1
|
Brizuela L, Buchet R, Bougault C, Mebarek S. Cathepsin K Inhibitors as Potential Drugs for the Treatment of Osteoarthritis. Int J Mol Sci 2025; 26:2896. [PMID: 40243480 PMCID: PMC11988852 DOI: 10.3390/ijms26072896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Links between cathepsin K and the pathophysiology of osteoarthritis (OA) can be established, not least because of the overabundance of cathepsin K in the serum of OA patients and the upregulation of cathepsin K in degraded cartilage in animal models of OA. Chondrocytes, chondroclasts, or osteoclasts contribute to the accumulated cathepsin K at the diseased osteochondral junction. After a general presentation of OA and cartilage physiology, as well as its degradation processes, we describe the function of cathepsin K and its effect on cartilage degradation via type II collagen cleavage. An overview of the most promising cathepsin K inhibitors is then presented, together with their in vitro effects. Although intensive research on cathepsin K inhibitors initially focused on bone resorption, there is growing interest in the potential of these drugs to prevent cartilage degradation. In this review, we summarize the pre-clinical and clinical trials that support the use of cathepsin K inhibitors in the treatment of OA. To date, no molecules of this type are commercially available, although a few have undergone clinical trials, but we believe that the development of cathepsin K inhibitors could broaden the therapeutic arsenal for the treatment of OA.
Collapse
Affiliation(s)
| | | | | | - Saida Mebarek
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon, Université Lyon 1, UMR CNRS 5246, 69 622 Villeurbanne Cedex, France
| |
Collapse
|
2
|
Sridhar S, Zhou Y, Ibrahim A, Bertazzo S, Wyss T, Swain A, Maheshwari U, Huang SF, Colonna M, Keller A. Targeting TREM2 signaling shows limited impact on cerebrovascular calcification. Life Sci Alliance 2025; 8:e202402796. [PMID: 39467636 PMCID: PMC11519321 DOI: 10.26508/lsa.202402796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
Brain calcification, the ectopic mineral deposits of calcium phosphate, is a frequent radiological finding and a diagnostic criterion for primary familial brain calcification. We previously showed that microglia curtail the growth of small vessel calcification via the triggering receptor expressed in myeloid 2 (TREM2) in the Pdgfb ret/ret mouse model of primary familial brain calcification. Because boosting TREM2 function using activating antibodies has been shown to be beneficial in other disease conditions by aiding in microglial clearance of diverse pathologies, we investigated whether administration of a TREM2-activating antibody could mitigate vascular calcification in Pdgfb ret/ret mice. Single-nucleus RNA-sequencing analysis showed that calcification-associated microglia share transcriptional similarities to disease-associated microglia and exhibited activated TREM2 and TGFβ signaling. Administration of a TREM2-activating antibody increased TREM2-dependent microglial deposition of cathepsin K, a collagen-degrading protease, onto calcifications. However, this did not ameliorate the calcification load or alter the mineral composition and the microglial phenotype around calcification. We therefore conclude that targeting microglia with TREM2 agonistic antibodies is insufficient to demineralize and clear vascular calcifications.
Collapse
Affiliation(s)
- Sucheta Sridhar
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Yingyue Zhou
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | | | - Sergio Bertazzo
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Tania Wyss
- TDS-facility, AGORA Cancer Research Center, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Amanda Swain
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Upasana Maheshwari
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sheng-Fu Huang
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Ilyas S, Lee J, Hwang Y, Choi Y, Lee D. Deciphering Cathepsin K inhibitors: a combined QSAR, docking and MD simulation based machine learning approaches for drug design. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:771-793. [PMID: 39382544 DOI: 10.1080/1062936x.2024.2405626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024]
Abstract
Cathepsin K (CatK), a lysosomal cysteine protease, contributes to skeletal abnormalities, heart diseases, lung inflammation, and central nervous system and immune disorders. Currently, CatK inhibitors are associated with severe adverse effects, therefore limiting their clinical utility. This study focuses on exploring quantitative structure-activity relationships (QSAR) on a dataset of CatK inhibitors (1804) compiled from the ChEMBL database to predict the inhibitory activities. After data cleaning and pre-processing, a total of 1568 structures were selected for exploratory data analysis which revealed physicochemical properties, distributions and statistical significance between the two groups of inhibitors. PubChem fingerprinting with 11 different machine-learning classification models was computed. The comparative analysis showed the ET model performed well with accuracy values for the training set (0.999), cross-validation (0.970) and test set (0.977) in line with OECD guidelines. Moreover, to gain structural insights on the origin of CatK inhibition, 15 diverse molecules were selected for molecular docking. The CatK inhibitors (1 and 2) exhibited strong binding energies of -8.3 and -7.2 kcal/mol, respectively. MD simulation (300 ns) showed strong structural stability, flexibility and interactions in selected complexes. This synergy between QSAR, docking, MD simulation and machine learning models strengthen our evidence for developing novel and resilient CatK inhibitors.
Collapse
Affiliation(s)
- S Ilyas
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, Seongnam-si, Korea
| | - J Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, Seongnam-si, Korea
| | - Y Hwang
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, Seongnam-si, Korea
| | - Y Choi
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, Seongnam-si, Korea
| | - D Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, Seongnam-si, Korea
| |
Collapse
|
4
|
Koh NYY, Miszkiewicz JJ, Fac ML, Wee NKY, Sims NA. Preclinical Rodent Models for Human Bone Disease, Including a Focus on Cortical Bone. Endocr Rev 2024; 45:493-520. [PMID: 38315213 PMCID: PMC11244217 DOI: 10.1210/endrev/bnae004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/22/2023] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Preclinical models (typically ovariectomized rats and genetically altered mice) have underpinned much of what we know about skeletal biology. They have been pivotal for developing therapies for osteoporosis and monogenic skeletal conditions, including osteogenesis imperfecta, achondroplasia, hypophosphatasia, and craniodysplasias. Further therapeutic advances, particularly to improve cortical strength, require improved understanding and more rigorous use and reporting. We describe here how trabecular and cortical bone structure develop, are maintained, and degenerate with aging in mice, rats, and humans, and how cortical bone structure is changed in some preclinical models of endocrine conditions (eg, postmenopausal osteoporosis, chronic kidney disease, hyperparathyroidism, diabetes). We provide examples of preclinical models used to identify and test current therapies for osteoporosis, and discuss common concerns raised when comparing rodent preclinical models to the human skeleton. We focus especially on cortical bone, because it differs between small and larger mammals in its organizational structure. We discuss mechanisms common to mouse and human controlling cortical bone strength and structure, including recent examples revealing genetic contributors to cortical porosity and osteocyte network configurations during growth, maturity, and aging. We conclude with guidelines for clear reporting on mouse models with a goal for better consistency in the use and interpretation of these models.
Collapse
Affiliation(s)
- Natalie Y Y Koh
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Justyna J Miszkiewicz
- School of Social Science, The University of Queensland, Brisbane, QLD 4072, Australia
- Vertebrate Evolution Development and Ecology, Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands
| | - Mary Louise Fac
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Natalie K Y Wee
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Natalie A Sims
- Bone Cell Biology & Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| |
Collapse
|
5
|
Qin S, Niu Y, Zhang Y, Wang W, Zhou J, Bai Y, Ma G. Metal Ion-Containing Hydrogels: Synthesis, Properties, and Applications in Bone Tissue Engineering. Biomacromolecules 2024; 25:3217-3248. [PMID: 38237033 DOI: 10.1021/acs.biomac.3c01072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Hydrogel, as a unique scaffold material, features a three-dimensional network system that provides conducive conditions for the growth of cells and tissues in bone tissue engineering (BTE). In recent years, it has been discovered that metal ion-containing hybridized hydrogels, synthesized with metal particles as the foundation, exhibit excellent physicochemical properties, osteoinductivity, and osteogenic potential. They offer a wide range of research prospects in the field of BTE. This review provides an overview of the current state and recent advancements in research concerning metal ion-containing hydrogels in the field of BTE. Within materials science, it covers topics such as the binding mechanisms of metal ions within hydrogel networks, the types and fabrication methods of various metal ion-containing hydrogels, and the influence of metal ions on the properties of hydrogels. In the context of BTE, the review delves into the osteogenic mechanisms of various metal ions, the applications of metal ion-containing hydrogels in BTE, and relevant experimental studies in vitro and in vivo. Furthermore, future improvements in bone repair can be anticipated through advancements in bone bionics, exploring interactions between metal ions and the development of a wider range of metal ions and hydrogel types.
Collapse
Affiliation(s)
- Shengao Qin
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, P. R. China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, P. R. China
| | - Yimeng Niu
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, P. R. China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, P. R. China
| | - Yihan Zhang
- School of Stomatology, Harbin Medical University, Harbin 150020, P. R. China
| | - Weiyi Wang
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, P. R. China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, P. R. China
| | - Jian Zhou
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, P. R. China
- Department of VIP Dental Service, School of Stomatology, Capital Medical University, Beijing 100050, P. R. China
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P. R. China
| | - Yingjie Bai
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, P. R. China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, P. R. China
| | - Guowu Ma
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshunnan Road, Dalian 116044, P. R. China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian 116044, P. R. China
- Department of Stomatology, Stomatological Hospital Affiliated School of Stomatology of Dalian Medical University, No. 397 Huangpu Road, Shahekou District, Dalian 116086, P. R. China
| |
Collapse
|
6
|
Feng Z, Gao L, Lu Y, He X, Xie J. The potential contribution of aberrant cathepsin K expression to gastric cancer pathogenesis. Discov Oncol 2024; 15:218. [PMID: 38856944 PMCID: PMC11164852 DOI: 10.1007/s12672-023-00814-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/26/2023] [Indexed: 06/11/2024] Open
Abstract
The role of cathepsin K (CTSK) expression in the pathogenesis and progression of gastric cancer (GC) remains unclear. Hence, the primary objective of this study is to elucidate the precise expression and biological role of CTSK in GC by employing a combination of bioinformatics analysis and in vitro experiments. Our findings indicated a significant upregulation of CTSK in GC. The bioinformatics analysis revealed that GC patients with a high level of CTSK expression exhibited enrichment of hallmark gene sets associated with angiogenesis, epithelial-mesenchymal transition (EMT), inflammatory response, KRAS signaling up, TNFα signaling via KFκB, IL2-STAT5 signaling, and IL6-JAK-STAT3 signaling. Additionally, these patients demonstrated elevated levels of M2-macrophage infiltration, which was also correlated with a poorer prognosis. The results of in vitro experiments provided confirmation that the over-expression of CTSK leads to an increase in the proliferative and invasive abilities of GC cells. However, further evaluation was necessary to determine the impact of CTSK on the migration capability of these cells. Our findings suggested that CTSK has the potential to facilitate the initiation and progression of GC by augmenting the invasive capacity of GC cells, engaging in tumor-associated EMT, and fostering the establishment of an immunosuppressive tumor microenvironment (TME).
