1
|
Preliminary analysis of distinct clinical and biologic features of bone metastases in melanoma. Melanoma Res 2021; 30:492-499. [PMID: 32804707 PMCID: PMC7484164 DOI: 10.1097/cmr.0000000000000691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Melanoma disseminates to the skeletal system where it is then difficult to treat. Yet, there remains limited research investigating metastatic bone disease (MBD) in melanoma. Here, we evaluate whether there are distinct clinicopathologic variables at the time of primary melanoma diagnosis that predispose metastases to engraft bone, and we test the hypothesis that patients with MBD have different responses to treatment. Cutaneous melanoma patients enrolled in a prospective database were studied. Individuals with metastatic melanoma and bone metastases (M-Bone) were compared to those with metastatic disease but no M-Bone. Of the 463 (42.7%) patients, 198 with unresectable metastatic melanoma had M-Bone and 98 developed bone metastasis (bone mets) as first site. Progression-free survival and overall survival were significantly worse in patients with M-Bone compared to those without M-Bone (P < 0.001) independent of treatment modalities, and in patients whose melanoma spread to bone first, compared to those who developed first mets elsewhere (P < 0.001). Interestingly, patients with bone mets presented with primary tumors that had more tumor infiltrating lymphocytes (P < 0.001) and less often a nodular histologic subtype compared to patients without M-Bone (P < 0.001). Our data suggest that melanoma bone metastasis is a distinct clinical and biological entity that cannot be explained by generalized metastatic phenotype in all patients. The observed dichotomy between more favorable primary histopathologic characteristics and a grave overall prognosis requires more studies to elucidate the molecular processes by which melanomas infiltrate bone and to build a mechanistic understanding of how melanoma bone metastases yield such detrimental outcomes.
Collapse
|
2
|
Huang R, Rofstad EK. Integrins as therapeutic targets in the organ-specific metastasis of human malignant melanoma. J Exp Clin Cancer Res 2018; 37:92. [PMID: 29703238 PMCID: PMC5924434 DOI: 10.1186/s13046-018-0763-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023] Open
Abstract
Integrins are a large family of adhesion molecules that mediate cell-cell and cell-extracellular matrix interactions. Among the 24 integrin isoforms, many have been found to be associated with tumor angiogenesis, tumor cell migration and proliferation, and metastasis. Integrins, especially αvβ3, αvβ5 and α5β1, participate in mediating tumor angiogenesis by interacting with the vascular endothelial growth factor and angiopoietin-Tie signaling pathways. Melanoma patients have a poor prognosis when the primary tumor has generated distant metastases, and the melanoma metastatic site is an independent predictor of the survival of these patients. Different integrins on the melanoma cell surface preferentially direct circulating melanoma cells to different organs and promote the development of metastases at specific organ sites. For instance, melanoma cells expressing integrin β3 tend to metastasize to the lungs, whereas those expressing integrin β1 preferentially generate lymph node metastases. Moreover, tumor cell-derived exosomes which contain different integrins may prepare a pre-metastatic niche in specific organs and promote organ-specific metastases. Because of the important role that integrins play in tumor angiogenesis and metastasis, they have become promising targets for the treatment of advanced cancer. In this paper, we review the integrin isoforms responsible for angiogenesis and organ-specific metastasis in malignant melanoma and the inhibitors that have been considered for the future treatment of metastatic disease.
