 DOI: 10.1002/jbmr.3332] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/21/2017] [Accepted: 10/31/2017] [Indexed: 12/31/2022]
Abstract
Extracellular vesicles (EVs) are newly appreciated regulators of tissue homeostasis and a means of intercellular communication. Reports have investigated the role of EVs and their cargoes in cellular regulation and have tried to fine-tune their biotechnological use, but to date very little is known on their function in bone biology. To investigate the relevance of EV-mediated communication between bone cells, we isolated EVs from primary mouse osteoblasts and assessed membrane integrity, size, and structure by transmission electron microscopy (TEM) and fluorescence-activated cell sorting (FACS). EVs actively shuttled loaded fluorochromes to osteoblasts, monocytes, and endothelial cells. Moreover, osteoblast EVs contained mRNAs shared with donor cells. Osteoblasts are known to regulate osteoclastogenesis, osteoclast survival, and osteoclast function by the pro-osteoclastic cytokine, receptor activator of nuclear factor κ-B ligand (Rankl). Osteoblast EVs were enriched in Rankl, which increased after PTH treatment. These EVs were biologically active, supporting osteoclast survival. EVs isolated from rankl-/- osteoblasts lost this pro-osteoclastic function, indicating its Rankl-dependence. They integrated ex vivo into murine calvariae, and EV-shuttled fluorochromes were quickly taken up by the bone upon in vivo EV systemic administration. Rankl-/- mice lack the osteoclast lineage and are negative for its specific marker tartrate-resistant acid phosphatase (TRAcP). Treatment of rankl-/- mice with wild-type osteoblast EVs induced the appearance of TRAcP-positive cells in an EV density-dependent manner. Finally, osteoblast EVs internalized and shuttled anti-osteoclast drugs (zoledronate and dasatinib), inhibiting osteoclast activity in vitro and in vivo. We conclude that osteoblast EVs are involved in intercellular communication between bone cells, contribute to the Rankl pro-osteoclastic effect, and shuttle anti-osteoclast drugs, representing a potential means of targeted therapeutic delivery. © 2017 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.
Collapse
Affiliation(s)
- Alfredo Cappariello
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alexander Loftus
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Maurizio Muraca
- Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Antonio Maurizi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
12
|
Teti A, Econs MJ. Osteopetroses, emphasizing potential approaches to treatment. Bone 2017; 102:50-59. [PMID: 28167345 DOI: 10.1016/j.bone.2017.02.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 12/22/2022]
Abstract
Osteopetroses are a heterogeneous group of rare genetic bone diseases sharing the common hallmarks of reduced osteoclast activity, increased bone mass and high bone fragility. Osteoclasts are bone resorbing cells that contribute to bone growth and renewal through the erosion of the mineralized matrix. Alongside the bone forming activity by osteoblasts, osteoclasts allow the skeleton to grow harmonically and maintain a healthy balance between bone resorption and formation. Osteoclast impairment in osteopetroses prevents bone renewal and deteriorates bone quality, causing atraumatic fractures. Osteopetroses vary in severity and are caused by mutations in a variety of genes involved in bone resorption or in osteoclastogenesis. Frequent signs and symptoms include osteosclerosis, deformity, dwarfism and narrowing of the bony canals, including the nerve foramina, leading to hematological and neural failures. The disease is autosomal, with only one extremely rare form associated so far to the X-chromosome, and can have either recessive or dominant inheritance. Recessive ostepetroses are generally lethal in infancy or childhood, with a few milder forms clinically denominated intermediate osteopetroses. Dominant osteopetrosis is so far associated only with mutations in the CLCN7 gene and, although described as a benign form, it can be severely debilitating, although not at the same level as recessive forms, and can rarely result in reduced life expectancy. Severe osteopetroses due to osteoclast autonomous defects can be treated by Hematopoietic Stem Cell Transplant (HSCT), but those due to deficiency of the pro-osteoclastogenic cytokine, RANKL, are not suitable for this procedure. Likewise, it is unclear as to whether HSCT, which has high intrinsic risks, results in clinical improvement in autosomal dominant osteopetrosis. Therefore, there is an unmet medical need to identify new therapies and studies are currently in progress to test gene and cell therapies, small interfering RNA approach and novel pharmacologic treatments.
Collapse
Affiliation(s)
- Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio-Coppito 2, 67100 L'Aquila, Italy.
| | - Michael J Econs
- Department of Medicine, Indiana University, 1120 W. Michigan St., Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Indiana University, 1120 W. Michigan St., Indianapolis, IN 46202, USA.
| |
Collapse
|
13
|
Abstract
During the last decades, obesity and osteoporosis have become important global health problems, and the belief that obesity is protective against osteoporosis has recently come into question. In fact, some recent epidemiologic and clinical studies have shown that a high level of fat mass might be a risk factor for osteoporosis and fragility fractures. Several potential mechanisms have been proposed to explain the complex relationship between adipose tissue and bone. Indeed, adipose tissue secretes various molecules, named adipokines, which are thought to have effects on metabolic, skeletal and cardiovascular systems. Moreover, fat tissue is one of the major sources of aromatase, an enzyme that synthesizes estrogens from androgen precursors, hormones that play a pivotal role in the maintenance of skeletal homeostasis, protecting against osteoporosis. Moreover, bone cells express several specific hormone receptors and recent observations have shown that bone-derived factors, such as osteocalcin and osteopontin, affect body weight control and glucose homeostasis. Thus, the skeleton is considered an endocrine target organ and an endocrine organ itself, likely influencing other organs as well. Finally, adipocytes and osteoblasts originate from a common progenitor, a pluripotential mesenchymal stem cell, which has an equal propensity for differentiation into adipocytes or osteoblasts (or other lines) under the influence of several cell-derived transcription factors. This review will highlight recent insights into the relationship between fat and bone, evaluating both potential positive and negative influences between adipose and bone tissue. It will also focus on the hypothesis that osteoporosis might be considered the obesity of bone.
