1
|
Bolignano D, Greco M, Arcidiacono V, Tripolino O, Vita C, Provenzano M, Donato C, Chiarella S, Fuiano G, De Sarro G, Russo E, Andreucci M, Foti DP, Coppolino G. Cathepsin-K is a potential cardiovascular risk biomarker in prevalent hemodialysis patients. Int Urol Nephrol 2020; 53:171-175. [PMID: 32794117 DOI: 10.1007/s11255-020-02602-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/04/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE Cardiovascular (CV) disease remains the leading cause of mortality among end-stage kidney disease (ESKD) patients. Cathepsin-K (CatK), a small cysteine protease involved in bone and extracellular matrix remodeling, has recently emerged as a key-factor in the pathogenesis of various conditions predisposing to CV disease, including atherosclerosis, obesity, diabetes, and vascular calcification. In this pilot prospective study, we aimed at evaluating the clinical significance and the predictive power of CatK in a small cohort of hemodialysis (HD) patients. METHODS Cathepsin-K was measured in 54 prevalent HD patients and in 30 controls together with routine parameters. Patients were then followed up to 26 months and the time of cardiovascular death (endpoint of the study prospective phase) recorded. RESULTS CatK levels were increased in the HD cohort as compared with controls (p < 0.001). In HD patients, CatK was also independently correlated to PTH (β = 0.368; p = 0.001), alkaline phosphatase (β = 0.383; p < 0.001), C-reactive protein (β = 0.260; p = 0.01), and white cell count (β = - 0.219; p = 0.02). After baseline assessment, patients were followed for CV death (mean follow-up 24.8 ± 3.1 months). Kaplan-Meier analysis showed a worsen survival (log-rank p = 0.04) in HD patients with CatK levels > 440 pg/mL (best ROC-derived cut-off with 69.6% sensitivity and 79.8% specificity) with a crude HR (Mantel-Haenszel) of CV death of 3.46 (95% CI 1.89-13.44). CONCLUSIONS In prevalent HD patients, altered CatK levels may reflect mineral dysmetabolism and inflammation, and predict CV death in the mid-term. These preliminary findings prompt the rationale for further investigations on larger cohorts to validate CatK as a biomarker for improving CV risk stratification in ESKD.
Collapse
Affiliation(s)
- Davide Bolignano
- Renal Unit, "Magna Graecia" University, Campus Salvatore Venuta, Viale Europa, Catanzaro, 88100, Italy.
| | - Marta Greco
- Division of Clinical Pathology, "Magna Graecia" University, Catanzaro, Italy
| | - Valentina Arcidiacono
- Renal Unit, "Magna Graecia" University, Campus Salvatore Venuta, Viale Europa, Catanzaro, 88100, Italy
| | - Omar Tripolino
- Division of Clinical Pathology, "Magna Graecia" University, Catanzaro, Italy
| | - Caterina Vita
- Renal Unit, "Magna Graecia" University, Campus Salvatore Venuta, Viale Europa, Catanzaro, 88100, Italy
| | - Michele Provenzano
- Renal Unit, "Magna Graecia" University, Campus Salvatore Venuta, Viale Europa, Catanzaro, 88100, Italy
| | - Cinzia Donato
- Renal Unit, "Pugliese-Ciaccio" Hospital of Catanzaro, Catanzaro, Italy
| | | | - Giorgio Fuiano
- Renal Unit, "Magna Graecia" University, Campus Salvatore Venuta, Viale Europa, Catanzaro, 88100, Italy
| | | | - Emilio Russo
- Pharmacology Unit, "Magna Graecia" University, Catanzaro, Italy
| | - Michele Andreucci
- Renal Unit, "Magna Graecia" University, Campus Salvatore Venuta, Viale Europa, Catanzaro, 88100, Italy
| | | | - Giuseppe Coppolino
- Renal Unit, "Magna Graecia" University, Campus Salvatore Venuta, Viale Europa, Catanzaro, 88100, Italy
| |
Collapse
|
2
|
Bobek J, Oralova V, Lesot H, Kratochvilova A, Doubek J, Matalova E. Onset of calciotropic receptors during the initiation of mandibular/alveolar bone formation. Ann Anat 2019; 227:151427. [PMID: 31614180 DOI: 10.1016/j.aanat.2019.151427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