Collapse
Affiliation(s)
- Zhijun Feng
- Jiangmen Central Hospital, No. 23, Haibang Street, Pengjiang District, Jiangmen, Guangdong, China
- The Second Clinical Medical College, Lanzhou University, No. 82, Cuiyingmen, Chengguan District, Lanzhou, Gansu, China
| | - Lina Gao
- Laboratory Medicine Center, Lanzhou University Second Hospital, No. 82, Cuiyingmen, Chengguan District, Lanzhou, Gansu, China
| | - Yapeng Lu
- Department of Anesthesiology, Lanzhou University Second Hospital, No. 82, Cuiyingmen, Chengguan District, Lanzhou, Gansu, China
| | - Xiaodong He
- The Second Clinical Medical College, Lanzhou University, No. 82, Cuiyingmen, Chengguan District, Lanzhou, Gansu, China.
| | - Jianqin Xie
- Department of Anesthesiology, Lanzhou University Second Hospital, No. 82, Cuiyingmen, Chengguan District, Lanzhou, Gansu, China.
- The Second Clinical Medical College, Lanzhou University, No. 82, Cuiyingmen, Chengguan District, Lanzhou, Gansu, China.
| |
Collapse
|
7
|
Tanaka M, Inoue H, Takahashi N, Uehara M. AMPK negatively regulates RANKL-induced osteoclast differentiation by controlling oxidative stress. Free Radic Biol Med 2023; 205:107-115. [PMID: 37270032 DOI: 10.1016/j.freeradbiomed.2023.05.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
AMP-activated protein kinase (AMPK) is a crucial energy sensor of cellular metabolism under various metabolic stresses, such as oxidative stress and inflammation. AMPK deficiency increases osteoclast numbers and reduces bone mass; however, the precise mechanisms remain unclear. This study aimed to clarify the mechanistic connection between AMPK and osteoclast differentiation, and the potential role of AMPK in the anti-resorptive effects of several phytochemicals. We found that receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL)-induced osteoclast differentiation, osteoclastic gene expression, and activation of mitogen-activated protein kinase (MAPK) and NF-κB were promoted in cells transfected with AMPK siRNA. AMPK knockdown led to defective synthesis of heme oxygenase-1, an antioxidant enzyme, and the upstream mediator, nuclear factor erythroid-2-related factor 2. Furthermore, treatment with N-acetyl-l-cysteine, an antioxidant, abolished osteoclast differentiation and MAPK/NF-κB activation induced by AMPK knockdown. AMPK activators, hesperetin, gallic acid, resveratrol, and curcumin, suppressed osteoclast differentiation via the activation of AMPK. These results suggest that AMPK inhibits RANKL-induced osteoclast differentiation by enhancing antioxidant defense system and regulating oxidative stress. AMPK activation by dietary-derived phytochemicals may be effective for the treatment of bone diseases.
Collapse
Affiliation(s)
- Miori Tanaka
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan; The Nippon Foundation Human Milk Bank, 17-10 Nihonbashi-koamicho, Chuo-ku, Tokyo, 103-0016, Japan
| | - Hirofumi Inoue
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Nobuyuki Takahashi
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Mariko Uehara
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan.
| |
Collapse
|
8
|
Ma L, Chen R, Zhang Y, Dai Z, Huang G, Yang R, Yang H. The tree shrew as a new animal model for the study of periodontitis. J Clin Periodontol 2023; 50:1075-1088. [PMID: 37353986 DOI: 10.1111/jcpe.13842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Abstract
AIM Periodontitis is an inflammatory, infectious disease of polymicrobial origin that can damage tooth-supporting bone and tissue. Tree shrews, evolutionarily closer to humans than commonly used rodent models, have been increasingly used as biomedical models. However, a tree shrew periodontitis model has not yet been established. MATERIALS AND METHODS Periodontitis was induced in male tree shrews/Sprague-Dawley rats by nylon thread ligature placement around the lower first molars. Thereafter, morphometric and histological analyses were performed. The distance from the cemento-enamel junction to the alveolar bone crest was measured using micro-computed tomography. Periodontal pathological tissue damage, inflammation and osteoclastogenesis were assessed using haematoxylin and eosin staining and quantitative immunohistochemistry, respectively. RESULTS Post-operatively, gingival swelling, redness and spontaneous bleeding were observed in tree shrews but not in rats. After peaking, bone resorption decreased gradually until plateauing in tree shrews. Contrastingly, rapid and near-complete bone loss was observed in rats. Inflammatory infiltrates were observed 1 week post operation in both models. However, only the tree shrew model transitioned from acute to chronic inflammation. CONCLUSIONS Our study revealed that a ligature-induced tree shrew model of periodontitis partly reproduced the pathological features of human periodontitis and provided theoretical support for using tree shrews as a potential model for human periodontitis.
Collapse
Affiliation(s)
- Liya Ma
- Yunnan Key Laboratory of Stomatology and Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, People's Republic of China
- Department of Orthodontics, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Rui Chen
- Yunnan Key Laboratory of Stomatology and Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Yelin Zhang
- Yunnan Key Laboratory of Stomatology and Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Zichao Dai
- Yunnan Key Laboratory of Stomatology and Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Guobin Huang
- Yunnan Key Laboratory of Stomatology and Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Rongqiang Yang
- Yunnan Key Laboratory of Stomatology and Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Hefeng Yang
- Yunnan Key Laboratory of Stomatology and Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, People's Republic of China
| |
Collapse
|
9
|
Biasizzo M, Javoršek U, Vidak E, Zarić M, Turk B. Cysteine cathepsins: A long and winding road towards clinics. Mol Aspects Med 2022; 88:101150. [PMID: 36283280 DOI: 10.1016/j.mam.2022.101150] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022]
Abstract
Biomedical research often focuses on properties that differentiate between diseased and healthy tissue; one of the current focuses is elevated expression and altered localisation of proteases. Among these proteases, dysregulation of cysteine cathepsins can frequently be observed in inflammation-associated diseases, which tips the functional balance from normal physiological to pathological manifestations. Their overexpression and secretion regularly exhibit a strong correlation with the development and progression of such diseases, making them attractive pharmacological targets. But beyond their mostly detrimental role in inflammation-associated diseases, cysteine cathepsins are physiologically highly important enzymes involved in various biological processes crucial for maintaining homeostasis and responding to different stimuli. Consequently, several challenges have emerged during the efforts made to translate basic research data into clinical applications. In this review, we present both physiological and pathological roles of cysteine cathepsins and discuss the clinical potential of cysteine cathepsin-targeting strategies for disease management and diagnosis.
Collapse
Affiliation(s)
- Monika Biasizzo
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Urban Javoršek
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Eva Vidak
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Miki Zarić
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Boris Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
10
|
A Review of Signaling Transduction Mechanisms in Osteoclastogenesis Regulation by Autophagy, Inflammation, and Immunity. Int J Mol Sci 2022; 23:ijms23179846. [PMID: 36077242 PMCID: PMC9456406 DOI: 10.3390/ijms23179846] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoclastogenesis is an ongoing rigorous course that includes osteoclast precursors fusion and bone resorption executed by degradative enzymes. Osteoclastogenesis is controlled by endogenous signaling and/or regulators or affected by exogenous conditions and can also be controlled both internally and externally. More evidence indicates that autophagy, inflammation, and immunity are closely related to osteoclastogenesis and involve multiple intracellular organelles (e.g., lysosomes and autophagosomes) and certain inflammatory or immunological factors. Based on the literature on osteoclastogenesis induced by different regulatory aspects, emerging basic cross-studies have reported the emerging disquisitive orientation for osteoclast differentiation and function. In this review, we summarize the partial potential therapeutic targets for osteoclast differentiation and function, including the signaling pathways and various cellular processes.
Collapse
|
11
|
Cathepsin K: A Versatile Potential Biomarker and Therapeutic Target for Various Cancers. Curr Oncol 2022; 29:5963-5987. [PMID: 36005209 PMCID: PMC9406569 DOI: 10.3390/curroncol29080471] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer, a common malignant disease, is one of the predominant causes of diseases that lead to death. Additionally, cancer is often detected in advanced stages and cannot be radically cured. Consequently, there is an urgent need for reliable and easily detectable markers to identify and monitor cancer onset and progression as early as possible. Our aim was to systematically review the relevant roles of cathepsin K (CTSK) in various possible cancers in existing studies. CTSK, a well-known key enzyme in the bone resorption process and most studied for its roles in the effective degradation of the bone extracellular matrix, is expressed in various organs. Nowadays, CTSK has been involved in various cancers such as prostate cancer, breast cancer, bone cancer, renal carcinoma, lung cancer and other cancers. In addition, CTSK can promote tumor cells proliferation, invasion and migration, and its mechanism may be related to RANK/RANKL, TGF-β, mTOR and the Wnt/β-catenin signaling pathway. Clinically, some progress has been made with the use of cathepsin K inhibitors in the treatment of certain cancers. This paper reviewed our current understanding of the possible roles of CTSK in various cancers and discussed its potential as a biomarker and/or novel molecular target for various cancers.
Collapse
|
12
|
Lu J, Hu D, Ma C, Shuai B. Advances in Our Understanding of the Mechanism of Action of Drugs (including Traditional Chinese Medicines) for the Intervention and Treatment of Osteoporosis. Front Pharmacol 2022; 13:938447. [PMID: 35774616 PMCID: PMC9237325 DOI: 10.3389/fphar.2022.938447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis (OP) is known as a silent disease in which the loss of bone mass and bone density does not cause obvious symptoms, resulting in insufficient treatment and preventive measures. The losses of bone mass and bone density become more severe over time and an only small percentage of patients are diagnosed when OP-related fractures occur. The high disability and mortality rates of OP-related fractures cause great psychological and physical damage and impose a heavy economic burden on individuals and society. Therefore, early intervention and treatment must be emphasized to achieve the overall goal of reducing the fracture risk. Anti-OP drugs are currently divided into three classes: antiresorptive agents, anabolic agents, and drugs with other mechanisms. In this review, research progress related to common anti-OP drugs in these three classes as well as targeted therapies is summarized to help researchers and clinicians understand their mechanisms of action and to promote pharmacological research and novel drug development.
Collapse
|
13
|
Zhang P, Ye J, Dai J, Wang Y, Chen G, Hu J, Hu Q, Fei J. Gallic acid inhibits osteoclastogenesis and prevents ovariectomy-induced bone loss. Front Endocrinol (Lausanne) 2022; 13:963237. [PMID: 36601012 PMCID: PMC9807166 DOI: 10.3389/fendo.2022.963237] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Osteoporosis is a common metabolic bone disease with a rapidly increasing prevalence, characterized by massive bone loss because of excessive osteoclast formation. Gallic acid (GA), a phenolic acid isolated from Cornus officinalis, has anti-inflammatory and anti-oxidant effects, but its effect on osteoclast formation has not been confirmed. In our study, we demonstrated that GA significantly inhibited RANKL-induced osteoclast formation and function of osteoclast in bone marrow monocytes (BMMs) and RAW264.7 cells in a dose-dependent manner without cytotoxicity. For molecular mechanisms, GA repressed osteoclastogenesis by blocking Akt, ERK, and JNK pathways, and suppressed osteoclastogenesis-related marker expression, including nuclear factor of the activated T-cell cytoplasmic 1 (NFATc1), c-Fos, and cathepsin K (CTSK). In addition, we further assessed the effect of GA in an ovariectomized mouse model, which indicated that GA has a notable effect on preventing bone loss. In conclusion, GA exerts notable effects in inhibiting osteoclastogenesis and preventing ovariectomy-induced bone loss, suggesting that GA is a potential agent in osteoporosis treatment.