Collapse
Affiliation(s)
- Ruixia Huang
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Ullernchausseen 70, 0379, Oslo, Norway.
| | - Einar K Rofstad
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Ullernchausseen 70, 0379, Oslo, Norway
| |
Collapse
|
3
|
Lynch ME, Chiou AE, Lee MJ, Marcott SC, Polamraju PV, Lee Y, Fischbach C. Three-Dimensional Mechanical Loading Modulates the Osteogenic Response of Mesenchymal Stem Cells to Tumor-Derived Soluble Signals. Tissue Eng Part A 2016; 22:1006-15. [PMID: 27401765 DOI: 10.1089/ten.tea.2016.0153] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dynamic mechanical loading is a strong anabolic signal in the skeleton, increasing osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs) and increasing the bone-forming activity of osteoblasts, but its role in bone metastatic cancer is relatively unknown. In this study, we integrated a hydroxyapatite-containing three-dimensional (3D) scaffold platform with controlled mechanical stimulation to investigate the effects of cyclic compression on the interplay between breast cancer cells and BM-MSCs as it pertains to bone metastasis. BM-MSCs cultured within mineral-containing 3D poly(lactide-co-glycolide) (PLG) scaffolds differentiated into mature osteoblasts, and exposure to tumor-derived soluble factors promoted this process. When BM-MSCs undergoing osteogenic differentiation were exposed to conditioned media collected from mechanically loaded breast cancer cells, their gene expression of osteopontin was increased. This was further enhanced when mechanical compression was simultaneously applied to BM-MSCs, leading to more uniformly deposited osteopontin within scaffold pores. These results suggest that mechanical loading of 3D scaffold-based culture models may be utilized to evaluate the role of physiologically relevant physical cues on bone metastatic breast cancer. Furthermore, our data imply that cyclic mechanical stimuli within the bone microenvironment modulate interactions between tumor cells and BM-MSCs that are relevant to bone metastasis.
Collapse
Affiliation(s)
- Maureen E Lynch
- 1 Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University , Ithaca, New York.,2 Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst , Amherst, Massachusetts
| | - Aaron E Chiou
- 1 Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University , Ithaca, New York
| | - Min Joon Lee
- 1 Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University , Ithaca, New York
| | - Stephen C Marcott
- 1 Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University , Ithaca, New York
| | - Praveen V Polamraju
- 1 Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University , Ithaca, New York
| | - Yeonkyung Lee
- 1 Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University , Ithaca, New York
| | - Claudia Fischbach
- 1 Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University , Ithaca, New York.,3 Kavli Institute at Cornell for Nanoscale Science, Cornell University , Ithaca, New York
| |
Collapse
|
4
|
Trotter TN, Yang Y. Matricellular proteins as regulators of cancer metastasis to bone. Matrix Biol 2016; 52-54:301-314. [PMID: 26807761 DOI: 10.1016/j.matbio.2016.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/19/2016] [Accepted: 01/19/2016] [Indexed: 01/08/2023]
Abstract
Metastasis is the major cause of death in cancer patients, and a frequent site of metastasis for many cancers is the bone marrow. Therefore, understanding the mechanisms underlying the metastatic process is necessary for future prevention and treatment. The tumor microenvironment is now known to play a role in the metastatic cascade, both at the primary tumor and in metastatic sites, and includes both cellular and non-cellular components. The extracellular matrix (ECM) provides structural support and signaling cues to cells. One particular group of molecules associated with the ECM, known as matricellular proteins, modulate multiple aspects of tumor biology, including growth, migration, invasion, angiogenesis and metastasis. These proteins are also important for normal function in the bone by regulating bone formation and bone resorption. Recent studies have described a link between some of these proteins and metastasis of various tumors to the bone. The aim of this review is to summarize what is currently known about matricellular protein influence on bone metastasis. Particular attention to the contribution of both tumor cells and non-malignant cells in the bone has been given.