Mandibular/alveolar (m/a) bone, as a component of the periodontal apparatus, allows for the proper tooth anchorage and function of dentition. Bone formation around the tooth germs starts prenatally and, in the mouse model, the mesenchymal condensation turns into a complex vascularized bone (containing osteo-blasts, -cytes, -clasts) within only two days. This very short but critical period is characterized by synchronized cellular and molecular events. The m/a bone, as others, is subjected to endocrine regulations. This not only requires vasculature to allow the circulation of active molecules (ligands), but also the expression of corresponding cell receptors to define target tissues. This contribution aimed at following the dynamics of calciotropic receptors´ expression during morphological transformation of a mesenchymal condensation into the initial m/a bone structure. Receptors for all three calciotropic systemic regulators: parathormone, calcitonin and activated vitamin D (calcitriol), were localized on serial histological sections using immunochemistry and their relative expression was quantified by q-PCR. The onset of calciotropic receptors was followed along with bone cell differentiation (as checked using osteocalcin, sclerostin, RANK and TRAP) and vascularization (CD31) during mouse prenatal/embryonic (E) days 13-15 and 18. Additionally, the timing of calciotropic receptor appearance was compared with that of estrogen receptors (ESR1, ESR2). PTH receptor (PTH1r) appeared in the bone already at E13, when the first osteocalcin-positive cells were detected within the mesenchymal condensation forming the bone anlage. At this stage, blood vessels were only lining the condensation. At E14, the osteoblasts started to express the receptor for activated vitamin D (VDR). At this stage, the vasculature just penetrated the forming bone. On the same day, the first TRAP-positive (but not yet multinucleated) osteoclastic cells were identified. However, calcitonin receptor was detected only one day later. The first Sost-positive osteocytes, present at E15, were PTH1r and VDR positive. ESR1 almost copied the expression pattern of PTH1r, and ESR2 appearance was similar with VDR with a significant increase between E15 and E18. This report focuses on the in vivo situation and links morphological transformation of the mesenchymal cell condensation into a bone structure with dynamics of cell differentiation/maturation, vascularization and onset of receptors for calciotropic endocrine signalling in developing m/a bone.
Collapse
Affiliation(s)
- Jan Bobek
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czech Republic
| | - Veronika Oralova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czech Republic
| | - Herve Lesot
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czech Republic; Department of Biology, University of Ghent, Ghent, Belgium
| | - Adela Kratochvilova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czech Republic
| | - Jaroslav Doubek
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Eva Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czech Republic; Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic.
| |
Collapse
|
3
|
McGonnell IM, Akbareian SE. Like a hole in the head: Development, evolutionary implications and diseases of the cranial foramina. Semin Cell Dev Biol 2018; 91:23-30. [PMID: 30385045 DOI: 10.1016/j.semcdb.2018.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 08/11/2018] [Accepted: 08/27/2018] [Indexed: 12/25/2022]
Abstract
Cranial foramina are holes in the skull through which nerves and blood vessels pass to reach both deep and superficial tissues. They are often overlooked in the literature; however they are complex structures that form within the developing cranial bones during embryogenesis and then remain open throughout life, despite the bone surrounding them undergoing constant remodelling. They are invaluable in assigning phylogeny in the fossil record and their size has been used, by some, to imply function of the nerve and/or blood vessel that they contained. Despite this, there are very few studies investigating the development or normal function of the cranial foramina. In this review, we will discuss the development of the cranial foramina and their subsequent maintenance, highlighting key gaps in the knowledge. We consider whether functional interpretations can be made from fossil material given a lack of knowledge regarding their contents and maintenance. Finally, we examine the significant role of malformation of foramina in congenital diseases such as craniosynostosis.