Collapse
Affiliation(s)
- Emanuela A. Greco
- Department of Experimental Medicine, Section of Medical Pathophysiology, Endocrinology and Nutrition, ‘Sapienza’ University of Rome, Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Endocrinology and Nutrition, ‘Sapienza’ University of Rome, Rome, Italy
| | - Silvia Migliaccio
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, Section of Health Sciences, ‘Foro Italico’ University of Rome, Largo Lauro De Bosis 15, 00195 Rome, Italy
| |
Collapse
|
14
|
Yan X, Ye TW. Early molecular responses of bone to estrogen deficiency induced by ovariectomy in rats. Int J Clin Exp Med 2015; 8:5470-5477. [PMID: 26131125 PMCID: PMC4483909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/26/2015] [Indexed: 06/04/2023]
Abstract
OBJECTIVE The study was performed to investigate bone deteriorations and the molecular responses of bone to early estrogen deficiency induced by ovariectomy (OVX) in rats. METHODS The female rats were subjected to OVX (4 or 8 week) and sham (4 or 8 week) operation. All rats were killed 4 week or 8 week after the surgical operation. The biomarkers in serum and urine were measured. Hematoxylin & Eosin and tartate-resistant acid phosphatase staining were performed on paraffin-embedded bone sections. Expression of genes and proteins were analyzed by reverse transcription polymerase chain reaction and western blotting respectively. RESULTS The OVX rats showed the decreased level of serum Ca and the increased level of urinary Ca excretion at 8 week post-OVX. The level of PTH and TRACP-5b increased at 4 and 8 week post-OVX. At both 4 and 8 week, FGF-23 was significantly lower in OVX rats than sham rats. The H&E staining showed remarkable bone abnormalities, including increased disconnections and separation of trabecular bone network in proximal metaphysis of tibia at OVX (4 and 8 week) group. In addition, the mRNA expression ratio of OPG/RANKL was reduced in the proximal tibia. The mRNA expression of MMP-9, CAII, EphA2 and ephrinA2, and the protein expression of EphA2 and ephrinA2 were markedly up-regulated in the proximal tibia. Moreover, the mRNA expression of TGF-β, EphB4 and ephrinB2, and the protein expression of EphB4 and ephrinB2 were down-regulated in proximal metaphysis of tibia at OVX group. CONCLUSIONS The endogenous estrogen deficiency was detrimental to bone, and the underlying mechanism was mediated, at least partially, through the local bone Eph/ephrin signaling pathway.
Collapse
Affiliation(s)
- Xu Yan
- Department of Orthopaedics, The 445 Hospital of The Chinese People’s Liberation Army338 West Huaihai Road, Shanghai 200052, China
| | - Tian-Wen Ye
- Department of Orthopaedics, Changzheng Hospital of The Second Military Medical University415 Fengyang Road, Shanghai 200003, China
| |
Collapse
|
15
|
Gao B, Huang Q, Jie Q, Wang L, Zhang HY, Liu J, Yang L, Luo ZJ. Dose-response estrogen promotes osteogenic differentiation via GPR40 (FFAR1) in murine BMMSCs. Biochimie 2015; 110:36-44. [DOI: 10.1016/j.biochi.2015.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/01/2015] [Indexed: 12/11/2022]
|
16
|
Polyzos SA, Makras P, Efstathiadou Z, Anastasilakis AD. Investigational parathyroid hormone receptor analogs for the treatment of osteoporosis. Expert Opin Investig Drugs 2014; 24:145-57. [PMID: 25316089 DOI: 10.1517/13543784.2015.973021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Intermittent parathyroid hormone (PTH) administration, acting through multiple signaling pathways, exerts an osteoanabolic effect on the skeleton that surpasses the effect of other antiosteoporotic agents. However, its efficacy is limited by the coupling effect and relatively common adverse events. Thus, the development of more sophisticated PTH receptor analogs seems imperative. AREAS COVERED In this review, the authors summarize the role of PTH signaling pathway in bone remodeling. The authors also summarize investigational analogs targeting this pathway, which may be potential treatments for osteoporosis. EXPERT OPINION β-arrestins are multifunctional cytoplasmic molecules that are decisive for regulating intracellular PTH signaling. Recently, in preclinical studies, arrestin analogs have achieved the anabolic bone effect of PTH without an accompanying increase in bone resorption. However, it is not yet known whether these analogs have adverse effects and there are no clinical data for their efficacy to date. On the other hand, several molecules derived either from PTH and PTH-related protein (PTHrP) molecules have been developed. Alternative routes of PTH 1 - 34 delivery (oral, transdermal), the PTH analog ostabolin and the N-terminal PTHrP analogs PTHrP 1 - 36 and abaloparatide, have recently been or are currently being tested in clinical trials and are more likely to become available for use in the near future.
Collapse
Affiliation(s)
- Stergios A Polyzos
- Harvard Medical School, Beth Israel Deaconess Medical Center, Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine , Boston, MA , USA
| | | | | | | |
Collapse
|
17
|
Cissé M, Checler F. Eph receptors: new players in Alzheimer's disease pathogenesis. Neurobiol Dis 2014; 73:137-49. [PMID: 25193466 DOI: 10.1016/j.nbd.2014.08.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/01/2014] [Accepted: 08/22/2014] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is devastating and leads to permanent losses of memory and other cognitive functions. Although recent genetic evidences strongly argue for a causative role of Aβ in AD onset and progression (Jonsson et al., 2012), its role in AD etiology remains a matter of debate. However, even if not the sole culprit or pathological trigger, genetic and anatomical evidences in conjunction with numerous pharmacological studies, suggest that Aβ peptides, at least contribute to the disease. How Aβ contributes to memory loss remains largely unknown. Soluble Aβ species referred to as Aβ oligomers have been shown to be neurotoxic and induce network failure and cognitive deficits in animal models of the disease. In recent years, several proteins were described as potential Aβ oligomers receptors, amongst which are the receptor tyrosine kinases of Eph family. These receptors together with their natural ligands referred to as ephrins have been involved in a plethora of physiological and pathological processes, including embryonic neurogenesis, learning and memory, diabetes, cancers and anxiety. Here we review recent discoveries on Eph receptors-mediated protection against Aβ oligomers neurotoxicity as well as their potential as therapeutic targets in AD pathogenesis.