Collapse
Affiliation(s)
- Peng Zhang
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Jiekai Ye
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Jiale Dai
- The Third Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Wang
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Genjun Chen
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Jinping Hu
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Qimiao Hu
- The Third Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Qimiao Hu, ; Jun Fei,
| | - Jun Fei
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
- *Correspondence: Qimiao Hu, ; Jun Fei,
| |
Collapse
|
14
|
Rezende TMB, Ribeiro Sobrinho AP, Vieira LQ, Sousa MGDC, Kawai T. Mineral trioxide aggregate (MTA) inhibits osteoclastogenesis and osteoclast activation through calcium and aluminum activities. Clin Oral Investig 2020; 25:1805-1814. [PMID: 32789653 DOI: 10.1007/s00784-020-03483-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To evaluate the effect(s) of mineral trioxide aggregate (MTA) on in vitro RANKL-mediated osteoclast-dependent bone resorption events and the influence of Ca2+ and Al3+ on the osteoclastogenesis inhibition by MTA. MATERIALS AND METHODS Two types of osteoclast precursors, RAW 264.7 (RAW) cell line or bone marrow cells (obtained from BALB/c mice and stimulated with recombinant (r) macrophage colony stimulation factor (M-CSF), were stimulated with or without recombinant (r) activator of nuclear kappa B ligand (RANKL), in the presence or absence of MTA for 6 to 8 days. White Angelus MTA and Bios MTA (Angelus, Londrina, Paraná, Brazil) were prepared and inserted into capillary tubes (direct contact surface = 0.50 mm2 and 0.01 mm2). Influence of MTA on these types of osteoclast precursors was measured by the number of differentiated tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells (RAW and bone marrow cells), TRAP enzyme activity (RAW cells), cathepsin K gene expression (RAW cells), and resorptive pit formation (RAW cells) by mature osteoclasts. Besides, RAW cells were also stimulated with Ca2+ and Al3+ to evaluate the influence of these ions on MTA anti-osteoclastogenic potential. RESULTS In bone marrow and RAW cells, the number of TRAP-positive mature osteoclast cells induced by rRANKL was significantly inhibited by the presence of MTA compared with control rRANKL stimulation without MTA (p < 0.05), along with the reduction of TRAP enzyme activity (p < 0.05) and the low expression of cathepsin K gene (p < 0.05). In contrast, to control mature osteoclasts, the resorption area on dentin was significantly decreased for mature osteoclasts incubated with MTA (p < 0.05). rRANKL-stimulated RAW cells treated with Ca2+ and Al3+ decreased the number of osteoclasts cells. Besides, the aluminum oxide was the dominant suppressor of the osteoclastogenesis process. CONCLUSIONS MTA significantly suppressed RANKL-mediated osteoclastogenesis and osteoclast activity and, therefore, appears able to suppress bone resorption events in periapical lesions. This process might be related to Ca2+ and Al3+ activities. CLINICAL RELEVANCE MTA is an important worldwidely acknowleged biomaterial. The knowledge about its molecular activities on osteoclasts might contribute to improving the understanding of its clinical efficacy.
Collapse
Affiliation(s)
- Taia Maria Berto Rezende
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil. .,Curso de Odontologia, Universidade Católica de Brasília, Brasília, DF, Brazil. .,Programa de Pós-graduação em Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil.
| | - Antônio Paulino Ribeiro Sobrinho
- Departamento de Odontologia Restauradora, Faculdade de Odontologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Leda Quercia Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Toshihisa Kawai
- Department of Oral Science and Translational Research, College of Dental Medicine, NOVA Southeastern University, Fort Lauderdale, FL, USA.,Cell Therapy Institute, Center for Collaborative Research, NOVA Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
15
|
Dai R, Wu Z, Chu HY, Lu J, Lyu A, Liu J, Zhang G. Cathepsin K: The Action in and Beyond Bone. Front Cell Dev Biol 2020; 8:433. [PMID: 32582709 PMCID: PMC7287012 DOI: 10.3389/fcell.2020.00433] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/08/2020] [Indexed: 02/05/2023] Open
Abstract
Cathepsin K (CatK) is one of the most potent proteases in lysosomal cysteine proteases family, of which main function is to mediate bone resorption. Currently, CatK is among the most attractive targets for anti-osteoporosis drug development. Although many pharmaceutical companies are working on the development of selective inhibitors for CatK, there is no FDA approved drug till now. Odanacatib (ODN) developed by Merck & Co. is the only CatK inhibitor candidate which demonstrated high therapeutic efficacy in patients with postmenopausal osteoporosis in Phase III clinical trials. Unfortunately, the development of ODN was finally terminated due to the cardio-cerebrovascular adverse effects. Therefore, it arouses concerns on the undesirable CatK inhibition in non-bone sites. It is known that CatK has far-reaching actions throughout various organs besides bone. Many studies have also demonstrated the involvement of CatK in various diseases beyond the musculoskeletal system. This review not only summarized the functional roles of CatK in bone and beyond bone, but also discussed the potential relevance of the CatK action beyond bone to the adverse effects of inhibiting CatK in non-bone sites.
Collapse
Affiliation(s)
- Rongchen Dai
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Zeting Wu
- International Medical Service Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Hang Yin Chu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Jun Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Aiping Lyu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Jin Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
- *Correspondence: Jin Liu,
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
- Ge Zhang,
| |
Collapse
|
16
|
Jin H, Wang Q, Chen K, Xu K, Pan H, Chu F, Ye Z, Wang Z, Tickner J, Qiu H, Wang C, Kenny J, Xu H, Wang T, Xu J. Astilbin prevents bone loss in ovariectomized mice through the inhibition of RANKL-induced osteoclastogenesis. J Cell Mol Med 2019; 23:8355-8368. [PMID: 31603626 PMCID: PMC6850941 DOI: 10.1111/jcmm.14713] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/27/2019] [Accepted: 08/07/2019] [Indexed: 01/01/2023] Open
Abstract
Osteoporosis is the most common osteolytic disease characterized by excessive osteoclast formation and resultant bone loss, which afflicts millions of patients around the world. Astilbin, a traditional herb, is known to have anti-inflammatory, antioxidant and antihepatic properties, but its role in osteoporosis treatment has not yet been confirmed. In our study, astilbin was found to have an inhibitory effect on the RANKL-induced formation and function of OCs in a dose-dependent manner without cytotoxicity. These effects were attributed to its ability to suppress the activity of two transcription factors (NFATc1 and c-Fos) indispensable for osteoclast formation, followed by inhibition of the expression of bone resorption-related genes and proteins (Acp5/TRAcP, CTSK, V-ATPase-d2 and integrin β3). Furthermore, we examined the underlying mechanisms and found that astilbin repressed osteoclastogenesis by blocking Ca2+ oscillations and the NF-κB and MAPK pathways. In addition, the therapeutic effect of MA on preventing bone loss in vivo was further confirmed in an ovariectomized mouse model. Therefore, considering its ability to inhibit RANKL-mediated osteoclastogenesis and the underlying mechanisms, astilbin might be a potential candidate for treating osteolytic bone diseases.
Collapse
Affiliation(s)
- Haiming Jin
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Qingqing Wang
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Kai Chen
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Ke Xu
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Hao Pan
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Feifan Chu
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Zhen Ye
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Ziyi Wang
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Jennifer Tickner
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Heng Qiu
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Chao Wang
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Jacob Kenny
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| | - Huazi Xu
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Te Wang
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Jiake Xu
- Key Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- School of Biomedical SciencesThe University of Western AustraliaPerthWAAustralia
| |
Collapse
|
17
|
Kim HS, Kim S, Ko H, Song M, Kim M. Effects of the cathepsin K inhibitor with mineral trioxide aggregate cements on osteoclastic activity. Restor Dent Endod 2019; 44:e17. [PMID: 31149615 PMCID: PMC6529801 DOI: 10.5395/rde.2019.44.e17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/21/2019] [Accepted: 04/04/2019] [Indexed: 12/02/2022] Open
Abstract
Objectives Root resorption is an unexpected complication after replantation procedures. Combining anti-osteoclastic medicaments with retrograde root filling materials may avert this resorptive activity. The purpose of this study was to assess effects of a cathepsin K inhibitor with calcium silicate-based cements on osteoclastic activity. Methods MC3T3-E1 cells were cultured for biocompatibility analyses. RAW 264.7 cells were cultured in the presence of the receptor activator of nuclear factor-kappa B and lipopolysaccharide, followed by treatment with Biodentine (BIOD) or ProRoot MTA with or without medicaments (Odanacatib [ODN], a cathepsin inhibitor and alendronate, a bisphosphonate). After drug treatment, the cell counting kit-8 assay and Alizarin red staining were performed to evaluate biocompatibility in MC3T3-E1 cells. Reverse-transcription polymerase chain reaction, tartrate-resistant acid phosphatase (TRAP) staining and enzyme-linked immunosorbent assays were performed in RAW 264.7 cells to determine the expression levels of inflammatory cytokines, interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α) and prostaglandin E2 (PGE2). Data were analyzed by one-way analysis of variance and Tukey's post hoc test (p < 0.05). Results Biocompatibility results showed that there were no significant differences among any of the groups. RAW 264.7 cells treated with BIOD and ODN showed the lowest levels of TNF-α and PGE2. Treatments with BIOD + ODN were more potent suppressors of inflammatory cytokine expression (p < 0.05). Conclusion The cathepsin K inhibitor with calcium silicate-based cement inhibits osteoclastic activity. This may have clinical application in preventing inflammatory root resorption in replanted teeth.
Collapse
Affiliation(s)
- Hee-Sun Kim
- Department of Conservative Dentistry, Seoul Metropolitan Governance-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Soojung Kim
- Department of Conservative Dentistry, University of Ulsan, Asan Medical Center, Seoul, Korea
| | - Hyunjung Ko
- Department of Conservative Dentistry, University of Ulsan, Asan Medical Center, Seoul, Korea
| | - Minju Song
- Department of Conservative Dentistry, College of Dentistry, Dankook University, Cheonan, Korea
| | - Miri Kim
- Department of Conservative Dentistry, University of Ulsan, Asan Medical Center, Seoul, Korea
| |
Collapse
|
18
|
Vidak E, Javoršek U, Vizovišek M, Turk B. Cysteine Cathepsins and their Extracellular Roles: Shaping the Microenvironment. Cells 2019; 8:cells8030264. [PMID: 30897858 PMCID: PMC6468544 DOI: 10.3390/cells8030264] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 12/17/2022] Open
Abstract
For a long time, cysteine cathepsins were considered primarily as proteases crucial for nonspecific bulk proteolysis in the endolysosomal system. However, this view has dramatically changed, and cathepsins are now considered key players in many important physiological processes, including in diseases like cancer, rheumatoid arthritis, and various inflammatory diseases. Cathepsins are emerging as important players in the extracellular space, and the paradigm is shifting from the degrading enzymes to the enzymes that can also specifically modify extracellular proteins. In pathological conditions, the activity of cathepsins is often dysregulated, resulting in their overexpression and secretion into the extracellular space. This is typically observed in cancer and inflammation, and cathepsins are therefore considered valuable diagnostic and therapeutic targets. In particular, the investigation of limited proteolysis by cathepsins in the extracellular space is opening numerous possibilities for future break-through discoveries. In this review, we highlight the most important findings that establish cysteine cathepsins as important players in the extracellular space and discuss their roles that reach beyond processing and degradation of extracellular matrix (ECM) components. In addition, we discuss the recent developments in cathepsin research and the new possibilities that are opening in translational medicine.
Collapse
Affiliation(s)
- Eva Vidak
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000 Ljubljana, Slovenia.