Collapse
Affiliation(s)
- Imelda M McGonnell
- Dept. Comparative Biomedical Sciences, Royal Veterinary College, Royal College St, London, NW1 0TU, United Kingdom.
| | - Sophia E Akbareian
- Dept. Comparative Biomedical Sciences, Royal Veterinary College, Royal College St, London, NW1 0TU, United Kingdom
| |
Collapse
|
4
|
Kamel SA, Yee JA. Continuous and intermittent exposure of neonatal rat calvarial cells to PTHrP (1-36) inhibits bone nodule mineralization in vitro by downregulating bone sialoprotein expression via the cAMP signaling pathway. F1000Res 2014; 2:77. [PMID: 24555046 PMCID: PMC3901507 DOI: 10.12688/f1000research.2-77.v2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/10/2013] [Indexed: 11/20/2022] Open
Abstract
The development and growth of the skeleton in the absence of parathyroid-hormone-related protein (PTHrP) is abnormal. The shortening of appendicular bones in PTHrP gene null mice is explained by an effect of PTHrP on endochondral bone growth. Whether or not PTHrP influences intramembranous ossification is less clear. The purpose of this study was to determine the effect of exogenous PTHrP on intramembranous ossification
in vitro. Neonatal rat calvarial cells maintained in primary cell culture conditions that permit spontaneous formation of woven bone nodules by intramembranous ossification were studied. The expression of PTHrP, parathyroid hormone 1 receptor (PTH1R), and alkaline phosphatase (AP) by osteogenic cells in developing nodules and the effects of PTHrP (1-36) on nodule development was determined over 3-18 days. PTHrP and PTH1R were detected colonies of osteogenic cells on culture day three, and AP was detected on day six. PTHrP and its receptor were localized in pre-osteoblasts, osteoblasts, and osteocytes, and AP activity was detected in pre-osteoblasts and osteoblasts but not osteocytes. Continuous and intermittent exposure to PTHrP (1-36) decreased the number of mineralized bone nodules and bone sialoprotein (BSP) mRNA and protein, but had no effect on the number of AP-positive osteogenic cell colonies, cell proliferation, apoptosis, or osteopontin (OPN) mRNA. These results demonstrate that osteogenic cells that participate in the formation of woven bone nodules
in vitro exhibit PTHrP and PTH1R before they demonstrate AP activity. Exogenous PTHrP (1-36) inhibits the mineralization of woven bone deposited during bone nodule formation
in vitro, possibly by reducing the expression of BSP.
Collapse
Affiliation(s)
- Suzan A Kamel
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, 68178, USA ; Department of Medical Physiology, School of Medicine, Assiut University, Asyut, 71516, Egypt
| | - John A Yee
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, 68178, USA
| |
Collapse
|
5
|
Ganburged G, Suda N, Saito M, Yamazaki Y, Isokawa K, Moriyama K. Dilated capillaries, disorganized collagen fibers and differential gene expression in periodontal ligaments of hypomorphic fibrillin-1 mice. Cell Tissue Res 2010; 341:381-95. [PMID: 20714769 DOI: 10.1007/s00441-010-1021-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 07/13/2010] [Indexed: 01/01/2023]
Abstract
The periodontal ligaments (PDLs) are soft connective tissue between the cementum covering the tooth root surface and alveolar bone. PDLs are composed of collagen and elastic system fibers, blood vessels, nerves, and various types of cells. Elastic system fibers are generally formed by elastin and microfibrils, but PDLs are mainly composed of the latter. Compared with the well-known function of collagen fibers to support teeth, little is known about the role of elastic system fibers in PDLs. To clarify their role, we examined PDLs of mice under-expressing fibrillin-1 (mgR mice), which is one of the major microfibrillar proteins. The PDLs of homozygous mgR mice showed one-quarter of the elastic system fibers of wild-type (WT) mice. A close association between the elastic system fibers and the capillaries was noted in WT, homozygous and heterozygous mgR mice. Interestingly, capillaries in PDLs of homozygous mice were dilated or enlarged compared with those of WT mice. A comparable level of type I collagen, which is the major collagen in PDLs, was expressed in PDL-cells of mice with three genotypes. However, multi-oriented collagen fiber bundles with a thinner appearance were noted in homozygous mice, whereas well-organized collagen fiber bundles were seen in WT mice. Moreover, there was a marked decrease in periostin expression, which is known to regulate the fibrillogenesis and crosslinking of collagen. These observations suggest that the microfibrillar protein, fibrillin-1, is indispensable for normal tissue architecture and gene expression of PDLs.