Collapse
Affiliation(s)
- Moustapha Cissé
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS/UNS, "Labex Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France..
| | - Frédéric Checler
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS/UNS, "Labex Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France..
| |
Collapse
|
18
|
Gao B, Huang Q, Lin YS, Wei BY, Guo YS, Sun Z, Wang L, Fan J, Zhang HY, Han YH, Li XJ, Shi J, Liu J, Yang L, Luo ZJ. Dose-dependent effect of estrogen suppresses the osteo-adipogenic transdifferentiation of osteoblasts via canonical Wnt signaling pathway. PLoS One 2014; 9:e99137. [PMID: 24918446 PMCID: PMC4053448 DOI: 10.1371/journal.pone.0099137] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/11/2014] [Indexed: 12/26/2022] Open
Abstract
Fat infiltration within marrow cavity is one of multitudinous features of estrogen deficiency, which leads to a decline in bone formation functionality. The origin of this fat is unclear, but one possibility is that it is derived from osteoblasts, which transdifferentiate into adipocytes that produce bone marrow fat. We examined the dose-dependent effect of 17β-estradiol on the ability of MC3T3-E1 cells and murine bone marrow-derived mesenchymal stem cell (BMMSC)-derived osteoblasts to undergo osteo-adipogenic transdifferentiation. We found that 17β-estradiol significantly increased alkaline phosphatase activity (P<0.05); calcium deposition; and Alp, Col1a1, Runx2, and Ocn expression levels dose-dependently. By contrast, 17β-estradiol significantly decreased the number and size of lipid droplets, and Fabp4 and PPARγ expression levels during osteo-adipogenic transdifferentiation (P<0.05). Moreover, the expression levels of brown adipocyte markers (Myf5, Elovl3, and Cidea) and undifferentiated adipocyte markers (Dlk1, Gata2, and Wnt10b) were also affected by 17β-estradiol during osteo-adipogenic transdifferentiation. Western blotting and immunostaining further showed that canonical Wnt signaling can be activated by estrogen to exert its inhibitory effect of osteo-adipogenesis. This is the first study to demonstrate the dose-dependent effect of 17β-estradiol on the osteo-adipogenic transdifferentiation of MC3T3-E1 cells and BMMSCs likely via canonical Wnt signaling. In summary, our results indicate that osteo-adipogenic transdifferentiation modulated by canonical Wnt signaling pathway in bone metabolism may be a new explanation for the gradually increased bone marrow fat in estrogen-inefficient condition.
Collapse
Affiliation(s)
- Bo Gao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Qiang Huang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Yan-Shui Lin
- Department of Orthopaedics, First Affiliated Hospital, Chengdu Medical College, Chengdu, People’s Republic of China
| | - Bo-Yuan Wei
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Yun-Shan Guo
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Zhen Sun
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Long Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Jing Fan
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Hong-Yang Zhang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Yue-Hu Han
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Xiao-Jie Li
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Jun Shi
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Jian Liu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- * E-mail: (ZJL); (LY); (JL)
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- * E-mail: (ZJL); (LY); (JL)
| | - Zhuo-Jing Luo
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- * E-mail: (ZJL); (LY); (JL)
| |
Collapse
|
19
|
Eph–ephrin bidirectional signalling: A promising approach for osteoporosis treatment. JOURNAL OF MEDICAL HYPOTHESES AND IDEAS 2013. [DOI: 10.1016/j.jmhi.2013.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Cupp ME, Nayak SK, Adem AS, Thomsen WJ. Parathyroid hormone (PTH) and PTH-related peptide domains contributing to activation of different PTH receptor-mediated signaling pathways. J Pharmacol Exp Ther 2013; 345:404-18. [PMID: 23516330 DOI: 10.1124/jpet.112.199752] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Parathyroid hormone (PTH) and parathyroid hormone-related peptide (PTHrP), acting through the osteoblast PTH1 receptor (PTH1R), play important roles in bone remodeling. Intermittent administration of PTH(1-34) (teriparatide) leads to bone formation, whereas continuous administration paradoxically leads to bone resorption. Activation of PTH1R promotes regulation of multiple signaling pathways, including G(s)/cAMP/protein kinase A, G(q)/calcium/protein kinase C, β-arrestin recruitment, and extracellular signal-related kinase (ERK)1/2 phosphorylation, as well as receptor internalization, but their role in promoting anabolic and catabolic actions of PTH(1-34) are unclear. In the present investigation, a collection of PTH(1-34) and PTHrP(1-34) peptide analogs were evaluated in orthogonal human PTH1R (hPTH1R) functional assays capturing G(s)- and G(q)-signaling, β-arrestin recruitment, ERK1/2 phosphorylation, and receptor internalization to further define the patterns of PTH1R signaling that they stimulate and further establish peptide domains contributing to agonist activity. Results indicate that both N- and C-terminal domains of PTH and PTHrP are critical for activation of signaling pathways. However, modifications of both regions lead to more substantial decreases in agonist potency and efficacy to stimulate G(q)-signaling, β-arrestin recruitment, ERK1/2 phosphorylation, and receptor internalization than to stimulate G(s)-signaling. The substantial contribution of the peptide C-terminal domain in activation of hPTH1R signaling suggests a role in positioning of the peptide N-terminal region into the receptor J-domain. Several PTH and PTHrP peptides evaluated in this study promote different patterns of biased agonist signaling and may serve as useful tools to further elucidate therapeutically relevant PTH1R signaling in osteoblasts. With a better understanding of therapeutically relevant signaling, novel biased peptides with desired signaling could be designed for safer and more effective treatment of osteoporosis.