- International Postgraduate School Jozef Stefan, Jamova 39, SI-1000 Ljubljana, Slovenia.
| | - Urban Javoršek
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000 Ljubljana, Slovenia.
- International Postgraduate School Jozef Stefan, Jamova 39, SI-1000 Ljubljana, Slovenia.
| | - Matej Vizovišek
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000 Ljubljana, Slovenia.
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich Otto-Stern-Weg 3, 8093 Zürich, Switzerland.
| | - Boris Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000 Ljubljana, Slovenia.
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
19
|
Wang Q, Yao L, Xu K, Jin H, Chen K, Wang Z, Liu Q, Cao Z, kenny J, Liu Y, Tickner J, Xu H, Xu J. Madecassoside inhibits estrogen deficiency-induced osteoporosis by suppressing RANKL-induced osteoclastogenesis. J Cell Mol Med 2019; 23:380-394. [PMID: 30338925 PMCID: PMC6307845 DOI: 10.1111/jcmm.13942] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/31/2022] Open
Abstract
Osteoporosis is the most common osteolytic disease characterized by excessive osteoclast formation and resultant bone loss, which afflicts millions of patients around the world. Madecassoside (MA), isolated from Centella asiatica, was reported to have anti-inflammatory and antioxidant activities, but its role in osteoporosis treatment has not yet been confirmed. In our study, MA was found to have an inhibitory effect on the RANKL-induced formation and function of OCs in a dose-dependent manner without cytotoxicity. These effects were attributed to its ability to suppress the activity of two transcription factors (NFATc1 and c-Fos) indispensable for osteoclast formation, followed by inhibition of the expression of bone resorption-related genes and proteins (Acp5/TRAcP, CTSK, ATP6V0D2/V-ATPase-d2, and integrin β3). Furthermore, we examined the underlying mechanisms and found that MA represses osteoclastogenesis by blocking Ca2+ oscillations and the NF-κB and MAPK pathways. In addition, the therapeutic effect of MA on preventing bone loss in vivo was further confirmed in an ovariectomized mouse model. Therefore, considering its ability to inhibit RANKL-mediated osteoclastogenesis and the underlying mechanisms, MA might be a potential candidate for treating osteolytic bone diseases.
Collapse
Affiliation(s)
- Qingqing Wang
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityZhejiangChina
- School of Biomedical SciencesThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Lingya Yao
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityZhejiangChina
| | - Ke Xu
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityZhejiangChina
| | - Haiming Jin
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityZhejiangChina
- School of Biomedical SciencesThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Kai Chen
- School of Biomedical SciencesThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Ziyi Wang
- School of Biomedical SciencesThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Qian Liu
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative MedicineGuangxi Medical UniversityGuangxiChina
| | - Zhen Cao
- Department of Biomedical Materials ScienceThird Military Medical UniversityChongqingChina
| | - Jacob kenny
- School of Biomedical SciencesThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Yuhao Liu
- School of Biomedical SciencesThe University of Western AustraliaPerthWestern AustraliaAustralia
- The Lab of Orthopaedics and Traumatology of Lingnan Medical Research CenterGuangzhou University of Chinese MedicineGuangzhouChina
| | - Jennifer Tickner
- School of Biomedical SciencesThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Huazi Xu
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityZhejiangChina
| | - Jiake Xu
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityZhejiangChina
- School of Biomedical SciencesThe University of Western AustraliaPerthWestern AustraliaAustralia
| |
Collapse
|
20
|
Song D, Cao Z, Tickner J, Qiu H, Wang C, Chen K, Wang Z, Guo C, Dong S, Xu J. Poria cocos polysaccharide attenuates RANKL-induced osteoclastogenesis by suppressing NFATc1 activity and phosphorylation of ERK and STAT3. Arch Biochem Biophys 2018; 647:76-83. [PMID: 29678628 DOI: 10.1016/j.abb.2018.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/23/2018] [Accepted: 04/16/2018] [Indexed: 11/17/2022]
Abstract
Pathological fractures caused by osteolytic lesions seriously threaten the health of patients. Osteoclasts play important roles in bone resorption whose hyperfunction are closely related to osteolytic lesions. Studies on osteoclast differentiation and function assist in the prevention of excessive bone loss associated diseases. We screened a variety of natural compounds with anti-inflammatory effect and found that poria cocos polysaccharide (PCP) inhibited RANKL-induced osteoclast formation and bone resorption via TRAcP staining, immunofluorescence, RT-PCR and western blot. PCP down-regulated phosphorylation of STAT3, P38, ERK and JNK, and thus repressed the expression of NFAcT1 and c-Fos during RANKL-induced osteoclastogenesis. Besides, the expression of bone resorption related genes such as TRAcP and CTSK was suppressed by PCP. The results suggest that PCP can be invoked as a candidate for the treatment of osteolytic diseases by inhibiting osteoclastogenesis.
Collapse
Affiliation(s)
- Dezhi Song
- Department of Microbiology, Guangxi Medical University, Nanning, 530021, Guangxi, China; Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China; School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Zhen Cao
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, 400038, China; Department of Anatomy, Third Military Medical University, Chongqing, 400038, China; School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Jennifer Tickner
- School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Heng Qiu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Chao Wang
- School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Kai Chen
- School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Ziyi Wang
- School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Chunyu Guo
- Department of Neurosurgery, Nanning Second People's Hospital, Nanning, 530031, Guangxi, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, 400038, China.
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
21
|
Abstract
Bone homeostasis depends on the resorption of bones by osteoclasts and formation of bones by the osteoblasts. Imbalance of this tightly coupled process can cause diseases such as osteoporosis. Thus, the mechanisms that regulate communication between osteoclasts and osteoblasts are critical to bone cell biology. It has been shown that osteoblasts and osteoclasts can communicate with each other through direct cell-cell contact, cytokines, and extracellular matrix interaction. Osteoblasts can affect osteoclast formation, differentiation, or apoptosis through several pathways, such as OPG/RANKL/RANK, RANKL/LGR4/RANK, Ephrin2/ephB4, and Fas/FasL pathways. Conversely, osteoclasts also influence formation of bones by osteoblasts via the d2 isoform of the vacuolar (H+) ATPase (v-ATPase) V0 domain (Atp6v0d2), complement component 3a, semaphorin 4D or microRNAs. In addition, cytokines released from the resorbed bone matrix, such as TGF-β and IGF-1, also affect the activity of osteoblasts. Drugs could be developed by enhancing or restricting some of these interactions. Several reviews have been performed on the osteoblast-osteoclast communication. However, few reviews have shown the research advances in the recent years. In this review, we summarized the current knowledge on osteoblast-osteoclast communication.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210097, Jiangsu Province, China
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210097, Jiangsu Province, China
| | - Na Duan
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210097, Jiangsu Province, China
| | - Guoying Zhu
- Department of Bone Metabolism, Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Edward M. Schwarz
- Department of Orthopaedics, Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Chao Xie
- Department of Orthopaedics, Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
22
|
Munari E, Cima L, Massari F, Bertoldo F, Porcaro AB, Caliò A, Riva G, Ciocchetta E, Ciccarese C, Modena A, Iacovelli R, Sava T, Eccher A, Ghimenton C, Tortora G, Artibani W, Novella G, Bogina G, Zamboni G, Sanguedolce F, D'Amuri A, Martignoni G, Brunelli M. Cathepsin K expression in castration-resistant prostate carcinoma: a therapeutical target for patients at risk for bone metastases. Int J Biol Markers 2017; 32:e243-e247. [PMID: 28085175 DOI: 10.5301/jbm.5000246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND The lysosomal cysteine protease cathepsin K is involved in bone remodeling and is also expressed in the peritumoral stroma of carcinomas arising from different organs. A new generation of cathepsin K inhibitors blocking the RANKL/RANK pathway are being developed. We sought to investigate cathepsin K expression in a cohort of castration-resistant prostate carcinomas. METHODS Sixteen cases of castration-resistant disease with at least 5 years of follow-up were selected from a cohort of 280 patients who underwent surgery. Cathepsin K was evaluated on formalin-fixed and paraffin-embedded tissue microarrays with 5 tissue spots per case. These were scored as high 2+ (≥30% of cells), low 1+ (<30% of cells) or zero (absence), distinguishing tumor cells and peritumoral stroma cells. Low (1+) and absence (0) of scoring were interpreted as negative, and high (2+) as positive. RESULTS The castration-resistant group was composed of 15 acinar adenocarcinomas and 1 neuroendocrine carcinoma, and all showed at least Gleason score 8 at prostatectomy. Two out of 16 cases (12%) scored positive for cathepsin K in tumor cells; and 5 of 16 cases (31%) scored positive in peritumoral stroma cells. The neuroendocrine and acinar subtypes of carcinoma with positive immunoexpression in neoplastic cells developed bone metastases after 4 and 5 years, respectively, and subsequently died. CONCLUSIONS Patients affected by castration-resistant prostate carcinoma may be tested for cathepsin K, and a positive strong expression (2+) could be a useful predictive biomarker of response to targeted agents, aiding in the selection of patients eligible for these treatments.
Collapse
Affiliation(s)
- Enrico Munari
- Department of Diagnostics and Public Health, Anatomic Pathology, University and Hospital Trust, Verona - Italy
- Anatomic Pathology, Sacro Cuore Don Calabria Hospital, Negrar (Verona) - Italy
| | - Luca Cima
- Department of Diagnostics and Public Health, Anatomic Pathology, University and Hospital Trust, Verona - Italy
| | | | | | | | - Anna Caliò
- Department of Diagnostics and Public Health, Anatomic Pathology, University and Hospital Trust, Verona - Italy
| | - Giulio Riva
- Department of Diagnostics and Public Health, Anatomic Pathology, University and Hospital Trust, Verona - Italy
| | - Elisa Ciocchetta
- Department of Diagnostics and Public Health, Anatomic Pathology, University and Hospital Trust, Verona - Italy
| | | | | | | | - Teodoro Sava
- Medical Oncology, Camposampiero-Cittadella Hospitals, Padova - Italy
| | - Albino Eccher
- Department of Diagnostics and Public Health, Anatomic Pathology, University and Hospital Trust, Verona - Italy
| | - Claudio Ghimenton
- Department of Diagnostics and Public Health, Anatomic Pathology, University and Hospital Trust, Verona - Italy
| | | | - Walter Artibani
- Urology Clinic, University and Hospital Trust, Verona - Italy
| | | | - Giuseppe Bogina
- Anatomic Pathology, Sacro Cuore Don Calabria Hospital, Negrar (Verona) - Italy
| | - Giuseppe Zamboni
- Anatomic Pathology, Sacro Cuore Don Calabria Hospital, Negrar (Verona) - Italy
| | - Francesca Sanguedolce
- Department of Pathology, University and Hospital Trust, Riuniti Hospital, Foggia - Italy
| | - Alessandro D'Amuri
- Anatomic Pathology, Cardinale Giovanni Panico Hospital, Tricase (Lecce) - Italy
| | - Guido Martignoni
- Department of Diagnostics and Public Health, Anatomic Pathology, University and Hospital Trust, Verona - Italy
- Anatomic Pathology, Pederzoli Hospital, Peschiera del Garda (Verona) - Italy
| | - Matteo Brunelli
- Department of Diagnostics and Public Health, Anatomic Pathology, University and Hospital Trust, Verona - Italy
| |
Collapse
|
23
|
Mukherjee K, Chattopadhyay N. Pharmacological inhibition of cathepsin K: A promising novel approach for postmenopausal osteoporosis therapy. Biochem Pharmacol 2016; 117:10-9. [DOI: 10.1016/j.bcp.2016.04.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/12/2016] [Indexed: 12/11/2022]
|
24
|
Pazianas M, Abrahamsen B. Osteoporosis treatment: bisphosphonates reign to continue for a few more years, at least? Ann N Y Acad Sci 2016; 1376:5-13. [PMID: 27525578 DOI: 10.1111/nyas.13166] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 01/09/2023]
Abstract
The findings of the Women's Health Initiative study in 2002 marginalized the use of hormone replacement therapy and established bisphosphonates as the first line of treatment for osteoporosis. Denosumab could be used in selected patients. Although bisphosphonates only maintain the structure of bone complete with any accumulated structural or material faults, their bone selectivity and effectiveness in reducing the risk of fractures, together with their low cost, have left little room for improvement for new antiresorptives. The osteoanabolic teriparatide increases new bone formation, but it is administered for up to 2 years only and the cost remains a consideration. Similar restrictions are expected to apply to an anti-sclerostin antibody, which could be evaluated by the U.S. Food and Drug Administration in the near future. Cathepsin K-inhibiting antibody could be an alternative if approved; although an antiresorptive, it maintains bone formation, in contrast with bisphosphonates, and can be probably used for long-term treatment. Rare adverse effects of bisphosphonates, namely osteonecrosis of the jaws and atypical femoral fractures, have been disproportionally emphasized relative to their benefits/harm ratio. Treatment of osteoporosis is a long process, and many patients will require treatment with more than one type of drug over their lifetime.