Collapse
Affiliation(s)
- Ganjargal Ganburged
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Lau KHW, Gysin R, Chen ST, Wergedal JE, Baylink DJ, Mohan S. Marrow stromal cell-based cyclooxygenase 2 ex vivo gene-transfer strategy surprisingly lacks bone-regeneration effects and suppresses the bone-regeneration action of bone morphogenetic protein 4 in a mouse critical-sized calvarial defect model. Calcif Tissue Int 2009; 85:356-67. [PMID: 19763374 DOI: 10.1007/s00223-009-9282-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 08/02/2009] [Indexed: 10/20/2022]
Abstract
This study evaluated whether the murine leukemia virus (MLV)-based cyclooxygenase-2 (Cox-2) ex vivo gene-transfer strategy promotes healing of calvarial defects and/or synergistically enhances bone morphogenetic protein (BMP) 4-mediated bone regeneration. Gelatin scaffolds impregnated with mouse marrow stromal cells (MSCs) transduced with MLV-expressing BMP4, Cox-2, or a control gene were implanted into mouse calvarial defects. Bone regeneration was assessed by X-ray, dual-energy X-ray absorptiometry, and histology. In vitro, Cox-2 or prostanglandin E(2) enhanced synergistically the osteoblastic differentiation action of BMP4 in mouse MSCs. In vivo, implantation of BMP4-expressing MSCs yielded massive bone regeneration in calvarial defects after 2 weeks, but the Cox-2 strategy surprisingly did not promote bone regeneration even after 4 weeks. Staining for alkaline phosphatase (ALP)-expressing osteoblasts was strong throughout the defect of animals receiving BMP2/4-expressing cells, but defects receiving Cox-2-expressing cells displayed weak ALP staining along the edge of original intact bone, indicating that the Cox-2 strategy lacked bone-regeneration effects. The Cox-2 strategy not only lacked bone-regeneration effects but also suppressed the BMP4-induced bone regeneration. In vitro coculture of Cox-2-expressing MSCs with BMP4-expressing MSCs in gelatin scaffolds reduced BMP4 mRNA transcript levels, suggesting that Cox-2 may promote BMP4 gene silencing in BMP4-expressing cells, which may play a role in the suppressive action of Cox-2 on BMP4-mediated bone formation. In summary, the Cox-2 ex vivo gene-transfer strategy not only lacks bone-regeneration effects but also suppresses the bone-regeneration action of BMP4 in healing of calvarial defects.
Collapse
Affiliation(s)
- K-H William Lau
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial VA Medical Center, 11201 Benton Street, Loma Linda, CA 92357, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Yagi Y, Suda N, Yamakoshi Y, Baba O, Moriyama K. In vivo application of amelogenin suppresses root resorption. J Dent Res 2009; 88:176-81. [PMID: 19278991 DOI: 10.1177/0022034508329451] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Amelogenin is recognized as an enamel protein associated with enamel formation. Besides this well-known function, remarkable root resorption has been seen in amelogenin-null mutant mice. Moreover, in vitro culture studies showed that amelogenin suppressed osteoclast differentiation. These studies raised the hypothesis that amelogenin can inhibit root resorption by reducing odontoclast number. To examine this hypothesis, we applied porcine amelogenins in a rat root resorption model, in which maxillary first molars were replanted after being air-dried. Compared with untreated and carrier-treated tooth roots, the application dramatically reduced the odontoclast number on root surfaces and inhibited cementum and root dentin resorption. Amelogenin significantly reduced the number of human odontoclastic cells in culture. It also inhibited RANKL expression in mouse bone marrow cell cultures. All these findings support our hypothesis that amelogenin application suppresses root resorption by inhibiting odontoclast number, and suggest that this is mediated by the regulation of RANKL expression.
Collapse
Affiliation(s)
- Y Yagi
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | | | | | | | | |
Collapse
|
8
|
Abzhanov A, Rodda SJ, McMahon AP, Tabin CJ. Regulation of skeletogenic differentiation in cranial dermal bone. Development 2007; 134:3133-44. [PMID: 17670790 DOI: 10.1242/dev.002709] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Although endochondral ossification of the limb and axial skeleton is relatively well-understood, the development of dermal (intramembranous) bone featured by many craniofacial skeletal elements is not nearly as well-characterized. We analyzed the expression domains of a number of markers that have previously been associated with endochondral skeleton development to define the cellular transitions involved in the dermal ossification process in both chick and mouse. This led to the recognition of a series of distinct steps in the dermal differentiation pathways, including a unique cell type characterized by the expression of both osteogenic and chondrogenic markers. Several signaling molecules previously implicated in endochondrial development were found to be expressed during specific stages of dermal bone formation. Three of these were studied functionally using retroviral misexpression. We found that activity of bone morphogenic proteins (BMPs) is required for neural crest-derived mesenchyme to commit to the osteogenic pathway and that both Indian hedgehog (IHH) and parathyroid hormone-related protein (PTHrP, PTHLH)negatively regulate the transition from preosteoblastic progenitors to osteoblasts. These results provide a framework for understanding dermal bone development with an aim of bringing it closer to the molecular and cellular resolution available for the endochondral bone development.