Collapse
Affiliation(s)
- Meghan E Cupp
- Center for Cancer and Metabolic Diseases, SRI International, 140 Research Drive, Harrisonburg, VA 22802, USA
| | | | | | | |
Collapse
|
21
|
Gesty-Palmer D, Yuan L, Martin B, Wood WH, Lee MH, Janech MG, Tsoi LC, Zheng WJ, Luttrell LM, Maudsley S. β-arrestin-selective G protein-coupled receptor agonists engender unique biological efficacy in vivo. Mol Endocrinol 2013; 27:296-314. [PMID: 23315939 DOI: 10.1210/me.2012-1091] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Biased G protein-coupled receptor agonists are orthosteric ligands that possess pathway-selective efficacy, activating or inhibiting only a subset of the signaling repertoire of their cognate receptors. In vitro, D-Trp(12),Tyr(34)-bPTH(7-34) [bPTH(7-34)], a biased agonist for the type 1 PTH receptor, antagonizes receptor-G protein coupling but activates arrestin-dependent signaling. In vivo, both bPTH(7-34) and the conventional agonist hPTH(1-34) stimulate anabolic bone formation. To understand how two PTH receptor ligands with markedly different in vitro efficacy could elicit similar in vivo responses, we analyzed transcriptional profiles from calvarial bone of mice treated for 8 wk with vehicle, bPTH(7-34) or hPTH(1-34). Treatment of wild-type mice with bPTH(7-34) primarily affected pathways that promote expansion of the osteoblast pool, notably cell cycle regulation, cell survival, and migration. These responses were absent in β-arrestin2-null mice, identifying them as downstream targets of β-arrestin2-mediated signaling. In contrast, hPTH(1-34) primarily affected pathways classically associated with enhanced bone formation, including collagen synthesis and matrix mineralization. hPTH(1-34) actions were less dependent on β-arrestin2, as might be expected of a ligand capable of G protein activation. In vitro, bPTH(7-34) slowed the rate of preosteoblast proliferation, enhanced osteoblast survival when exposed to an apoptotic stimulus, and stimulated cell migration in wild-type, but not β-arrestin2-null, calvarial osteoblasts. These results suggest that bPTH(7-34) and hPTH(1-34) affect bone mass in vivo through predominantly separate genomic mechanisms created by largely distinct receptor-signaling networks and demonstrate that functional selectivity can be exploited to change the quality of G protein-coupled receptor efficacy.
Collapse
Affiliation(s)
- Diane Gesty-Palmer
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bohinc BN, Gesty-Palmer D. Arrestins in Bone. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:335-58. [DOI: 10.1016/b978-0-12-394440-5.00013-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
23
|
Regulation of beta catenin signaling and parathyroid hormone anabolic effects in bone by the matricellular protein periostin. Proc Natl Acad Sci U S A 2012; 109:15048-53. [PMID: 22927401 DOI: 10.1073/pnas.1203085109] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Periostin (Postn) is a matricellular protein preferentially expressed by osteocytes and periosteal osteoblasts in response to mechanical stimulation and parathyroid hormone (PTH). Whether and how periostin expression influences bone anabolism, however, remains unknown. We investigated the skeletal response of adult Postn(-/-) and Postn(+/+) mice to intermittent PTH. Compared with Postn(+/+), Postn(-/-) mice had a lower bone mass, cortical bone volume, and strength response to PTH. PTH-stimulated bone-forming indices were all significantly lower in Postn(-/-) mice, particularly at the periosteum. Furthermore, in vivo stimulation of Wnt-β-catenin signaling by PTH, as evaluated in TOPGAL reporter mice, was inhibited in the absence of periostin (TOPGAL;Postn(-/-) mice). PTH stimulated periostin and inhibited MEF2C and sclerostin (Sost) expression in bone and osteoblasts in vitro. Recombinant periostin also suppressed Sost expression, which was mediated through the integrin αVβ3 receptor, whereas periostin-blocking antibody prevented inhibition of MEF2C and Sost by PTH. In turn, administration of a Sost-blocking antiboby partially restored the PTH-mediated increase in bone mass in Postn(-/-) mice. In addition, primary osteoblasts from Postn(-/-) mice showed a lower proliferation, mineralization, and migration, both spontaneously and in response to PTH. Osteoblastic gene expression levels confirmed a defect of Postn(-/-) osteoblast differentiation with and without PTH, as well as an increased osteoblast apoptosis in the absence of periostin. These data elucidate the complex role of periostin on bone anabolism, through the regulation of Sost, Wnt-β-catenin signaling, and osteoblast differentiation.
Collapse
|
24
|
Bonnet N, Conway SJ, Ferrari SL. Regulation of beta catenin signaling and parathyroid hormone anabolic effects in bone by the matricellular protein periostin. Proc Natl Acad Sci U S A 2012. [DOI: 10.107310.1073/pnas.1203085109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Periostin (Postn) is a matricellular protein preferentially expressed by osteocytes and periosteal osteoblasts in response to mechanical stimulation and parathyroid hormone (PTH). Whether and how periostin expression influences bone anabolism, however, remains unknown. We investigated the skeletal response of adult
Postn
−/−
and
Postn
+/+
mice to intermittent PTH. Compared with
Postn
+/+
,
Postn
−/−
mice had a lower bone mass, cortical bone volume, and strength response to PTH. PTH-stimulated bone-forming indices were all significantly lower in
Postn
−/−
mice, particularly at the periosteum. Furthermore, in vivo stimulation of Wnt-β-catenin signaling by PTH, as evaluated in TOPGAL reporter mice, was inhibited in the absence of periostin (
TOPGAL;Postn
−/−
mice). PTH stimulated periostin and inhibited
MEF2C
and sclerostin (Sost) expression in bone and osteoblasts in vitro. Recombinant periostin also suppressed Sost expression, which was mediated through the integrin αVβ3 receptor, whereas periostin-blocking antibody prevented inhibition of
MEF2C
and
Sost
by PTH. In turn, administration of a Sost-blocking antiboby partially restored the PTH-mediated increase in bone mass in
Postn
−/−
mice. In addition, primary osteoblasts from
Postn
−/−
mice showed a lower proliferation, mineralization, and migration, both spontaneously and in response to PTH. Osteoblastic gene expression levels confirmed a defect of
Postn
−/−
osteoblast differentiation with and without PTH, as well as an increased osteoblast apoptosis in the absence of periostin. These data elucidate the complex role of periostin on bone anabolism, through the regulation of Sost, Wnt-β-catenin signaling, and osteoblast differentiation.