Collapse
Affiliation(s)
- Michael Pazianas
- Oxford University Institute of Musculoskeletal Sciences, Oxford, United Kingdom.
| | - Bo Abrahamsen
- Odense Patient Data Explorative Network, University of Southern Denmark and Odense University Hospital, Odense, Denmark.,Department of Medicine, Holbaek Hospital, Holbaek, Denmark
| |
Collapse
|
25
|
Schiavone S, Morgese MG, Mhillaj E, Bove M, De Giorgi A, Cantatore FP, Camerino C, Tucci P, Maffulli N, Cuomo V, Trabace L. Chronic Psychosocial Stress Impairs Bone Homeostasis: A Study in the Social Isolation Reared Rat. Front Pharmacol 2016; 7:152. [PMID: 27375486 PMCID: PMC4896906 DOI: 10.3389/fphar.2016.00152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/26/2016] [Indexed: 12/31/2022] Open
Abstract
Chronic psychosocial stress is a key player in the onset and aggravation of mental diseases, including psychosis. Although a strong association between this psychiatric condition and other medical co-morbidities has been recently demonstrated, few data on the link between psychosis and bone homeostasis are actually available. The aim of this study was to investigate whether chronic psychosocial stress induced by 4 or 7 weeks of social isolation in drug-naïve male Wistar rats could alter bone homeostasis in terms of bone thickness, mineral density and content, as well as markers of bone formation and resorption (sclerostin, cathepsin K, and CTX-I). We found that bone mineral density was increased in rats exposed to 7 weeks of social isolation, while no differences were detected in bone mineral content and area. Moreover, 7 weeks of social isolation lead to increase of femur thickness with respect to controls, suggesting the development of a hyperostosis condition. Isolated rats showed no changes in sclerostin levels, a marker of bone formation, compared to grouped animals. Conversely, bone resorption markers were significantly altered after 7 weeks of social isolation in terms of decrease in cathepsin K and increase of CTX-I. No alterations were found after 4 weeks of isolation rearing. Our observations suggest that chronic psychosocial stress might affect bone homeostasis, more likely independently from drug treatment. Thus, the social isolation model might help to identify possible new therapeutic targets to treat the burden of chronic psychosocial stress and to attempt alternative therapy choices.
Collapse
Affiliation(s)
- Stefania Schiavone
- Department of Experimental and Clinical Medicine, University of Foggia Foggia, Italy
| | - Maria G Morgese
- Department of Experimental and Clinical Medicine, University of Foggia Foggia, Italy
| | - Emanuela Mhillaj
- Department of Physiology and Pharmacology, "Sapienza" University of Rome Rome, Italy
| | - Maria Bove
- Department of Physiology and Pharmacology, "Sapienza" University of Rome Rome, Italy
| | - Angelo De Giorgi
- Dual Diagnosis Unit, Azienda Sanitaria Locale della Provincia di Foggia Foggia, Italy
| | | | - Claudia Camerino
- Department of Physiology and Pharmacology, "Sapienza" University of RomeRome, Italy; Department of Basic Medical Science, Neuroscience and Sense Organs, University of BariBari, Italy
| | - Paolo Tucci
- Department of Experimental and Clinical Medicine, University of Foggia Foggia, Italy
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, School of Medicine and Surgery, University of SalernoSalerno, Italy; Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and DentistryLondon, UK
| | - Vincenzo Cuomo
- Department of Physiology and Pharmacology, "Sapienza" University of Rome Rome, Italy
| | - Luigia Trabace
- Department of Experimental and Clinical Medicine, University of Foggia Foggia, Italy
| |
Collapse
|
26
|
Appelman-Dijkstra NM, Papapoulos SE. From disease to treatment: from rare skeletal disorders to treatments for osteoporosis. Endocrine 2016; 52:414-26. [PMID: 26892377 PMCID: PMC4879160 DOI: 10.1007/s12020-016-0888-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/02/2016] [Indexed: 12/18/2022]
Abstract
During the past 15 years there has been an expansion of our knowledge of the cellular and molecular mechanisms regulating bone remodeling that identified new signaling pathways fundamental for bone renewal as well as previously unknown interactions between bone cells. Central for these developments have been studies of rare bone disorders. These findings, in turn, have led to new treatment paradigms for osteoporosis some of which are at late stages of clinical development. In this article, we review three rare skeletal disorders with case descriptions, pycnodysostosis and the craniotubular hyperostoses sclerosteosis and van Buchem disease that led to the development of cathepsin K and sclerostin inhibitors, respectively, for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Natasha M Appelman-Dijkstra
- Center for Bone Quality, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - Socrates E Papapoulos
- Center for Bone Quality, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
27
|
Haffner-Luntzer M, Kovtun A, Rapp AE, Ignatius A. Mouse Models in Bone Fracture Healing Research. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40610-016-0037-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
28
|
Brömme D, Panwar P, Turan S. Cathepsin K osteoporosis trials, pycnodysostosis and mouse deficiency models: Commonalities and differences. Expert Opin Drug Discov 2016; 11:457-72. [DOI: 10.1517/17460441.2016.1160884] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dieter Brömme
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Preety Panwar
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Serap Turan
- Department of Pediatric Endocrinology, Marmara University, Istanbul, Turkey
| |
Collapse
|
29
|
Khan MP, Singh AK, Singh AK, Shrivastava P, Tiwari MC, Nagar GK, Bora HK, Parameswaran V, Sanyal S, Bellare JR, Chattopadhyay N. Odanacatib Restores Trabecular Bone of Skeletally Mature Female Rabbits With Osteopenia but Induces Brittleness of Cortical Bone: A Comparative Study of the Investigational Drug With PTH, Estrogen, and Alendronate. J Bone Miner Res 2016; 31:615-29. [PMID: 26391310 DOI: 10.1002/jbmr.2719] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/18/2015] [Accepted: 09/19/2015] [Indexed: 11/08/2022]
Abstract
Cathepsin K (CK), a lysosomal cysteine protease, is highly expressed in mature osteoclasts and degrades type 1 collagen. Odanacatib (ODN) is a selective and reversible CK inhibitor that inhibits bone loss in preclinical and clinical studies. Although an antiresorptive, ODN does not suppress bone formation, which led us to hypothesize that ODN may display restorative effect on the osteopenic bones. In a curative study, skeletally mature New Zealand rabbits were ovarectomized (OVX) and after induction of bone loss were given a steady-state exposure of ODN (9 mM/d) for 14 weeks. Sham-operated and OVX rabbits treated with alendronate (ALD), 17b-estradiol (E2), or parathyroid hormone (PTH) served as various controls. Efficacy was evaluated by assessing bone mineral density (BMD), bone microarchitecture (using micro-computed tomography), fluorescent labeling of bone, and biomechanical strength. Skeletal Ca/P ratio was measured by scanning electron microscopy (SEM) with X-ray microanalysis, crystallinity by X-ray diffraction, and bone mineral density distribution (tissue mineralization) by backscattered SEM. Between the sham and ODN-treated osteopenic groups, lumbar and femur metaphyseal BMD, Ca/P ratio, trabecular microstructure and geometric indices, vertebral compressive strength, trabecular lining cells, cortical parameters (femoral area and thickness and periosteal deposition), and serum P1NP were largely comparable. Skeletal improvements in ALD-treated or E2-treated groups fell significantly short of the sham/ODN/PTH group. However, the ODN group displayed reduced ductility and enhanced brittleness of central femur, which might have been contributed by higher crytallinity and tissue mineralization. Rabbit bone marrow stromal cells expressed CK and when treated with ODN displayed increased formation of mineralized nodules and decreased apoptosis in serum-deficient medium compared with control. In vivo, ODN did not suppress remodeling but inhibited osteoclast activity more than ALD. Taken together, we show that ODN reverses BMD, skeletal architecture, and compressive strength in osteopenic rabbits; however, it increases crystallinity and tissue mineralization, thus leading to increased cortical bone brittleness.