Collapse
Affiliation(s)
- Arhat Abzhanov
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
9
|
Kitahara Y, Suda N, Terashima T, Baba O, Mekaapiruk K, Hammond VE, Takano Y, Ohyama K. Accelerated bone formation and increased osteoblast number contribute to the abnormal tooth germ development in parathyroid hormone-related protein knockout mice. Bone 2004; 35:1100-6. [PMID: 15542035 DOI: 10.1016/j.bone.2004.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2003] [Revised: 06/04/2004] [Accepted: 06/08/2004] [Indexed: 11/20/2022]
Abstract
Our previous study showed that tooth germs at late embryonic stage [later than embryonic day 17.5 (E17.5)] and neonatal homozygous parathyroid hormone-related protein (PTHrP)-knockout mice are compressed or penetrated by the surrounding alveolar bone tissue. In vivo and in vitro studies have shown that the development of the tooth germ proper is not disturbed, but insufficient alveolar bone resorption, due to the decreased number and hypofunction of osteoclasts, is the main cause of this abnormality. In addition to the insufficient alveolar bone resorption, progressive bone formation toward tooth germs was observed in homozygous mice, suggesting that accelerated bone formation also contributes to this abnormality. To further investigate this, homozygous mice at E14.0 and E15.5, when alveolar bone is forming, were used for histochemical and bone histomorphometric analyses. In contrast to the late embryonic stage, the alveolar bone did not yet compress developing tooth germs in homozygous mice on E14.0, but a larger amount of bone tissue was seen compared to wild-type littermates. Histomorphometric analysis of bone at E14.0 revealed that the osteoblast numbers and surfaces in the mandibles and in the bone collar of femora of homozygous mice were significantly higher than those of wild-type mice. However, unlike our previous study showing the osteoclast surface on E18.5 in homozygous mice to be significantly lower than that of wild-type mice, this study at E14.0 showed no significant difference between the two genotypes. To evaluate the amount of calcification around tooth germs, 3D images of mandibles were reconstructed from the calcein-labeled sections of the wild-type and mutant mice. Labeling was performed at E14.0, and the mice were sacrificed 1 h after the calcein injection to minimize the effect of bone resorption. Comparison of the 3D images revealed that the labeled surface was larger around developing tooth germs in homozygous mouse than in wild-type mouse. On day E15.5, osteoblasts approached the enamel organ of homozygous mice but this was not observed in wild-type mice. In this study, we report a systemic increase in osteoblast number and accelerated bone formation in homozygous PTHrP-knockout mice, both of which contribute to the abnormal tooth development.