Collapse
Affiliation(s)
- Timothy N Trotter
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yang Yang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States; Comprehensive Cancer Center and the Center for Metabolic Bone Disease, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
5
|
Sangaletti S, Tripodo C, Sandri S, Torselli I, Vitali C, Ratti C, Botti L, Burocchi A, Porcasi R, Tomirotti A, Colombo MP, Chiodoni C. Osteopontin Shapes Immunosuppression in the Metastatic Niche. Cancer Res 2014; 74:4706-19. [DOI: 10.1158/0008-5472.can-13-3334] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Bandopadhyay M, Bulbule A, Butti R, Chakraborty G, Ghorpade P, Ghosh P, Gorain M, Kale S, Kumar D, Kumar S, Totakura KVS, Roy G, Sharma P, Shetti D, Soundararajan G, Thorat D, Tomar D, Nalukurthi R, Raja R, Mishra R, Yadav AS, Kundu GC. Osteopontin as a therapeutic target for cancer. Expert Opin Ther Targets 2014; 18:883-95. [DOI: 10.1517/14728222.2014.925447] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Kumar S, Sharma P, Kumar D, Chakraborty G, Gorain M, Kundu GC. Functional characterization of stromal osteopontin in melanoma progression and metastasis. PLoS One 2013; 8:e69116. [PMID: 23935934 PMCID: PMC3720680 DOI: 10.1371/journal.pone.0069116] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 06/06/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Recent studies demonstrated that not only tumor derived- but stroma derived factors play crucial role in cancer development. Osteopontin (OPN) is a secreted non-collagenous, sialic acid rich, chemokine-like phosphoglycoprotein that facilitates cell-matrix interactions and promotes tumor progression. Elevated level of OPN has been shown in melanoma patient and predicted as a prognostic marker. Recent reports have indicated that stroma-derived OPN are involved in regulating stem cell microenvironment and pre-neoplastic cell growth. However, the function of stroma derived OPN in regulation of side population (SP) enrichment leading to melanoma growth, angiogenesis and metastasis is not well studied and yet to be the focus of intense investigation. METHODOLOGY/PRINCIPAL FINDINGS In this study, using melanoma model, in wild type and OPN knockout mice, we have demonstrated that absence of host OPN effectively curbs melanoma growth, angiogenesis and metastasis. Melanoma cells isolated from tumor of OPN wild type (OPN(+/+)) mice exhibited more tumorigenic feature as compared to the parental cell line or cells isolated from the tumors of OPN KO (OPN(-/-)) mice. Furthermore, host OPN induces VEGF, ABCG2 and ERK1/2 expression and activation in B16-WT cells. We report for the first time that stroma derived OPN regulates SP phenotype in murine melanoma cells. Moreover, loss in and gain of function studies demonstrated that stroma-derived OPN regulates SP phenotype specifically through ERK2 activation. CONCLUSIONS This study establish at least in part, the molecular mechanism underlying the role of host OPN in melanoma growth and angiogenesis, and better understanding of host OPN-tumor interaction may assist the advancement of novel therapeutic strategy for the management of malignant melanoma.
Collapse
Affiliation(s)
- Santosh Kumar
- National Center for Cell Science (NCCS), NCCS Complex, Pune, Maharashtra, India
| | - Priyanka Sharma
- National Center for Cell Science (NCCS), NCCS Complex, Pune, Maharashtra, India
| | - Dhiraj Kumar
- National Center for Cell Science (NCCS), NCCS Complex, Pune, Maharashtra, India
| | - Goutam Chakraborty
- National Center for Cell Science (NCCS), NCCS Complex, Pune, Maharashtra, India
| | - Mahadeo Gorain
- National Center for Cell Science (NCCS), NCCS Complex, Pune, Maharashtra, India
| | - Gopal C. Kundu
- National Center for Cell Science (NCCS), NCCS Complex, Pune, Maharashtra, India
- * E-mail:
| |
Collapse
|
8
|
Proteins involved in regulating bone invasion in skull base meningiomas. Acta Neurochir (Wien) 2013; 155:421-7. [PMID: 23238945 PMCID: PMC3569595 DOI: 10.1007/s00701-012-1577-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 10/18/2012] [Indexed: 12/31/2022]
