1
|
Hegedűs L, Zámbó B, Pászty K, Padányi R, Varga K, Penniston JT, Enyedi Á. Molecular Diversity of Plasma Membrane Ca2+ Transporting ATPases: Their Function Under Normal and Pathological Conditions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:93-129. [DOI: 10.1007/978-3-030-12457-1_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
2
|
Lajdova I, Spustova V, Oksa A, Kaderjakova Z, Chorvat D, Morvova M, Sikurova L, Marcek Chorvatova A. The Impact of Vitamin D3 Supplementation on Mechanisms of Cell Calcium Signaling in Chronic Kidney Disease. BIOMED RESEARCH INTERNATIONAL 2015; 2015:807673. [PMID: 26064953 PMCID: PMC4434177 DOI: 10.1155/2015/807673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/19/2014] [Indexed: 01/24/2023]
Abstract
Intracellular calcium concentration in peripheral blood mononuclear cells (PBMCs) of patients with chronic kidney disease (CKD) is significantly increased, and the regulatory mechanisms maintaining cellular calcium homeostasis are impaired. The purpose of this study was to examine the effect of vitamin D3 on predominant regulatory mechanisms of cell calcium homeostasis. The study involved 16 CKD stages 2-3 patients with vitamin D deficiency treated with cholecalciferol 7000-14000 IU/week for 6 months. The regulatory mechanisms of calcium signaling were studied in PBMCs and red blood cells. After vitamin D3 supplementation, serum concentration of 25(OH)D3 increased (P < 0.001) and [Ca(2+)]i decreased (P < 0.001). The differences in [Ca(2+)]i were inversely related to differences in 25(OH)D3 concentration (P < 0.01). Vitamin D3 supplementation decreased the calcium entry through calcium release activated calcium (CRAC) channels and purinergic P2X7 channels. The function of P2X7 receptors was changed in comparison with their baseline status, and the expression of these receptors was reduced. There was no effect of vitamin D3 on P2X7 pores and activity of plasma membrane Ca(2+)-ATPases. Vitamin D3 supplementation had a beneficial effect on [Ca(2+)]i decreasing calcium entry via CRAC and P2X7 channels and reducing P2X7 receptors expression.
Collapse
Affiliation(s)
- Ingrid Lajdova
- Department of Clinical and Experimental Pharmacology, Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Viera Spustova
- Department of Clinical and Experimental Pharmacology, Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Adrian Oksa
- Department of Clinical and Experimental Pharmacology, Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Zuzana Kaderjakova
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 833 03 Bratislava, Slovakia
| | - Dusan Chorvat
- Department of Biophotonics, International Laser Centre, 833 03 Bratislava, Slovakia
| | - Marcela Morvova
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 833 03 Bratislava, Slovakia
| | - Libusa Sikurova
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 833 03 Bratislava, Slovakia
| | | |
Collapse
|
3
|
Ravi S, Schilder RJ, Kimball SR. Role of precursor mRNA splicing in nutrient-induced alterations in gene expression and metabolism. J Nutr 2015; 145:841-6. [PMID: 25761502 PMCID: PMC4408736 DOI: 10.3945/jn.114.203216] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Precursor mRNA (pre-mRNA) splicing is a critical step in gene expression that results in the removal of intronic sequences from immature mRNA, leading to the production of mature mRNA that can be translated into protein. Alternative pre-mRNA splicing is the process whereby alternative exons and/or introns are selectively included or excluded, generating mature mRNAs that encode proteins that may differ in function. The resulting alterations in the pattern of protein isoform expression can result in changes in protein-protein interaction, subcellular localization, and flux through metabolic pathways. Although basic mechanisms of pre-mRNA splicing of introns and exons are reasonably well characterized, how these mechanisms are regulated remains poorly understood. The goal of this review is to highlight selected recent advances in our understanding of the regulation of pre-mRNA splicing by nutrients and modulation of nutrient metabolism that result from changes in pre-mRNA splicing.