Collapse
Affiliation(s)
- Mohd Parvez Khan
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, India
| | - Atul Kumar Singh
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology-Bombay, Mumbai, India
| | | | - Pragya Shrivastava
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology-Bombay, Mumbai, India
| | - Mahesh Chandra Tiwari
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, India
| | - Geet Kumar Nagar
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, India
| | - Himangshu Kousik Bora
- Department of Laboratory Animal, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Sabyasachi Sanyal
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, India
| | - Jayesh R Bellare
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology-Bombay, Mumbai, India
- Department of Chemical Engineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
30
|
Makras P, Delaroudis S, Anastasilakis AD. Novel therapies for osteoporosis. Metabolism 2015; 64:1199-214. [PMID: 26277199 DOI: 10.1016/j.metabol.2015.07.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 07/02/2015] [Accepted: 07/06/2015] [Indexed: 12/28/2022]
Abstract
Since the identification of osteoporosis as a major health issue in aging populations and the subsequent development of the first treatment modalities for its management, considerable progress has been made in our understanding of the mechanisms controlling bone turnover and disease pathophysiology, thus enabling the pinpointing of new targets for intervention. This progress, along with advances in biotechnology, has rendered possible the development of ever more sophisticated treatments employing novel mechanisms of action. Denosumab, a monoclonal antibody against RANKL, approved for the treatment of postmenopausal and male osteoporosis, significantly and continuously increases bone mineral density (BMD) and maintains a low risk of vertebral, non-vertebral, and hip fractures for up to 8 years. Currently available combinations of estrogens with selective estrogen receptor modulators moderately increase BMD without causing the extra-skeletal adverse effects of each compound alone. The cathepsin K inhibitor odanacatib has recently been shown to decrease vertebral, non-vertebral, and hip fracture rates and is nearing approval. Romosozumab, an anti-sclerosin antibody, and abaloparatide, a PTH-related peptide analog, are at present in advanced stages of clinical evaluation, so far demonstrating efficaciousness together with a favorable safety profile. Several other agents are currently in earlier clinical and preclinical phases of development, including dickkopf-1 antagonists, activin A antagonists, β-arrestin analogs, calcilytics, and Src tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Polyzois Makras
- Department of Endocrinology and Diabetes, 251 Hellenic Air Force & VA General Hospital, Athens, Greece
| | - Sideris Delaroudis
- Department of Endocrinology, 424 General Military Hospital, Thessaloniki, Greece
| | | |
Collapse
|
31
|
|
32
|
Gennari L, Rotatori S, Bianciardi S, Gonnelli S, Nuti R, Merlotti D. Appropriate models for novel osteoporosis drug discovery and future perspectives. Expert Opin Drug Discov 2015; 10:1201-16. [DOI: 10.1517/17460441.2015.1080685] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Salamanna F, Maglio M, Giavaresi G, Pagani S, Giardino R, Fini M. In vitro method for the screening and monitoring of estrogen-deficiency osteoporosis by targeting peripheral circulating monocytes. AGE (DORDRECHT, NETHERLANDS) 2015; 37:9819. [PMID: 26250906 PMCID: PMC5005821 DOI: 10.1007/s11357-015-9819-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/20/2015] [Indexed: 06/04/2023]
Abstract
Bone loss occurs insidiously and initially asymptomatically; therefore, osteoporosis is frequently diagnosed only after the first clinical fracture. The aim of this study was to test the hypothesis is that by simply observing the behavior of cultured peripheral monocytes, it might be possible to diagnose altered bone remodeling and, therefore, limit the complications associated with osteoporosis, especially fractures. Monocytes isolated as mononuclear precursors from healthy and ovariectomized rats were cultured both in basal and differentiation medium for up to 3 weeks. Viability and differentiation capability towards the osteoclastic phenotype was checked by light microscopy at early times, whereas differentiation state and synthetic activity (tartrate-resistant acid phosphatase (TRAP) staining; phalloidin, fluorescin isothiocynate (FITC) staining, cathepsin K, metalloproteinase 7 and 9, MMP-7 and MMP-9) were measured at 1, 2, and 3 weeks. Compared to their controls, monocytes isolated from ovariectomized rats proliferate and lean toward the osteoclastic phenotype in the absence of differentiating factors. In both culture conditions, osteoclasts from ovariectomized rats showed significantly higher productions of cathepsin K, MMP-7, and MMP-9 than those of cells isolated from healthy rats, steadily over time. These results obtained in an animal osteoporotic model, if confirmed by clinical studies, open up the possibility to assess the presence of an alteration in bone remodeling with a simple in vitro diagnostic test requiring a small blood sample and less than 48 h. This might allow to early select patients with a spontaneous viability and differentiation of monocytes to osteoclasts for further diagnostic techniques.
Collapse
Affiliation(s)
- Francesca Salamanna
- Laboratory of Biocompatibility, Technological Innovations and Advanced Therapies, Rizzoli Research Innovation Technology, Via di Barbiano, 1/10, 40136, Bologna, Italy,
| | | | | | | | | | | |
Collapse
|
34
|
Azanitrile Cathepsin K Inhibitors: Effects on Cell Toxicity, Osteoblast-Induced Mineralization and Osteoclast-Mediated Bone Resorption. PLoS One 2015; 10:e0132513. [PMID: 26168340 PMCID: PMC4500499 DOI: 10.1371/journal.pone.0132513] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/15/2015] [Indexed: 12/26/2022] Open
Abstract
Aim The cysteine protease cathepsin K (CatK), abundantly expressed in osteoclasts, is responsible for the degradation of bone matrix proteins, including collagen type 1. Thus, CatK is an attractive target for new anti-resorptive osteoporosis therapies, but the wider effects of CatK inhibitors on bone cells also need to be evaluated to assess their effects on bone. Therefore, we selected, among a series of synthetized isothiosemicarbazides, two molecules which are highly selective CatK inhibitors (CKIs) to test their effects on osteoblasts and osteoclasts. Research Design and Methods Cell viability upon treatment of CKIs were was assayed on human osteoblast-like Saos-2, mouse monocyte cell line RAW 264.7 and mature mouse osteoclasts differentiated from bone marrow. Osteoblast-induced mineralization in Saos-2 cells and in mouse primary osteoblasts from calvaria, with or without CKIs,; were was monitored by Alizarin Red staining and alkaline phosphatase activity, while osteoclast-induced bone resorption was performed on bovine slices. Results Treatments with two CKIs, CKI-8 and CKI-13 in human osteoblast-like Saos-2, murine RAW 264.7 macrophages stimulated with RANKL and mouse osteoclasts differentiated from bone marrow stimulated with RANKL and MCSF were found not to be toxic at doses of up to 100 nM. As probed by Alizarin Red staining, CKI-8 did not inhibit osteoblast-induced mineralization in mouse primary osteoblasts as well as in osteoblast-like Saos-2 cells. However, CKI-13 led to a reduction in mineralization of around 40% at 10–100 nM concentrations in osteoblast-like Saos-2 cells while it did not in primary cells. After a 48-hour incubation, both CKI-8 and CKI-13 decreased bone resorption on bovine bone slices. CKI-13 was more efficient than the commercial inhibitor E-64 in inhibiting bone resorption induced by osteoclasts on bovine bone slices. Both CKI-8 and CKI-13 created smaller bone resorption pits on bovine bone slices, suggesting that the mobility of osteoclasts was slowed down by the addition of CKI-8 and CKI-13. Conclusion CKI-8 and CKI-13 screened here show promise as antiresorptive osteoporosis therapeutics but some off target effects on osteoblasts were found with CKI-13.
Collapse
|
35
|
Boggild MK, Gajic-Veljanoski O, McDonald-Blumer H, Ridout R, Tile L, Josse R, Cheung AM. Odanacatib for the treatment of osteoporosis. Expert Opin Pharmacother 2015; 16:1717-26. [PMID: 26149759 DOI: 10.1517/14656566.2015.1064897] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Osteoporosis and fragility fractures are important public health concerns. Cathepsin K inhibitors, including odanacatib , are a novel class of medications for osteoporosis whose mechanism of action is to directly inhibit bone resorption without killing osteoclasts, thereby permitting the complex coupling between bone resorption and formation to continue. AREAS COVERED The physiological basis for the mechanism of action of cathepsin K inhibitors is covered in addition to a review of the preclinical, Phase I, Phase II and preliminary Phase III trial data of odanacatib. EXPERT OPINION Evidence suggests that odanacatib has similar efficacy to bisphosphonates at increasing bone mineral density and decreasing risk of fragility fractures. Although odanacatib may preferentially inhibit bone resorption more than formation, the clinical significance of this difference in mechanism of action is not yet known. A careful analysis of the Phase III trial data is needed with specific attention to adverse events.
Collapse
Affiliation(s)
- Miranda K Boggild
- University of Toronto, Department of Medicine , 200 Elizabeth Street, 7 Eaton North Room 221, Toronto, Ontario M5G 2C4 , Canada +1 416 340 4301 ; +1 416 340 4105 ;
| | | | | | | | | | | | | |
Collapse
|
36
|
Appelman-Dijkstra NM, Papapoulos SE. Modulating Bone Resorption and Bone Formation in Opposite Directions in the Treatment of Postmenopausal Osteoporosis. Drugs 2015; 75:1049-58. [PMID: 26056029 PMCID: PMC4498277 DOI: 10.1007/s40265-015-0417-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bone remodeling, the fundamental process for bone renewal, is targeted by treatments of osteoporosis to correct the imbalance between bone resorption and bone formation and reduce the risk of fractures and associated clinical consequences. Currently available therapeutics affect bone resorption and bone formation in the same direction and either decrease (inhibitors of bone resorption) or increase (parathyroid hormone [PTH] peptides) bone remodeling. Studies of patients with rare bone diseases and genetically modified animal models demonstrated that bone resorption and bone formation may not necessarily be coupled, leading to identification of molecular targets in bone cells for the development of novel agents for the treatment of osteoporosis. Application of such agents to the treatment of women with low bone mass confirmed that bone resorption and bone formation can be modulated in different directions and so far two new classes of therapeutics for osteoporosis have been defined with distinct mechanisms of action. Such treatments, if combined with a favorable safety profile, will offer new therapeutic options and will improve the management of patients with osteoporosis.
Collapse
Affiliation(s)
| | - Socrates E. Papapoulos
- Center for Bone Quality, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
37
|
Structural requirements for the collagenase and elastase activity of cathepsin K and its selective inhibition by an exosite inhibitor. Biochem J 2015; 465:163-73. [PMID: 25279554 DOI: 10.1042/bj20140809] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Human cathepsin K (CatK) is a major drug target for the treatment of osteoporosis. Although its collagenase activity is unique, CatK also exerts a potent elastolytic activity that is shared with human cathepsins V and S. Other members of the cysteine cathepsin family, which are structurally similar, do not exhibit significant collagen and elastin degrading activities. This raises the question of the presence of specific structural elements, exosites, that are required for these activities. CatK has two exosites that control its collagenolytic and elastolytic activity. Modifications of exosites 1 and 2 block the elastase activity of CatK, whereas only exosite-1 alterations prevent collagenolysis. Neither exosite affects the catalytic activity, protease stability, subsite specificity of CatK or the degradation of other biological substrates by this protease. A low-molecular-mass inhibitor that docks into exosite-1 inhibits the elastase and collagenase activity of CatK without interfering with the degradation of other protein substrates. The identification of CatK exosites opens up the prospect of designing highly potent inhibitors that selectively inhibit the degradation of therapeutically relevant substrates by this multifunctional protease.
Collapse
|
38
|
Bone HG, Dempster DW, Eisman JA, Greenspan SL, McClung MR, Nakamura T, Papapoulos S, Shih WJ, Rybak-Feiglin A, Santora AC, Verbruggen N, Leung AT, Lombardi A. Odanacatib for the treatment of postmenopausal osteoporosis: development history and design and participant characteristics of LOFT, the Long-Term Odanacatib Fracture Trial. Osteoporos Int 2015; 26:699-712. [PMID: 25432773 PMCID: PMC4312384 DOI: 10.1007/s00198-014-2944-6] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/02/2014] [Indexed: 01/13/2023]
Abstract
SUMMARY Odanacatib is a cathepsin K inhibitor investigated for the treatment of postmenopausal osteoporosis. Phase 2 data indicate that 50 mg once weekly inhibits bone resorption and increases bone mineral density, with only a transient decrease in bone formation. We describe the background, design and participant characteristics for the phase 3 registration trial. INTRODUCTION Odanacatib (ODN) is a selective cathepsin K inhibitor being evaluated for the treatment of osteoporosis. In a phase 2 trial, ODN 50 mg once weekly reduced bone resorption while preserving bone formation and progressively increased BMD over 5 years. We describe the phase III Long-Term ODN Fracture Trial (LOFT), an event-driven, randomized, blinded placebo-controlled trial, with preplanned interim analyses to permit early termination if significant fracture risk reduction was demonstrated. An extension was planned, with participants remaining on their randomized treatment for up to 5 years, then transitioning to open-label ODN. METHODS The three primary outcomes were radiologically determined vertebral, hip, and clinical non-vertebral fractures. Secondary end points included clinical vertebral fractures, BMD, bone turnover markers, and safety and tolerability, including bone histology. Participants were women, 65 years or older, with a BMD T-score≤-2.5 at the total hip (TH) or femoral neck (FN) or with a prior radiographic vertebral fracture and a T-score≤-1.5 at the TH or FN. They were randomized to ODN or placebo tablets. All received weekly vitamin D3 (5600 international units (IU)) and daily calcium supplements as needed to ensure a daily intake of approximately 1200 mg. RESULTS Altogether, 16,713 participants were randomized at 387 centers. After a planned interim analysis, an independent data monitoring committee recommended that the study be stopped early due to robust efficacy and a favorable benefit/risk profile. Following the base study closeout, 8256 participants entered the study extension. CONCLUSIONS This report details the background and study design of this fracture end point trial and describes the baseline characteristics of its participants.