Collapse
Affiliation(s)
- Nicolas Bonnet
- Division of Bone Diseases, Department of Rehabilitation and Geriatrics, World Health Organization Collaborating Center for Osteoporosis Prevention, Geneva University Hospital and Faculty of Medicine, Geneva 14, Switzerland; and
| | - Simon J. Conway
- Program in Developmental Biology and Neonatal Medicine, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Serge L. Ferrari
- Division of Bone Diseases, Department of Rehabilitation and Geriatrics, World Health Organization Collaborating Center for Osteoporosis Prevention, Geneva University Hospital and Faculty of Medicine, Geneva 14, Switzerland; and
| |
Collapse
|
25
|
Branstetter DG, Nelson SD, Manivel JC, Blay JY, Chawla S, Thomas DM, Jun S, Jacobs I. Denosumab induces tumor reduction and bone formation in patients with giant-cell tumor of bone. Clin Cancer Res 2012; 18:4415-24. [PMID: 22711702 DOI: 10.1158/1078-0432.ccr-12-0578] [Citation(s) in RCA: 298] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Giant-cell tumor of bone (GCTB) is a locally aggressive, benign osteolytic tumor in which bone destruction is mediated by RANK ligand (RANKL). The RANKL inhibitor denosumab is being investigated for treatment of GCTB. We describe histologic analyses of GCTB tumor samples from a phase II study of denosumab in GCTB. EXPERIMENTAL DESIGN Adult patients with recurrent or unresectable GCTB received subcutaneous denosumab 120 mg every 4 weeks (with additional doses on days 8 and 15). The primary histologic efficacy endpoint was the proportion of patients who had a 90% or more elimination of giant cells from their tumor. Baseline and on-study specimens were also evaluated for overall tumor morphology and expression of RANK and RANKL. RESULTS Baseline tumor samples were typically composed of densely cellular proliferative RANKL-positive tumor stromal cells, RANK-positive rounded mononuclear cells, abundant RANK-positive tumor giant cells, and areas of scant de novo osteoid matrix and woven bone. In on-study samples from 20 of 20 patients (100%), a decrease of 90% or more in tumor giant cells and a reduction in tumor stromal cells were observed. In these analyses, thirteen patients (65%) had an increased proportion of dense fibro-osseous tissue and/or new woven bone, replacing areas of proliferative RANKL-positive stromal cells. CONCLUSIONS Denosumab treatment of patients with GCTB significantly reduced or eliminated RANK-positive tumor giant cells. Denosumab also reduced the relative content of proliferative, densely cellular tumor stromal cells, replacing them with nonproliferative, differentiated, densely woven new bone. Denosumab continues to be studied as a potential treatment for GCTB.
Collapse
|
26
|
Walker EC, Poulton IJ, McGregor NE, Ho PWM, Allan EH, Quach JM, Martin TJ, Sims NA. Sustained RANKL response to parathyroid hormone in oncostatin M receptor-deficient osteoblasts converts anabolic treatment to a catabolic effect in vivo. J Bone Miner Res 2012; 27:902-12. [PMID: 22190112 DOI: 10.1002/jbmr.1506] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Parathyroid hormone (PTH) is the only approved anabolic agent for osteoporosis treatment. It acts via osteoblasts to stimulate both osteoclast formation and bone formation, with the balance between these two activities determined by the mode of administration. Oncostatin M (OSM), a gp130-dependent cytokine expressed by osteoblast lineage cells, has similar effects and similar gene targets in the osteoblast lineage. In this study, we investigated whether OSM might participate in anabolic effects of PTH. Microarray analysis and quantitative real-time polymerase chain reaction (qPCR) of PTH-treated murine stromal cells and primary calvarial osteoblasts identified significant regulation of gp130 and gp130-dependent coreceptors and ligands, including a significant increase in OSM receptor (OSMR) expression. To determine whether OSMR signaling is required for PTH anabolic action, 6-week-old male Osmr(-/-) mice and wild-type (WT) littermates were treated with hPTH(1-34) for 3 weeks. In WT mice, PTH increased trabecular bone volume and trabecular thickness. In contrast, the same treatment had a catabolic effect in Osmr(-/-) mice, reducing both trabecular bone volume and trabecular number. This was not explained by any alteration in the increased osteoblast formation and mineral apposition rate in response to PTH in Osmr(-/-) compared with WT mice. Rather, PTH treatment doubled osteoclast surface in Osmr(-/-) mice, an effect not observed in WT mice. Consistent with this finding, when osteoclast precursors were cultured in the presence of osteoblasts, more osteoclasts were formed in response to PTH when Osmr(-/-) osteoblasts were used. Neither PTH1R mRNA levels nor cAMP response to PTH were modified in Osmr(-/-) osteoblasts. However, RANKL induction in PTH-treated Osmr(-/-) osteoblasts was sustained at least until 24 hours after PTH exposure, an effect not observed in WT osteoblasts. These data indicate that the transient RANKL induction by intermittent PTH administration, which is associated with its anabolic action, is changed to a prolonged induction in OSMR-deficient osteoblasts, resulting in bone destruction.