Collapse
Affiliation(s)
- Y Kitahara
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8549, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Intermittent Parathyroid Hormone Treatment Enhances Guided Bone Regeneration in Rat Calvarial Bone Defects. J Craniofac Surg 2004. [DOI: 10.1097/00001665-200405000-00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
11
|
Suda N, Kitahara Y, Hammond VE, Ohyama K. Development of a novel mouse osteoclast culture system including cells of mandibular body and erupting teeth. Bone 2003; 33:38-45. [PMID: 12919698 DOI: 10.1016/s8756-3282(03)00172-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Osteoclasts are multinucleated cells with the specialized function of resorbing calcified tissues. These cells develop from hemopoietic cells of the monocyte-macrophage lineage with the support of osteoblasts/stromal cells. Tooth eruption is a vertical movement of teeth via creation of an eruption pathway in and through the alveolar bone. The precise cellular and molecular determinants of tooth eruption are not yet clear, and a cell culture system that can reproduce the activity of osteoclast formation during tooth eruption is expected to be a useful tool to clarify the mechanism of eruption pathway formation. To this end, mandibular bodies, including incisors and molars, were isolated from 9- to 11-day-old mice undergoing active tooth eruption. Primary cells were obtained from mandibular bodies by enzymatic digestion and cultured in alphaMEM containing 15% FBS without any cytokine or growth factor or hormone in the culture (AFT culture, for alveolar bone, dental follicle, and tooth). A progressive increase in the number of tartrate-resistant acid phosphatase-positive multinucleated osteoclastic cells was observed in AFT culture. The osteoclastic cells generated were immunopositive for cathepsin K and calcitonin receptor, and formed resorption pits when cultured on dentine slices. Parathyroid hormone-related protein (PTHrP), expressed by the enamel organ of tooth, is reported to be an essential factor in creation of the eruption pathway. To verify this point, cells were isolated from mandibular bodies from which all teeth and dental follicles had been removed and cultured similarly (A culture, for alveolar bone). Osteoclastic cells were not formed and PTHrP production was hardly detected in the medium of A culture, in contrast to the high level of PTHrP in AFT culture. Since our previous study demonstrated that neonatal homozygous PTHrP-knockout mice show impaired osteoclastogenesis around tooth germs, AFT culture was performed by using this sample to examine whether this culture system can reproduce the status of osteoclastogenesis observed in vivo. The result showed that none of the osteoclastic cells were generated from cells of homozygous mice. We here report a novel mouse osteoclast culture system that reproduces the activity of osteoclast formation around erupting teeth without addition of any cytokine or growth factor or hormone to the medium. Histological examination of various transgenic and mutant mice now offers valuable findings on studies of tooth eruption and the present culture system using these animals would be a powerful tool in clarifying the cellular and molecular mechanisms of eruption pathway formation.
Collapse
Affiliation(s)
- N Suda
- Department of Maxillofacial Reconstruction and Function, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8549 Tokyo, Japan.
| | | | | | | |
Collapse
|
12
|
Abstract
Bone turnover, in which cells of the osteoclast lineage resorb bone and cells of the osteoblast lineage deposit bone, normally occurs in a highly regulated manner throughout life. Perturbations to these processes underlie skeletal disorders, such as osteoporosis, which are common, chronic and disabling, and increase with age. On the basis of empirical observations or on understanding of the endocrinology of the skeleton, excellent bone-resorption inhibitors, but few anabolic agents, have been developed as therapeutics for skeletal disorders. However, powerful new genomic and genetic tools are uncovering new loci that regulate the activity of both osteoclasts and osteoblasts, and these hold great promise for future drug development.
Collapse
Affiliation(s)
- David Goltzman
- Department of Medicine, McGill University and McGill University Health Centre, 687 Pine Avenue, West Montreal, Quebec, Canada H3A 1A1.
| |
Collapse
|
13
|
Mekaapiruk K, Suda N, Hammond VE, Beck F, Kuroda T, Takano Y, Terashima T. The influence of parathyroid hormone-related protein (PTHrP) on tooth-germ development and osteoclastogenesis in alveolar bone of PTHrP-knock out and wild-type mice in vitro. Arch Oral Biol 2002; 47:665-72. [PMID: 12243970 DOI: 10.1016/s0003-9969(02)00026-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In a previous study, it was shown that tooth germs of neonatal homozygous parathyroid hormone-related protein (PTHrP)-knockout mice are penetrated or compressed by the surrounding alveolar bone, suggesting an important role for PTHrP in the formation and activation of osteoclasts around growing tooth germs. In order to elucidate the role of PTHrP during the development of the tooth germ and related structures, mandibular explants containing cap stage tooth germs of embryonic day 14, homozygous mice were here cultured with or without surrounding alveolar bone. There was no difference in the number of tartrate-resistant acid phosphatase-positive multinucleated osteoclastic cells around the first molars of homozygous and wild-type mice. After 10 days of culture, osteoclastic cells were rarely present in explants from homozygous mice and penetration of alveolar bone into the dental papilla was observed. The decline in osteoclast number was partly restored by the addition of PTHrP to the culture. Tooth germs of both wild-type and homozygous mice cultured without alveolar bone developed well, with no apparent structural abnormality; dentine formation was evident after 10 days. These data suggest that PTHrP is not required for the development of the tooth germ proper but is indispensable in promoting the osteoclast formation required to accommodate that development.