Abstract
Background Bone invasive skull base meningiomas are a subset of meningiomas that present a unique clinical challenge due to brain and neural structure involvement and limitations in complete surgical resection, resulting in higher recurrence and need for repeat surgery. To date, the pathogenesis of meningioma bone invasion has not been investigated. We investigated immunoexpression of proteins implicated in bone invasion in other tumor types to establish their involvement in meningioma bone invasion. Methods Retrospective review of our database identified bone invasive meningiomas operated on at our institution over the past 20 years. Using high-throughput tissue microarray (TMA), we established the expression profile of osteopontin (OPN), matrix metalloproteinase-2 (MMP2), and integrin beta-1 (ITGB1). Differential expression in tumor cell and vasculature was evaluated and comparisons were made between meningioma anatomical locations. Results MMP2, OPN, and ITGB1 immunoreactivity was cytoplasmic in tumor and/or endothelial cells. Noninvasive transbasal meningiomas exhibited higher vascular endothelial cell MMP2 immunoexpression compared to invasive meningiomas. We found higher expression levels of OPN and ITGB1 in bone invasive transbasal compared to noninvasive meningiomas. Strong vascular ITGB1 expression extending from the endothelium through the media and into the adventitia was found in a subset of meningiomas. Conclusions We have demonstrated that key proteins are differentially expressed in bone invasive meningiomas and that the anatomical location of bone invasion is a key determinant of expression pattern of MMP1, OPN, and ITGB1. This data provides initial insights into the pathophysiology of bone invasion in meningiomas and identifies factors that can be pursued as potential therapeutic targets.
Collapse
|
9
|
Maier T, Laubender RP, Sturm RA, Klingenstein A, Korting HC, Ruzicka T, Berking C. Osteopontin expression in plasma of melanoma patients and in melanocytic tumours. J Eur Acad Dermatol Venereol 2011; 26:1084-91. [PMID: 21838826 DOI: 10.1111/j.1468-3083.2011.04210.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND While the serological tumour marker S100 is well established for the detection of metastatic melanoma, the extracellular matrix protein osteopontin (OPN) seems to be a promising novel marker for invasive melanoma. OBJECTIVES We analysed the potential of OPN as a serological tumour marker for metastatic melanoma and evaluated its combination with S100 and lactate dehydrogenase (LDH) levels to increase the reliability of these biomarkers for the detection of metastatic disease. METHODS We examined OPN in the peripheral blood of 110 melanoma patients using enzyme-linked immunosorbent assay and combined it with S100 and LDH levels. In addition, the protein expression of OPN was analysed in tissue sections of melanocytic nevi and melanomas of different progression stages by immunohistochemistry. RESULTS The independent comparison of S100 and OPN levels in metastatic vs. non-metastatic patients revealed a P-value <0.001 respectively. The predictiveness of OPN, S100 and LDH was 0.85, 0.89 and 0.69 as measured by the area under the receiver operating curve (AUC) respectively, while the combination of the two biomarkers OPN and S100 showed an AUC of 0.97. The optimal cut-off of the combination of OPN and S100 yielded a specificity of 85.9% and a sensitivity of 95.5%. By immunohistochemistry, OPN protein expression was detected in 29% (7/24) of melanocytic nevi, 67% (30/45) of primary melanomas and 39% (7/18) of metastatic melanomas. CONCLUSIONS Together, OPN seems to be a promising novel biomarker for the detection of metastatic disease in melanoma patients, showing elevated plasma levels in metastatic disease and increased protein expression in melanocytic lesions. The combination of OPN with the well-established tumour marker S100 might increase the prediction of metastases.