Collapse
Affiliation(s)
- Suhana Ravi
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA; and
| | - Rudolf J Schilder
- Departments of Entomology and Biology, The Pennsylvania State University, State College, PA
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA; and
| |
Collapse
|
4
|
Ritchie MF, Zhou Y, Soboloff J. Transcriptional mechanisms regulating Ca(2+) homeostasis. Cell Calcium 2011; 49:314-21. [PMID: 21074851 PMCID: PMC3225030 DOI: 10.1016/j.ceca.2010.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 09/29/2010] [Accepted: 10/01/2010] [Indexed: 01/08/2023]
Abstract
Ca(2+) is a dynamic cellular secondary messenger which mediates a vast array of cellular responses. Control over these processes is achieved via an extensive combination of pumps and channels which regulate the concentration of Ca(2+) within not only the cytosol but also all intracellular compartments. Precisely how these pumps and channels are regulated is only partially understood, however, recent investigations have identified members of the Early Growth Response (EGR) family of zinc finger transcription factors as critical players in this process. The roles of several other transcription factors in control of Ca(2+) homeostasis have also been demonstrated, including Wilms Tumor Suppressor 1 (WT1), Nuclear Factor of Activated T cells (NFAT) and c-myc. In this review, we will discuss not only how these transcription factors regulate the expression of the major proteins involved in control of Ca(2+) homeostasis, but also how this transcriptional remodeling of Ca(2+) homeostasis affects Ca(2+) dynamics and cellular responses.
Collapse
Affiliation(s)
- Michael F Ritchie
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | | | | |
Collapse
|
5
|
Lafont AG, Wang YF, Chen GD, Liao BK, Tseng YC, Huang CJ, Hwang PP. Involvement of calcitonin and its receptor in the control of calcium-regulating genes and calcium homeostasis in zebrafish (Danio rerio). J Bone Miner Res 2011; 26:1072-83. [PMID: 21542008 DOI: 10.1002/jbmr.301] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Calcitonin (CT) is one of the hormones involved in vertebrate calcium regulation. It has been proposed to act as a hypocalcemic factor, but the regulatory pathways remain to be clarified. We investigated the CT/calcitonin gene-related peptide (CGRP) family in zebrafish and its potential involvement in calcium homeostasis. We identified the presence of four receptors: CTR, CRLR1, CRLR2, and CRLR3. From the phylogenetic analysis, together with the effect observed after CT and CGRP overexpression, we concluded that CTR appears to be a CT receptor and CRLR1 a CGRP receptor. The distribution of these two receptors shows a major presence in the central nervous system and in tissues involved in ionoregulation. Zebrafish embryos kept in high-Ca(2+)-concentration medium showed upregulation of CT and CTR expression and downregulation of the epithelial calcium channel (ECaC). Embryos injected with CT morpholino (CALC MO) incubated in high-Ca(2+) medium, showed downregulation of CTR together with upregulation on ECaC mRNA expression. In contrast, overexpression of CT cRNA induced the downregulation of ECaC mRNA synthesis, concomitant with the downregulation in the calcium content after 30 hours postfertilization. At 4 days postfertilization, CT cRNA injection induced upregulation of hypercalcemic factors, with subsequent increase in the calcium content. These results suggest that CT acts as a hypocalcemic factor in calcium regulation, probably through inhibition of ECaC synthesis.
Collapse
Affiliation(s)
- Anne-Gaëlle Lafont
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
6
|
Bredoux R, Corvazier E, Dally S, Chaabane C, Bobe R, Raies A, Moreau A, Enouf J. Human platelet Ca2+-ATPases: New markers of cell differentiation as illustrated in idiopathic scoliosis. Platelets 2009; 17:421-33. [PMID: 16973504 DOI: 10.1080/09537100600758719] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The aetiology of adolescent idiopathic scoliosis (AIS), the most common form of scoliosis, is unclear. Previous studies showed controversial platelet abnormalities including intracellular calcium. Platelet Ca2+ homeostasis is controlled by a multi-Ca2+-ATPase system including SERCA (sarco/endoplasmic reticulum Ca2+-ATPase) and PMCA (plasma membrane Ca2+-ATPase) isoforms. Here, we first investigated the expression of PMCA4b, SERCA3a and SERCA2b isoforms in platelets of 17 patients with AIS. Patients presenting thoracic curves were found to present a higher PMCA4b expression coupled to a lower SERCA3a one in agreement with an abnormality in platelet maturation. Indeed, using PMA-treated MEG 01 cells, an in vitro model of megakaryocytopoiesis, we found an increase in SERCA3a expression, associated to a caspase-3 mediated C terminal proteolysis of PMCA4b. To look whether platelets reflect a basic defect in cell differentiation, we next identified osteoblast Ca2+-ATPases and studied their expressions in AIS. Major expressions of PMCA4b and SERCA2b were found in normal osteoblasts. Comparing platelets and osteoblasts in two additional patients with AIS, we found opposite and concerted regulations of the expressions of PMCA4b and caspase-3 substrate, PARP in both cell types. A systemic defect in cell differentiation involving caspase-3 can be proposed as a novel mechanism in the etiopathogenesis of the most frequent type of AIS. *R. Bredoux and E. Corvazier contributed equally to this work.