Collapse
Affiliation(s)
- Kongkwan Mekaapiruk
- Maxillofacial Orthognathics, Division of Maxillofacial/Neck Reconstruction, Department of Maxillofacial Reconstruction and Function, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8549, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Zhao Q, Brauer PR, Xiao L, McGuire MH, Yee JA. Expression of parathyroid hormone-related peptide (PthrP) and its receptor (PTH1R) during the histogenesis of cartilage and bone in the chicken mandibular process. J Anat 2002; 201:137-51. [PMID: 12220122 PMCID: PMC1570903 DOI: 10.1046/j.1469-7580.2002.00078.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to examine the expression and actions of parathyroid hormone-related protein (PTHrP) when skeletal histogenesis occurs in the chicken mandible. Prior to the appearance of skeletal tissues, PTHrP and PTH1R were co-expressed by cells in the ectoderm, skeletal muscle, peripheral nerve and mesenchyme. Hyaline cartilage was first observed at HH stage 27 when many but not all chondroblasts expressed PTHrP and PTH1R. By stage 34, PTHrP and PTH1R were not detected in chondrocytes but were expressed in the perichondrium. Alkaline phosphatase (AP)-positive preosteoblasts and woven bone appeared at stages 31 and 34, respectively. Preosteoblasts, osteoblasts and osteocytes co-expressed PTHrP and PTH1R. Treatment with chicken PTHrP (1-36) increased cAMP in mesenchyme from stage 26 embryos. Continuous exposure to chicken PTHrP (1-36) for 14 days increased cartilage nodule number and decreased AP while intermittent exposure did not affect cartilage nodule number and increased AP in cultures of stage 26 mesenchymal cells. Adding a neutralizing anti-PTHrP antibody to the cultures reduced cartilage nodule number and did not affect AP. These findings show that PTHrP and PTH1R are co-expressed by extraskeletal and skeletal cells before and during skeletal tissue histogenesis, and that PTHrP may influence skeletal tissue histogenesis by affecting the differentiation of mandibular mesenchymal cells into chondroblasts and osteoblasts.
Collapse
Affiliation(s)
- Qiong Zhao
- Department of Biomedical Sciences, Creighton University, School of Medicine, Omaha, NE 68178, USA
| | | | | | | | | |
Collapse
|
15
|
Kitahara Y, Suda N, Kuroda T, Beck F, Hammond VE, Takano Y. Disturbed tooth development in parathyroid hormone-related protein (PTHrP)-gene knockout mice. Bone 2002; 30:48-56. [PMID: 11792564 DOI: 10.1016/s8756-3282(01)00669-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) is involved in epithelial-mesenchymal cell interactions during development of various tissues and organs. Tooth germ development is a classical model for this interaction. In tooth germs, PTHrP is expressed in the enamel organ (epithelial component), whereas its major receptor, the type I PTH/PTHrP receptor is expressed in cells of the alveolar bone and dental follicle (mesenchymal components). To clarify the role of PTHrP during fetal tooth germ development, PTHrP gene-knockout mice were used for histochemical and ultrastructural analysis. In wild-type mice, osteoclastic cells were aligned predominantly in the inner aspects of the alveolar bone surrounding the developing tooth germs throughout the late embryonic (after embryonic, 17.5 days) and neonatal animals examined. In contrast, osteoblasts were predominant in corresponding areas of fetal homozygous PTHrP-gene knockout mice with only occasional osteoclasts. In such areas, cell-free surfaces showing cement line-like tartrate-resistant acid phosphatase (TRAP) reactions were frequently observed. In neonatal homozygous mice, bone spicules were often shown to penetrate and/or compress the enamel organ and caused partial destruction of the tooth germs. Osteoclasts were few in number in the inner aspects of the alveolar bone, and had poorly developed ruffled border. No morphological abnormality was noted in cells of the tooth germs proper. On bone surfaces away from developing tooth germs, functional osteoclasts with structural features similar to those in wild-type mice were observed in homozygous mice. These observations suggest that PTHrP is required to maintain an appropriate spatiotemporal arrangement of bone cells and osteoclast function, which are necessary for the normal development of tooth germ and alveolar bone encasing the tooth germ. The observation also demonstrates that PTHrP deficiency affects the structure and function of osteoclasts exclusively those located in the vicinity of the growing tooth germ.
Collapse
Affiliation(s)
- Y Kitahara
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|