Collapse
Affiliation(s)
- T Maier
- Department of Dermatology and Allergology, Ludwig-Maximilian University of Munich, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
10
|
Ahmed M, Behera R, Chakraborty G, Jain S, Kumar V, Sharma P, Bulbule A, Kale S, Kumar S, Mishra R, Raja R, Saraswati S, Kaur R, Soundararajan G, Kumar D, Thorat D, Sanyal M, Ramdasi A, Ghosh P, Kundu GC. Osteopontin: a potentially important therapeutic target in cancer. Expert Opin Ther Targets 2011; 15:1113-26. [PMID: 21718227 DOI: 10.1517/14728222.2011.594438] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Cancer is an extremely complex disease and most cancer treatments are limited to chemotherapy, radiation and surgery. The progression of tumours towards malignancy requires the interaction of various cytokines, growth factors, transcription factors and effector molecules. Osteopontin is a cytokine-like, calcium-binding, extracelular-matrix- associated member of the small integrin-binding ligand, N-linked glycoprotein (SIBLING) family of proteins. It plays an important role in determining the oncogenic potential of various cancers. The role of osteopontin in various pathophysiological conditions suggests that the alteration in post-translational modification result in different functional forms that might change its normal physiological functions. AREAS COVERED Osteopontin -based anticancer therapy, which may provide a new insight for the effective management of cancer. EXPERT OPINION A better understanding of the signalling mechanism by which osteopontin promotes tumourigenesis may be useful in crafting novel osteopontin -based anticancer therapy. The role of osteopontin in promoting cancer progression is the subject of in depth investigation and thus targeting osteopontin might be a suitable therapeutic approach for the treatment of cancer.
Collapse
Affiliation(s)
- Mansoor Ahmed
- National Center for Cell Science , NCCS Complex, Ganeshkhind, Pune, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Morishita M, Ono N, Miyai K, Nakagawa T, Hanyu R, Nagao M, Kamolratanakul P, Notomi T, Rittling SR, Denhardt DT, Kronenberg HM, Ezura Y, Hayata T, Nakamoto T, Noda M. Osteopontin deficiency enhances parathyroid hormone/ parathyroid hormone related peptide receptor (PPR) signaling-induced alteration in tooth formation and odontoblastic morphology. Tissue Cell 2011; 43:196-200. [PMID: 21511320 DOI: 10.1016/j.tice.2011.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 02/09/2011] [Accepted: 02/09/2011] [Indexed: 11/25/2022]
Abstract
Parathyroid hormone/parathyroid hormone-related protein receptor (PPR) signaling is known to be involved in tooth development. In bone, extracellular matrix protein osteopontin (OPN) is a negative regulator of PPR signaling in bone formation. However, the role of OPN in modulation of PPR action in tooth development is not understood. Therefore, we examined the tooth in double mutant mice. Constitutively active PPR was expressed specifically in the odontoblasts and osteoblasts (caPPR-tg) in the presence or absence of OPN. Radiographic analysis indicated that the length of the third molar (M3) and the incisor was decreased in the caPPR-tg mice compared to wild type, and such reduction in molar and incisor length was further enhanced in the absence of OPN (caPPR-tg OPN-KO). With respect to histology of incisors, caPPR-tg induced high cellularity and irregularity in odontoblastic shape and this was enhanced by the absence of OPN. These morphological observations suggest that OPN modulates PPR signaling that are involved in tooth formation.
Collapse
Affiliation(s)
- Maki Morishita
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8510, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sethi N, Kang Y. Dysregulation of developmental pathways in bone metastasis. Bone 2011; 48:16-22. [PMID: 20630490 DOI: 10.1016/j.bone.2010.07.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 06/30/2010] [Accepted: 07/06/2010] [Indexed: 02/07/2023]
Abstract
It is well-known that pathways normally functioning during embryonic development are dysregulated in cancer. Experimental and clinical studies have established strong connections between aberrant developmental pathways and transformation, as well as other early stage events of cancer progression. There is now emerging evidence that also indicates the contribution of developmental pathways to the pathogenesis of distant metastasis, including bone metastasis. In particular, the Wnt, BMP, and Hedgehog signaling pathways have all been implicated in the development of bone metastasis. These developmental pathways participate in the regulation of cell-autonomous functions in tumor cells as well as tumor-stromal interactions in the bone microenvironment, eventually promoting the formation of osteolytic or osteoblastic bone metastasis.