Collapse
Affiliation(s)
- H G Bone
- Michigan Bone & Mineral Clinic, Detroit, MI, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Knaapi J, Kiviranta R, Laine J, Kääpä P, Lukkarinen H. Cathepsin K overexpression modifies lung development in newborn mice. Pediatr Pulmonol 2015; 50:164-72. [PMID: 24574176 DOI: 10.1002/ppul.23011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 01/20/2014] [Indexed: 12/23/2022]
Abstract
Cathepsin K (CatK), contributes to the development of chronic lung disease in newborn infants, but the impact of CatK for the lungs may be multifaceted. We have previously demonstrated that low level of CatK is associated with newborn lung injury and CatK deficiency aggravates lung injury in hyperoxia-exposed newborn mice. Thus, we hypothesized that sustained/higher expression of CatK could ameliorate hyperoxia-induced injury and restrain the development of pulmonary fibrosis. We studied the lungs of newborn wild-type (WT) and CatK overexpressing transgenic mice (TG) that were exposed to hyperoxia or room air for 7 or 14 days after birth. Fourfold pulmonary overexpression of CatK did not affect the growth or lung weight in room-air bred TG mice. The distal airspaces in TG mice were, however, enlarged on postnatal days (PN) 7 and 14, the latter together with increased apoptosis, compared with WT controls. Survival rate was normal and no respiratory distress was observed in air-bred TG mice. Hyperoxia inhibited alveolarization and increased collagen accumulation in WT mice. In TG mice, hyperoxia for 1 week did not aggravate the lung injury, and the lung morphology and already enlarged alveoli remained unchanged in TG mice at PN7. Prolonged hyperoxic exposure caused significant lung injury and mortality similarly in both group of mice, and only few mice survived until PN14. In summary, CatK overexpression slightly enlarges distal airways in infant mice, but hyperoxic environment is initially better tolerated when compared to WT mice. These findings suggest multifaceted role for CatK in lung development and newborn lung injury.
Collapse
Affiliation(s)
- Jonni Knaapi
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | | | | | | | | |
Collapse
|
40
|
Abstract
Despite the availability of efficacious treatments for fracture reduction in patients with osteoporosis, there are still unmet needs requiring a broader range of therapeutics. In particular, agents that are capable of replacing already lost bone and that also drastically reduce the risk of non-vertebral fractures are needed. Studies of rare bone diseases in humans and animal genetics have identified targets in bone cells for the development of therapies for osteoporosis with novel mechanisms of action. Here, we review these new developments, with emphasis on inhibitors of cathepsin K in osteoclasts and sclerostin in osteocytes, which are currently studied in phase 3 clinical trials.
Collapse
Affiliation(s)
| | - Socrates E Papapoulos
- Center for Bone Quality, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
41
|
Zhou J, Li X, Liao Y, Feng W, Guo X. Effects of Electroacupuncture on Bone Mass and Cathepsin K Expression in Ovariectomised Rats. Acupunct Med 2014; 32:478-85. [PMID: 25193930 DOI: 10.1136/acupmed-2014-010577] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Objective To characterise the effects of early and late electroacupuncture (EA) treatment on serum 17β-oestradiol (E2), C-terminal cross-linking telopeptide of type I collagen (CTX-I), bone mineral density (BMD), biomechanical bone strength and mRNA expression of cathepsin K in ovariectomised (OVX) rats. Methods Sixty Sprague-Dawley rats underwent ovariectomy (n=40) or sham surgery (n=20) and were randomly divided into two batches. Batch 1 (n=30) consisted of 10 sham-operated rats (Sham-0 group) and 20 OVX rats: half commenced EA immediately (early EA group, n=10) and half were left untreated (OVX-0 group, n=10). Batch 2 (n=30) consisted of 10 sham-operated rats (Sham-12 group) and 20 OVX rats: half commenced EA treatment 12 weeks after ovariectomy (late EA group, n=10) and half were left untreated (OVX-12 group, n=10). Rats in batches 1 and 2 were killed after 12 and 24 weeks, respectively. Serum E2, CTX-I, BMD, bone strength and cathepsin K expression were determined by ELISA, dual energy X-ray absorptiometry, biomechanical assessment and qRT-PCR, respectively. Results Both early and late EA treatment increased serum E2 levels, reduced serum CTX- I levels and increased BMD and bone strength of the L5 vertebral body in OVX rats. Although early EA treatment similarly increased BMD and bone strength of the femur, late EA treatment did not. However, both early and late EA treatment reduced mRNA expression of cathepsin K in OVX rats. Conclusions Early EA completely prevented and late EA partially prevented bone loss and deterioration of bone strength in OVX rats. The timing of initiation of EA treatment may be an important consideration for optimisation of effects. The influence of EA on bone strength appears to be at least partially mediated through regulation of the expression of cathepsin K.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Rehabilitation, The First Affiliated Hospital of University of South China, Hengyang, Hunan, People's Republic of China
| | - Xinhong Li
- Hunan Polytechnic of Environment and Biology, Hengyang, Hunan, People's Republic of China
| | - Ying Liao
- Department of Rehabilitation, The First Affiliated Hospital of University of South China, Hengyang, Hunan, People's Republic of China
| | - Weibing Feng
- Department of Rehabilitation, The First Affiliated Hospital of University of South China, Hengyang, Hunan, People's Republic of China
| | - Xin Guo
- Department of Rehabilitation, The First Affiliated Hospital of University of South China, Hengyang, Hunan, People's Republic of China
| |
Collapse
|
42
|
Yang W, Ko H, Kim H, Kim M. The effect of cathepsin K inhibitor on osteoclastic activity compared to alendronate and enamel matrix protein. Dent Traumatol 2014; 31:202-8. [PMID: 25394885 DOI: 10.1111/edt.12152] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND/AIM There have been several attempts to treat delayed replantation with agents that inhibit root resorption. The purpose of this study was to assess the effectiveness of cathepsin K inhibitor in inhibiting osteoclastic activity compared to that of alendronate and enamel matrix protein. MATERIALS AND METHODS Murine RAW 264.7 cells were cultured in the presence of the receptor activator of NF-kB and lipopolysaccharide, followed by treatment with odanacatib, alendronate, or Emdogain at various concentrations. After drug treatment, an MTT assay was performed to evaluate cytotoxicity, while reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assays were performed to determine the expression levels of interleukin-1β, interleukin-6, prostaglandin E2, and tumor necrosis factor-α. Data were analyzed by one-way anova and Tukey's post-hoc test (P < 0.05). RESULTS Of all tested agents, Emdogain resulted in the least cytotoxicity on RAW 264.7 cells, while 10(-9) M odanacatib had the largest suppressive effects on the expression levels of inflammatory cytokines. CONCLUSIONS Odanacatib inhibits osteoclastic activity, showing the possibility as a treatment agent for delayed replantation of avulsed teeth.
Collapse
Affiliation(s)
- Wonkyung Yang
- Department of Conservative Dentistry, Ulsan University, Asan Medical Center, Seoul, Korea
| | | | | | | |
Collapse
|
43
|
Kuzmac S, Grcevic D, Sucur A, Ivcevic S, Katavic V. Acute hematopoietic stress in mice is followed by enhanced osteoclast maturation in the bone marrow microenvironment. Exp Hematol 2014; 42:966-75. [DOI: 10.1016/j.exphem.2014.07.262] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 12/31/2022]
|
44
|
Appelman-Dijkstra NM, Papapoulos SE. Prevention of incident fractures in patients with prevalent fragility fractures: Current and future approaches. Best Pract Res Clin Rheumatol 2014; 27:805-20. [PMID: 24836337 DOI: 10.1016/j.berh.2014.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fragility fractures are a significant, independent risk factor for new fractures, but treatment uptake in subjects with prevalent fractures is disappointing. We addressed the question of the efficacy of pharmacological interventions in reducing the risk of incident fractures in patients with prevalent fragility fractures. For this, we reviewed randomised controlled trials (RCTs), pre-planned and post-hoc analyses of RCTs of approved agents for the treatment of osteoporosis. Results showed that a number of agents decrease the risk of incident vertebral and nonvertebral fractures in subjects with prevalent vertebral fractures, justifying the recommendation of treating such patients independently of the level of bone mineral density (BMD). By contrast, the evidence of antifracture efficacy of these agents in patients with prevalent nonvertebral fractures is limited. Advances in our understanding of the regulation of bone metabolism at the molecular level have identified targets for the development of new therapeutics for osteoporosis, some of which are currently in phase 3 clinical development.
Collapse
|
45
|
Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation. Acta Biomater 2014; 10:2834-42. [PMID: 24512978 DOI: 10.1016/j.actbio.2014.02.002] [Citation(s) in RCA: 356] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 01/05/2014] [Accepted: 02/02/2014] [Indexed: 12/12/2022]
Abstract
Magnesium alloys are being investigated for load-bearing bone fixation devices due to their initial mechanical strength, modulus similar to native bone, biocompatibility and ability to degrade in vivo. Previous studies have found Mg alloys to support bone regeneration in vivo, but the mechanisms have not been investigated in detail. In this study, we analyzed the effects of Mg(2+) stimulation on intracellular signaling mechanisms of human bone marrow stromal cells (hBMSCs). hBMSCs were cultured in medium containing 0.8, 5, 10, 20 and 100mM MgSO4, either with or without osteogenic induction factors. After 3weeks, mineralization of extracellular matrix (ECM) was analyzed by Alizarin red staining, and gene expression was analyzed by quantitative polymerase chain reaction array. Mineralization of ECM was enhanced at 5 and 10mM MgSO4, and collagen type X mRNA (COL10A1, an ECM protein deposited during bone healing) expression was increased at 10mM MgSO4 both with and without osteogenic factors. We also confirmed the increased production of collagen type X protein by Western blotting. Next, we investigated the mechanisms of intracellular signaling by analyzing the protein production of hypoxia-inducible factor (HIF)-1α and 2α (transcription factors of COL10A1), vascular endothelial growth factor (VEGF) (activated by HIF-2α) and peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α (transcription coactivator of VEGF). We observed that 10mM MgSO4 stimulation enhanced COL10A1 and VEGF expression, possibly via HIF-2α in undifferentiated hBMSCs and via PGC-1α in osteogenic cells. These data suggest possible ECM proteins and transcription factors affected by Mg(2+) that are responsible for the enhanced bone regeneration observed around degradable Mg orthopedic/craniofacial devices.