Collapse
Affiliation(s)
- Emma C Walker
- St. Vincent's Institute of Medical Research, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Matsuo K, Otaki N. Bone cell interactions through Eph/ephrin: bone modeling, remodeling and associated diseases. Cell Adh Migr 2012; 6:148-56. [PMID: 22660185 PMCID: PMC3499314 DOI: 10.4161/cam.20888] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bones cannot properly form or be maintained without cell-cell interactions through ephrin ligands and Eph receptors. Cell culture analysis and evaluation of genetic mouse models and human diseases reveal various ephrins and Eph functions in the skeletal system. Migration, attachment and spreading of mesenchymal stem cells are regulated by ephrinB ligands and EphB receptors. ephrinB1 loss-of-function is associated with craniofrontonasal syndrome (CFNS) in humans and mice. In bone remodeling, ephrinB2 is postulated to act as a “coupling stimulator.” In that case, bidirectional signaling between osteoclastic ephrinB2 and osteoblastic EphB4 suppresses osteoclastic bone resorption and enhances osteoblastic bone formation, facilitating the transition between these two states. Parathyroid hormone (PTH) induces ephrinB2 in osteoblasts and enhances osteoblastic bone formation. In contrast to ephrinB2, ephrinA2 acts as a “coupling inhibitor,” since ephrinA2 reverse signaling into osteoclasts enhances osteoclastogenesis and EphA2 forward signaling into osteoblasts suppresses osteoblastic bone formation and mineralization. Furthermore, ephrins and Ephs likely modulate pathological conditions such as osteoarthritis, rheumatoid arthritis, multiple myeloma and osteosarcoma. This review focuses on ephrin/Eph-mediated cell-cell interactions in bone biology.
Collapse
Affiliation(s)
- Koichi Matsuo
- Laboratory of Cell and Tissue Biology, School of Medicine, Keio University, Tokyo, Japan.
| | | |
Collapse
|
28
|
Gesty-Palmer D, Luttrell LM. 'Biasing' the parathyroid hormone receptor: a novel anabolic approach to increasing bone mass? Br J Pharmacol 2011; 164:59-67. [PMID: 21506957 PMCID: PMC3171860 DOI: 10.1111/j.1476-5381.2011.01450.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 03/10/2011] [Indexed: 01/14/2023] Open
Abstract
'Functional selectivity' refers to the ability of a ligand to activate and/or inhibit only a subset of the signals capable of emanating from its cognate G-protein-coupled receptor (GPCR). Whereas conventional GPCR agonism and antagonism can be viewed as modulating the quantity of efficacy, functionally selective or 'biased' ligands qualitatively change the nature of information flow across the plasma membrane, raising the prospect of drugs with improved therapeutic efficacy or reduced side effects. Nonetheless, there is little experimental evidence that biased ligands offer advantages over conventional agonists/antagonists in vivo. Recent work with the type I parathyroid hormone receptor (PTH(1) R) suggests that biased ligands that selectively activate G-protein-independent arrestin-mediated signalling pathways may hold promise in the treatment of osteoporosis. Parathyroid hormone (PTH) is a principle regulator of bone and calcium metabolism. In bone, PTH exerts complex effects; promoting new bone formation through direct actions on osteoblasts while simultaneously stimulating bone loss through indirect activation of osteoclastic bone resorption. Although the conventional PTH(1) R agonist teriparatide, PTH(1-34), is effective in the treatment of osteoporosis, its utility is limited by its bone-resorptive effects and propensity to promote hypercalcaemia/hypercalcuria. In contrast, d-Trp(12) ,Tyr(34) -bPTH(7-34) (PTH-βarr), an arrestin pathway-selective agonist for the PTH(1) R, induces anabolic bone formation independent of classic G-protein-coupled signalling mechanisms. Unlike PTH(1-34), PTH-βarr appears to 'uncouple' the anabolic effects of PTH(1) R activation from its catabolic and calcitropic effects. Such findings offer evidence that arrestin pathway-selective GPCR agonists can elicit potentially beneficial effects in vivo that cannot be achieved using conventional agonist or antagonist ligands.
Collapse
Affiliation(s)
- Diane Gesty-Palmer
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
29
|
Chiang TI, Chang IC, Lee HS, Lee H, Huang CH, Cheng YW. Osteopontin regulates anabolic effect in human menopausal osteoporosis with intermittent parathyroid hormone treatment. Osteoporos Int 2011; 22:577-85. [PMID: 20734029 DOI: 10.1007/s00198-010-1327-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 05/14/2010] [Indexed: 01/16/2023]
Abstract
UNLABELLED In this pilot study, we demonstrated that women with osteopontin (OPN) over-expression show less resistance to postmenopausal osteoporosis than women with normal OPN levels. We hypothesized that the levels of plasma OPN could be used as a treatment indicator for intermittent parathyroid hormone (PTH)-treated menopausal osteoporosis. We demonstrated that plasma OPN levels could be used as a biomarker for early treatment response. INTRODUCTION Animal studies indicate that OPN-deficient mice are resistant to ovariectomy induced osteoporosis. Our pilot study also demonstrated women with OPN over expression may show less resistance to postmenopausal osteoporosis. The role of plasma OPN in PTH1-34-treated osteoporosis remains unclear. METHODS From September 2005 to September 2006, 31 menopausal women over 45 years of age with severe osteoporosis were enrolled in our study. Subjects were treated with PTH1-34 subcutaneously at a dose of 20 μg/day. Plasma OPN levels and BMD of the lumbar spine and hip were measured using ELISA and dual-energy X-ray absorptiometry at baseline, 3, 6, and 9 months. Response to the treatment was assessed by the sequential change in bone mineral density and OPN expression using a general linear mixed model. RESULTS The plasma OPN decreased sequentially and significantly throughout the 9-month treatment course from 20.75 ± 5.36 to 11.2 ± 4.37 ng/ml (p < 0.001). The sequential improvement in the T-score and Z-score was significant in the lumbar spine but not in the hip area. In the lumbar spine, when the plasma OPN decreased by 1 ng/ml the T-score increased by 0.0406 and the Z-score increased by 0.0572 of lumbar spine. CONCLUSION OPN levels are related to the anabolic effect of PTH in human postmenopausal osteoporosis. Plasma OPN levels could be used as a biomarker for early treatment response.