Collapse
Affiliation(s)
- Nilay Sethi
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
13
|
Schneider JG, Amend SH, Weilbaecher KN. Integrins and bone metastasis: integrating tumor cell and stromal cell interactions. Bone 2011; 48:54-65. [PMID: 20850578 PMCID: PMC3010439 DOI: 10.1016/j.bone.2010.09.016] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 09/04/2010] [Indexed: 01/24/2023]
Abstract
Integrins on both tumor cells and the supporting host stromal cells in bone (osteoclasts, new blood vessels, inflammatory cells, platelets and bone marrow stromal cells) play key roles in enhancing bone metastasis. Tumor cells localize to specific tissues through integrin-mediated contacts with extracellular matrix and stromal cells. Integrin expression and signaling are perturbed in cancer cells, allowing them to "escape" from cell-cell and cell-matrix tethers, invade, migrate and colonize within new tissues and matrices. Integrin signaling through αvβ3 and VLA-4 on tumor cells can promote tumor metastasis to and proliferation in the bone microenvironment. Osteoclast (OC) mediated bone resorption is a critical component of bone metastasis and can promote tumor growth in bone and αvβ3 integrins are critical to OC function and development. Tumors in the bone microenvironment can recruit new blood vessel formation, platelets, pro-tumor immune cells and bone marrow stromal cells that promote tumor growth and invasion in bone. Integrins and their ligands play critical roles in platelet aggregation (αvβ3 and αIIbβ3), hematopoietic cell mobilization (VLA-4 and osteopontin), neoangiogenesis (αvβ3, αvβ5, α6β4, and β1 integrin) and stromal function (osteopontin and VLA-4). Integrins are involved in the pathogenesis of bone metastasis at many levels and further study to define integrin dysregulation by cancer will yield new therapeutic targets for the prevention and treatment of bone metastasis.
Collapse
Affiliation(s)
- Jochen G. Schneider
- Institute for Clinical Biochemistry and Pathobiochemistry, University of Wuerzburg, Germany, and Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg
| | - Sarah H. Amend
- Department of Medicine and Division of Oncology, Washington University, School of Medicine, St. Louis, MO, USA
| | - Katherine N. Weilbaecher
- Department of Medicine and Division of Oncology, Washington University, School of Medicine, St. Louis, MO, USA
| |
Collapse
|
14
|
Berretta R, Moscato P. Cancer biomarker discovery: the entropic hallmark. PLoS One 2010; 5:e12262. [PMID: 20805891 PMCID: PMC2923618 DOI: 10.1371/journal.pone.0012262] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 06/26/2010] [Indexed: 12/29/2022] Open
Abstract
Background It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-througput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases.
Collapse
Affiliation(s)
- Regina Berretta
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
- Information Based Medicine Program, Hunter Medical Research Institute, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Pablo Moscato
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
- Information Based Medicine Program, Hunter Medical Research Institute, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
- Australian Research Council Centre of Excellence in Bioinformatics, Callaghan, New South Wales, Australia
- * E-mail:
| |
Collapse
|
15
|
Buback F, Renkl AC, Schulz G, Weiss JM. Osteopontin and the skin: multiple emerging roles in cutaneous biology and pathology. Exp Dermatol 2009; 18:750-9. [PMID: 19558497 DOI: 10.1111/j.1600-0625.2009.00926.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Osteopontin (OPN) is a glycoprotein expressed by various tissues and cells. The existence of variant forms of OPN as a secreted (sOPN) and intracellular (iOPN) protein and its modification through post-translational modification and proteolytic cleavage explain its broad range of functions. There is increasing knowledge which receptors OPN isoforms can bind to and which signaling pathways are activated to mediate different OPN functions. sOPN interacts with integrins and CD44, mediates cell adhesion, migration and tumor invasion, and has T helper 1 (Th1) cytokine functions and anti-apoptotic effects. iOPN has been described to regulate macrophage migration and interferon-alpha secretion in plasmacytoid dendritic cells. Both sOPN and iOPN, through complex functions for different dendritic cell subsets, participate in the regulation of Th cell lineages, among them Th17 cells. For skin disease, OPN from immune cells and tumor cells is of pathophysiological relevance. OPN is secreted in autoimmune diseases such as lupus erythematosus, and influences inflammation of immediate and delayed type allergies and granuloma formation. We describe that OPN is overexpressed in psoriasis and propose a model to study OPN function in psoriatic inflammation. Through cytokine functions, OPN supports immune responses against Mycobacteria and viruses such as herpes simplex virus. OPN is also implicated in skin tumor progression. Overexpression of OPN influences invasion and metastasis of melanoma and squamous cell carcinoma cells, and OPN expression in melanoma is a possible prognostic marker. As OPN protein preparations and anti-OPN antibodies may be available in the near future, in-depth knowledge of OPN functions may open new therapeutic approaches for skin diseases.