Collapse
|
7
|
Fukushima A, Aizaki Y, Sakuma K. Short-chain fatty acids induce intestinal transient receptor potential vanilloid type 6 expression in rats and Caco-2 cells. J Nutr 2009; 139:20-5. [PMID: 19056662 DOI: 10.3945/jn.108.096230] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fructooligosaccharides (FOS) are indigestible oligosaccharides that increase calcium absorption by the colorectum in rats, but the underlying mechanisms remain unclear. We therefore investigated the effects of FOS on expressions of genes involved with calcium absorption in rat colorectal mucosa cells. After feeding a diet containing FOS (100 g/kg diet) to rats for 2 d, we investigated gene transcripts of transient receptor potential vanilloid type 6 (TRPV6), calbindin-D9k, and plasma membrane calcium-ATPase 1b (PMCA1b). The FOS diet increased expression of TRPV6 and calbindin-D9k but did not affect PMCA1b expression. Because FOS could not directly affect gene expression, SCFA formed as fermentation products of FOS were considered as likely intermediates. SCFA (2.0 mmol/L) were thus added to Caco-2 human colonic epithelial cells, resulting in significantly increased mRNA expression of TRPV6. To ascertain the effects of SCFA on mRNA expression, a genomic clone of TRPV6 was isolated. Using luciferase reporter assay, a segment between -71 nucleotides and the translation start site was found to contain a positive responsive element to SCFA. These results suggest that FOS increase calcium absorption by increasing mRNA expression of TRPV6 in rat colorectum, and cell culture analysis indicated that SCFA, as fermentation products of FOS, are involved in the increased mRNA expression of TRPV6. We found for the first time, to our knowledge, that regulation of TRPV6 gene expression by SCFA may be a molecular mechanism involved in the promotion of calcium absorption by FOS in rats.
Collapse
Affiliation(s)
- Akiko Fukushima
- Department of Molecular Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado, Saitama 350-0288, Japan
| | | | | |
Collapse
|
8
|
Abstract
Ca(2+) is an essential ion in all organisms, where it plays a crucial role in processes ranging from the formation and maintenance of the skeleton to the temporal and spatial regulation of neuronal function. The Ca(2+) balance is maintained by the concerted action of three organ systems, including the gastrointestinal tract, bone, and kidney. An adult ingests on average 1 g Ca(2+) daily from which 0.35 g is absorbed in the small intestine by a mechanism that is controlled primarily by the calciotropic hormones. To maintain the Ca(2+) balance, the kidney must excrete the same amount of Ca(2+) that the small intestine absorbs. This is accomplished by a combination of filtration of Ca(2+) across the glomeruli and subsequent reabsorption of the filtered Ca(2+) along the renal tubules. Bone turnover is a continuous process involving both resorption of existing bone and deposition of new bone. The above-mentioned Ca(2+) fluxes are stimulated by the synergistic actions of active vitamin D (1,25-dihydroxyvitamin D(3)) and parathyroid hormone. Until recently, the mechanism by which Ca(2+) enter the absorptive epithelia was unknown. A major breakthrough in completing the molecular details of these pathways was the identification of the epithelial Ca(2+) channel family consisting of two members: TRPV5 and TRPV6. Functional analysis indicated that these Ca(2+) channels constitute the rate-limiting step in Ca(2+)-transporting epithelia. They form the prime target for hormonal control of the active Ca(2+) flux from the intestinal lumen or urine space to the blood compartment. This review describes the characteristics of epithelial Ca(2+) transport in general and highlights in particular the distinctive features and the physiological relevance of the new epithelial Ca(2+) channels accumulating in a comprehensive model for epithelial Ca(2+) absorption.
Collapse
Affiliation(s)
- Joost G J Hoenderop
- Department of Physiology, Nijmegen Center for Moecular Life Sciences, University Medical Center Nijmegen, The Netherlands
| | | | | |
Collapse
|