Collapse
Affiliation(s)
- T-I Chiang
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo, N. Rd, Taichung, 40201, Taiwan
| | | | | | | | | | | |
Collapse
|
30
|
Whalen EJ, Rajagopal S, Lefkowitz RJ. Therapeutic potential of β-arrestin- and G protein-biased agonists. Trends Mol Med 2010; 17:126-39. [PMID: 21183406 DOI: 10.1016/j.molmed.2010.11.004] [Citation(s) in RCA: 428] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 11/13/2010] [Accepted: 11/17/2010] [Indexed: 12/21/2022]
Abstract
Members of the seven-transmembrane receptor (7TMR), or G protein-coupled receptor (GPCR), superfamily represent some of the most successful targets of modern drug therapy, with proven efficacy in the treatment of a broad range of human conditions and disease processes. It is now appreciated that β-arrestins, once viewed simply as negative regulators of traditional 7TMR-stimulated G protein signaling, act as multifunctional adapter proteins that regulate 7TMR desensitization and trafficking and promote distinct intracellular signals in their own right. Moreover, several 7TMR biased agonists, which selectively activate these divergent signaling pathways, have been identified. Here we highlight the diversity of G protein- and β-arrestin-mediated functions and the therapeutic potential of selective targeting of these in disease states.
Collapse
Affiliation(s)
- Erin J Whalen
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
31
|
Mathurin K, Gallant MA, Germain P, Allard-Chamard H, Brisson J, Iorio-Morin C, de Brum Fernandes A, Caron MG, Laporte SA, Parent JL. An interaction between L-prostaglandin D synthase and arrestin increases PGD2 production. J Biol Chem 2010; 286:2696-706. [PMID: 21112970 DOI: 10.1074/jbc.m110.178277] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
L-type prostaglandin synthase (L-PGDS) produces PGD(2), a lipid mediator involved in neuromodulation and inflammation. Here, we show that L-PGDS and arrestin-3 (Arr3) interact directly and can be co-immunoprecipitated endogenously from MG-63 osteoblasts. Perinuclear L-PGDS/Arr3 co-localization is observed in PGD(2)-producing MG-63 cells and is induced by the addition of the L-PGDS substrate or co-expression of COX-2 in HEK293 cells. Inhibition of L-PGDS activity in MG-63 cells triggers redistribution of Arr3 and L-PGDS to the cytoplasm. Perinuclear localization of L-PGDS is detected in wild-type mouse embryonic fibroblasts (MEFs) but is more diffused in MEFs-arr-2(-/-)-arr-3(-/-). Arrestin-3 promotes PGD(2) production by L-PGDS in vitro. IL-1β-induced PGD(2) production is significantly lower in MEFs-arr-2(-/-)-arr-3(-/-) than in wild-type MEFs but can be rescued by expressing Arr2 or Arr3. A peptide corresponding to amino acids 86-100 of arrestin-3 derived from its L-PGDS binding domain stimulates L-PGDS-mediated PGD(2) production in vitro and in MG-63 cells. We report the first characterization of an interactor/modulator of a PGD(2) synthase and the identification of a new function for arrestin, which may open new opportunities for improving therapies for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Karine Mathurin
- Service de Rhumatologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pierroz DD, Bonnet N, Baldock PA, Ominsky MS, Stolina M, Kostenuik PJ, Ferrari SL. Are osteoclasts needed for the bone anabolic response to parathyroid hormone? A study of intermittent parathyroid hormone with denosumab or alendronate in knock-in mice expressing humanized RANKL. J Biol Chem 2010; 285:28164-73. [PMID: 20558734 PMCID: PMC2934681 DOI: 10.1074/jbc.m110.101964] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 06/01/2010] [Indexed: 12/31/2022] Open
Abstract
PTH stimulates osteoblastic cells to form new bone and to produce osteoblast-osteoclast coupling factors such as RANKL. Whether osteoclasts or their activity are needed for PTH anabolism remains uncertain. We treated ovariectomized huRANKL knock-in mice with a human RANKL inhibitor denosumab (DMAb), alendronate (Aln), or vehicle for 4 weeks, followed by co-treatment with intermittent PTH for 4 weeks. Loss of bone mass and microarchitecture was prevented by Aln and further significantly improved by DMAb. PTH improved bone mass, microstructure, and strength, and was additive to Aln but not to DMAb. Aln inhibited biochemical and histomorphometrical indices of bone turnover,--i.e. osteocalcin and bone formation rate (BFR) on cancellous bone surfaces-, and Dmab inhibited them further. However Aln increased whereas Dmab suppressed osteoclast number and surfaces. PTH significantly increased osteocalcin and bone formation indices, in the absence or presence of either antiresorptive, although BFR remained lower in presence of Dmab. To further evaluate PTH effects in the complete absence of osteoclasts, high dose PTH was administered to RANK(-/-) mice. PTH increased osteocalcin similarly in RANK(-/-) and WT mice. It also increased BMD in RANK(-/-) mice, although less than in WT. These results further indicate that osteoclasts are not strictly required for PTH anabolism, which presumably still occurs via stimulation of modeling-based bone formation. However the magnitude of PTH anabolic effects on the skeleton, in particular its additive effects with antiresorptives, depends on the extent of the remodeling space, as determined by the number and activity of osteoclasts on bone surfaces.