Collapse
|
46
|
Fonović M, Turk B. Cysteine cathepsins and extracellular matrix degradation. Biochim Biophys Acta Gen Subj 2014; 1840:2560-70. [PMID: 24680817 DOI: 10.1016/j.bbagen.2014.03.017] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/16/2014] [Accepted: 03/22/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND Cysteine cathepsins are normally found in the lysosomes where they are involved in intracellular protein turnover. Their ability to degrade the components of the extracellular matrix in vitro was first reported more than 25years ago. However, cathepsins were for a long time not considered to be among the major players in ECM degradation in vivo. During the last decade it has, however, become evident that abundant secretion of cysteine cathepsins into extracellular milieu is accompanying numerous physiological and disease conditions, enabling the cathepsins to degrade extracellular proteins. SCOPE OF VIEW In this review we will focus on cysteine cathepsins and their extracellular functions linked with ECM degradation, including regulation of their activity, which is often enhanced by acidification of the extracellular microenvironment, such as found in the bone resorption lacunae or tumor microenvironment. We will further discuss the ECM substrates of cathepsins with a focus on collagen and elastin, including the importance of that for pathologies. Finally, we will overview the current status of cathepsin inhibitors in clinical development for treatment of ECM-linked diseases, in particular osteoporosis. MAJOR CONCLUSIONS Cysteine cathepsins are among the major proteases involved in ECM remodeling, and their role is not limited to degradation only. Deregulation of their activity is linked with numerous ECM-linked diseases and they are now validated targets in a number of them. Cathepsins S and K are the most attractive targets, especially cathepsin K as a major therapeutic target for osteoporosis with drugs targeting it in advanced clinical trials. GENERAL SIGNIFICANCE Due to their major role in ECM remodeling cysteine cathepsins have emerged as an important group of therapeutic targets for a number of ECM-related diseases, including, osteoporosis, cancer and cardiovascular diseases. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
Affiliation(s)
- Marko Fonović
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Boris Turk
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia.
| |
Collapse
|
47
|
Pennypacker BL, Oballa RM, Levesque S, Kimmel DB, Duong LT. Cathepsin K inhibitors increase distal femoral bone mineral density in rapidly growing rabbits. BMC Musculoskelet Disord 2013; 14:344. [PMID: 24321244 PMCID: PMC3878918 DOI: 10.1186/1471-2474-14-344] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 11/14/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Selective and reversible inhibitors of human Cathepsin K (CatK), including odanacatib (ODN), have been developed as potential therapeutics for the treatment of osteoporosis. Inhibitors of human CatK show significantly less potency for the rodent enzymes compared with that for the human or rabbit enzymes; thus the Schenk model in growing rabbit was developed as a screening assay for the in vivo activity of CatK inhibitors in blocking bone resorption. METHODS In this study, the efficacy of the selective inhibitors L-833905, L-006235, L-873724, and L-1037536 (ODN) of human CatK in the rapidly growing rabbit 'Schenk' model (age seven weeks) was compared to vehicle, using the bisphosphonate, alendronate (ALN), as a positive control, to assess inhibition of bone resorption. An enzyme inhibition assay (EIA) and an in vitro bone resorption assay using rabbit osteoclasts on bovine cortical bone slices were performed to evaluate the potency of these CatK inhibitors. Bone mineral density of the distal femur (DFBMD) was measured after ten days of treatment using ex vivo DXA densitometry. RESULTS Results of the EIA using rabbit CatK and the rabbit bone resorption assay showed that three of the four compounds (L-006235, L-873724, and ODN) had similar potencies in the reduction of collagen degradation. L-833905 appeared to be a weaker inhibitor of CatK. Taking into account the respective in vitro potencies and pharmacokinetic profiles via oral administration, the efficacy of these four CatK inhibitors was demonstrated in a dose-related manner in the growing rabbit. Significant increases in DFBMD in animals dosed with the CatK inhibitors compared to vehicle were seen. CONCLUSIONS Efficacy of the CatK inhibitors in the Schenk rabbit correlated well with that in the in vitro rabbit bone resorption assay and in the ovariectomized rabbit model as previously published. Hence, these studies validated the rabbit Schenk assay as a rapid and reliable in vivo model for prioritizing human CatK inhibitors as potential therapeutic agents.
Collapse
Affiliation(s)
| | | | | | | | - Le T Duong
- Merck Research Laboratories, Merck & Co,, Inc,, P,O, Box 100, Whitehouse Station, NJ 08889, USA.
| |
Collapse
|
48
|
Wu H, Li L, Ma Y, Chen Y, Zhao J, Lu Y, Shen P. Regulation of selective PPARγ modulators in the differentiation of osteoclasts. J Cell Biochem 2013; 114:1969-77. [PMID: 23494891 DOI: 10.1002/jcb.24534] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 02/28/2013] [Indexed: 01/16/2023]
Abstract
Diabetes is the most common chronic disease in the world and causes complications with many diseases, such as heart disease and osteoporosis. Osteoporosis is a systemic bone disease characterized by imbalance in bone resorption and bone formation. Osteoclast is type of bone cell that functions in bone resorption and plays a critical role in bone remodeling. Rosiglitazone and pioglitazone, which belong to Thiazolidinediones(TZDs), are commonly used antidiabetic drugs. As PPARγ full agonists, they can activate PPARγ in a ligand-dependent way. Recent studies indicate that these PPARγ full agonists have some side effects, such as weight gain and bone loss, which may increase the risk of osteoporosis. In contrast, selective PPARγ Modulators (SPPARγMs) are novel PPARγ ligands that can activate PPARγ in different ways and lead to distinct downstream genes. Mice bone marrow cells were stimulated with recombinant mouse RANKL and M-CSF to generate osteoclasts. To determine the effect on osteoclasts formation, PPARγ ligands (Rosiglitazone, Fmoc-L-Leu, and Telmisartan) were added at the beginning of the culture. Rosiglitazone significantly increased the differentiation of multinucleated osteoclasts, while osteoclasts formation triggered by SPPARγMs was much less than that displayed by rosiglitazone. We found that the enhancement of PPARγ ligands may be associated with TRAF6 and downstream ERK signal pathway. We also demonstrated osteoclasts show characteristic M2 phenotype and can be further promoted by PPARγ ligands, especially rosiglitazone. In conclusion, reduced osteoclasts differentiation characteristic of SPPARγMs highlights SPPARγMs potential as therapeutic targets in diabetes, versus traditional antidiabetic drugs.
Collapse
Affiliation(s)
- Haochen Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center MARC, Nanjing University, Nanjing, 210093, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Collins JN, Kirby BJ, Woodrow JP, Gagel RF, Rosen CJ, Sims NA, Kovacs CS. Lactating Ctcgrp nulls lose twice the normal bone mineral content due to fewer osteoblasts and more osteoclasts, whereas bone mass is fully restored after weaning in association with up-regulation of Wnt signaling and other novel genes. Endocrinology 2013; 154:1400-13. [PMID: 23462960 PMCID: PMC3678150 DOI: 10.1210/en.2012-1931] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The maternal skeleton resorbs during lactation to provide calcium to milk and the lost mineral content is restored after weaning. The changes are particularly marked in Ctcgrp null mice, which lose 50% of spine mineral content during lactation but restore it fully. The known calciotropic hormones are not required for skeletal recovery to occur; therefore, unknown factors that stimulate bone formation may be responsible. We hypothesized that the genes responsible for regulating postweaning bone formation are differentially regulated in bone or marrow, and this regulation may be more marked in Ctcgrp null mice. We confirmed that Ctcgrp null mice had twice as many osteoclasts and 30-40% fewer osteoblasts as compared with wild-type mice during lactation but no deficit in osteoblast numbers after weaning. Genome-wide microarray analyses on tibial RNA showed differential expression of 729 genes in wild-type mice at day 7 after weaning vs prepregnancy, whereas the same comparison in Ctcgrp null mice revealed only 283 genes. Down-regulation of Wnt family inhibitors, Sost and Dkk1, and inhibition of Mef2c, a sclerostin stimulator, were observed. Ctsk, a gene expressed during osteoclast differentiation, and Igfbp2, which stimulates bone resorption, were inhibited. Differential regulation of genes involved in energy use was compatible with a net increase in bone formation. The most marked changes occurred in genes not previously associated with bone metabolism. In conclusion, the postlactation skeleton shows dynamic activity with more than 700 genes differentially expressed. Some of these genes are likely to promote bone formation during postweaning by stimulating the proliferation and activity of osteoblasts, inhibiting osteoclasts, and increasing energy use.
Collapse
Affiliation(s)
- Jillian N Collins
- Faculty of Medicine—Endocrinology, Memorial University of Newfoundland, St John’s, Newfoundland, Canada A1B 3V6
| | | | | | | | | | | | | |
Collapse
|
50
|
Zheng G, Martignoni G, Antonescu C, Montgomery E, Eberhart C, Netto G, Taube J, Westra W, Epstein JI, Lotan T, Maitra A, Gabrielson E, Torbenson M, Iacobuzio-Donahue C, Demarzo A, Shih IM, Illei P, Wu T, Argani P. A broad survey of cathepsin K immunoreactivity in human neoplasms. Am J Clin Pathol 2013; 139:151-9. [PMID: 23355199 DOI: 10.1309/ajcpdtrto2z4uexd] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Cathepsin K is consistently and diffusely expressed in alveolar soft part sarcoma (ASPS) and a subset of translocation renal cell carcinomas (RCCs). However, cathepsin K expression in human neoplasms has not been systematically analyzed. We constructed tissue microarrays (TMA) from a wide variety of human neoplasms, and performed cathepsin K immunohistochemistry (IHC). Only 2.7% of 1,140 carcinomas from various sites exhibited cathepsin K labeling, thus suggesting that among carcinomas, cathepsin K labeling is highly specific for translocation RCC. In contrast to carcinomas, cathepsin K labeling was relatively common (54.6%) in the 414 mesenchymal lesions studied, including granular cell tumor, melanoma, and histiocytic lesions, but not paraganglioma, all of which are in the morphologic differential diagnosis of ASPS. Cathepsin K IHC can be helpful in distinguishing ASPS and translocation RCC from some but not all of the lesions in their differential diagnosis.
Collapse
Affiliation(s)
- Gang Zheng
- Department of Pathology, The Johns Hopkins Hospital, Baltimore, MD
| | | | | | | | - Charles Eberhart
- Department of Pathology, The Johns Hopkins Hospital, Baltimore, MD
| | - George Netto
- Department of Pathology, The Johns Hopkins Hospital, Baltimore, MD
| | - Janis Taube
- Department of Pathology, The Johns Hopkins Hospital, Baltimore, MD
| | - William Westra
- Department of Pathology, The Johns Hopkins Hospital, Baltimore, MD
| | | | - Tamara Lotan
- Department of Pathology, The Johns Hopkins Hospital, Baltimore, MD
| | - Anirban Maitra
- Department of Pathology, The Johns Hopkins Hospital, Baltimore, MD
| | | | | | | | - Angelo Demarzo
- Department of Pathology, The Johns Hopkins Hospital, Baltimore, MD
| | - Ie Ming Shih
- Department of Pathology, The Johns Hopkins Hospital, Baltimore, MD
| | - Peter Illei
- Department of Pathology, The Johns Hopkins Hospital, Baltimore, MD
| | - T.C. Wu
- Department of Pathology, The Johns Hopkins Hospital, Baltimore, MD
| | - Pedram Argani
- Department of Pathology, The Johns Hopkins Hospital, Baltimore, MD
| |
Collapse
|