Collapse
Affiliation(s)
- Dominique D. Pierroz
- From the Service of Bone Diseases, Department of Rehabilitation and Geriatrics, Geneva University Hospital and Faculty of Medicine, 1211 Geneva 14, Switzerland
| | - Nicolas Bonnet
- From the Service of Bone Diseases, Department of Rehabilitation and Geriatrics, Geneva University Hospital and Faculty of Medicine, 1211 Geneva 14, Switzerland
| | - Paul A. Baldock
- the Bone and Mineral Program, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, New South Wales 2010, Australia, and
| | - Michael S. Ominsky
- the Metabolic Disorders Research, Amgen Inc., Thousand Oaks, California 91320
| | - Marina Stolina
- the Metabolic Disorders Research, Amgen Inc., Thousand Oaks, California 91320
| | - Paul J. Kostenuik
- the Metabolic Disorders Research, Amgen Inc., Thousand Oaks, California 91320
| | - Serge L. Ferrari
- From the Service of Bone Diseases, Department of Rehabilitation and Geriatrics, Geneva University Hospital and Faculty of Medicine, 1211 Geneva 14, Switzerland
| |
Collapse
|
33
|
Sims NA. EPHs and ephrins: Many pathways to regulate osteoblasts and osteoclasts. ACTA ACUST UNITED AC 2010. [DOI: 10.1138/20100463] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Ferrari SL, Bouxsein ML. Beta-arrestin-biased parathyroid hormone ligands: a new approach to the development of agents that stimulate bone formation. Sci Transl Med 2010; 1:1ps1. [PMID: 20368152 DOI: 10.1126/scitranslmed.3000268] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Because daily treatment with parathyroid hormone (PTH) increases bone mass and decreases fracture risk, physicians use this agent to treat osteoporosis. However, PTH stimulates both bone-forming and bone-resorbing cells, complicating its clinical use. New results show that, in mice, a so-called biased agonist (PTH-betaarr) that selectively activates beta-arrestin -dependent signaling leads to PTH-induced trabecular bone formation without a simultaneous increase in bone resorption. This targeted approach may pave the way for future pharmacological developments in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Serge L Ferrari
- Service of Bone Diseases, World Health Organization Collaborating Center for Osteoporosis Prevention, Department of Rehabilitation and Geriatrics, Geneva University Hospital, Geneva, Switzerland
| | | |
Collapse
|
35
|
Luttrell LM, Gesty-Palmer D. Beyond desensitization: physiological relevance of arrestin-dependent signaling. Pharmacol Rev 2010; 62:305-30. [PMID: 20427692 PMCID: PMC2879915 DOI: 10.1124/pr.109.002436] [Citation(s) in RCA: 304] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Heptahelical G protein-coupled receptors are the most diverse and therapeutically important family of receptors in the human genome. Ligand binding activates heterotrimeric G proteins that transmit intracellular signals by regulating effector enzymes or ion channels. G protein signaling is terminated, in large part, by arrestin binding, which uncouples the receptor and G protein and targets the receptor for internalization. It is clear, however, that heptahelical receptor signaling does not end with desensitization. Arrestins bind a host of catalytically active proteins and serve as ligand-regulated scaffolds that recruit protein and lipid kinase, phosphatase, phosphodiesterase, and ubiquitin ligase activity into the receptor-arrestin complex. Although many of these arrestin-bound effectors serve to modulate G protein signaling, degrading second messengers and regulating endocytosis and trafficking, other signals seem to extend beyond the receptor-arrestin complex to regulate such processes as protein translation and gene transcription. Although these findings have led to a re-envisioning of heptahelical receptor signaling, little is known about the physiological roles of arrestin-dependent signaling. In vivo, the duality of arrestin function makes it difficult to dissociate the consequences of arrestin-dependent desensitization from those that might be ascribed to arrestin-mediated signaling. Nonetheless, recent evidence generated using arrestin knockouts, G protein-uncoupled receptor mutants, and arrestin pathway-selective "biased agonists" is beginning to reveal that arrestin signaling plays important roles in the retina, central nervous system, cardiovascular system, bone remodeling, immune system, and cancer. Understanding the signaling roles of arrestins may foster the development of pathway-selective drugs that exploit these pathways for therapeutic benefit.
Collapse
Affiliation(s)
- Louis M Luttrell
- Department of Medicine, Medical University of South Carolina, USA
| | | |
Collapse
|
36
|
Bianchi EN, Ferrari SL. Beta-arrestin2 regulates parathyroid hormone effects on a p38 MAPK and NFkappaB gene expression network in osteoblasts. Bone 2009; 45:716-25. [PMID: 19560570 PMCID: PMC2741591 DOI: 10.1016/j.bone.2009.06.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/09/2009] [Accepted: 06/19/2009] [Indexed: 01/13/2023]
Abstract
Interaction of the cytoplasmic adaptor molecule beta-arrestin2 with the activated parathyroid hormone (PTH)/PTHrP receptor inhibits G protein mediated signaling and triggers MAPKs signaling. In turn, the effects of both intermittent (i.) and continuous (c.) PTH on bone are altered in beta-arrestin2-deficient (Arrb2(-/-)) mice. To elucidate the expression profile of bone genes responsive to PTH and targeted for regulation by beta-arrestin2, we performed microarray analysis using total RNA from primary osteoblastic cells isolated from wild-type (WT) and Arrb2(-/-) mice. By comparing gene expression profiles in cells exposed to i.PTH, c.PTH or vehicle (Veh) for 2 weeks, we found that i.PTH specifically up-regulated 215 sequences (including beta-arrestin2) and down-regulated 200 sequences in WT cells, about two-thirds of them being under the control of beta-arrestin2. In addition, beta-arrestin2 appeared necessary to the down-regulation of a genomic cluster coding for small leucin-rich proteins (SLRPs) including osteoglycin, osteomodulin and asporin. Pathway analyses identified a main gene network centered on p38 MAPK and NFkappaB that requires beta-arrestin2 for up- or down-regulation by i.PTH, and a smaller network of PTH-regulated genes centered on TGFB1, that is normally repressed by beta-arrestin2. In contrast the expression of some known PTH gene targets regulated by the cAMP/PKA pathway was not affected by the presence or absence of beta-arrestin2 in osteoblasts. These results indicate that beta-arrestin2 targets prominently p38 MAPK- and NFkappaB-dependent expression in osteoblasts exposed to i.PTH, and delineates new molecular mechanisms to explain the anabolic and catabolic effects of PTH on bone.
Collapse
Affiliation(s)
- Estelle N Bianchi
- Department of Rehabilitation and Geriatrics, WHO Center for Osteoporosis Prevention, Geneva University Hospitals and University of Geneva, Faculty of Medicine, Switzerland.
| | | |
Collapse
|