Collapse
Affiliation(s)
- Franziska Buback
- Department of Dermatology and Allergology, University of Ulm, Ulm, Germany
| | | | | | | |
Collapse
|
16
|
Tumor necrosis is associated with increased alphavbeta3 integrin expression and poor prognosis in nodular cutaneous melanomas. BMC Cancer 2008; 8:362. [PMID: 19061491 PMCID: PMC2631589 DOI: 10.1186/1471-2407-8-362] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 12/05/2008] [Indexed: 12/12/2022] Open
Abstract
Background Tumor necrosis and apoptotic activity are considered important in cancer progression, but these features have not been much studied in melanomas. Our hypothesis was that rapid growth in cutaneous melanomas of the vertical growth phase might lead to tissue hypoxia, alterations in apoptotic activity and tumor necrosis. We proposed that these tumor characteristics might be associated with changes in expression of cell adhesion proteins leading to increased invasive capacity and reduced patient survival. Methods A well characterized series of nodular melanoma (originally 202 cases) and other benign and malignant melanocytic tumors (109 cases) were examined for the presence of necrosis, apoptotic activity (TUNEL assay), immunohistochemical expression of hypoxia markers (HIF-1 α, CAIX, TNF-α, Apaf-1) and cell adhesion proteins (αvβ3 integrin, CD44/HCAM and osteopontin). We hypothesized that tumor hypoxia and necrosis might be associated with increased invasiveness in melanoma through alterations of tumor cell adhesion proteins. Results Necrosis was present in 29% of nodular melanomas and was associated with increased tumor thickness, tumor ulceration, vascular invasion, higher tumor proliferation and apoptotic index, increased expression of αvβ3 integrin and poor patient outcome by multivariate analysis. Tumor cell apoptosis did also correlate with reduced patient survival. Expression of TNF-α and Apaf-1 was significantly associated with tumor thickness, and osteopontin expression correlated with increased tumor cell proliferation (Ki-67). Conclusion Tumor necrosis and apoptotic activity are important features of melanoma progression and prognosis, at least partly through alterations in cell adhesion molecules such as increased αvβ3 integrin expression, revealing potentially important targets for new therapeutic approaches to be further explored.
Collapse
|
17
|
Chakraborty G, Jain S, Patil TV, Kundu GC. Down-regulation of osteopontin attenuates breast tumour progression in vivo. J Cell Mol Med 2008; 12:2305-18. [PMID: 18266970 PMCID: PMC4514110 DOI: 10.1111/j.1582-4934.2008.00263.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Development of breast tumour malignancies results in enhanced expression of various oncogenic molecules. Elevated expression of osteopontin (OPN) in higher grades of breast carcinoma correlates with enhanced expressions of several oncogenic molecules (urokinase-type plasminogen activator [uPA], matrix metalloproteinase-2/-9 [MMP-2 and -9]) and increased angiogenic potential of breast carcinoma. In this study, using in vitro and multiple in vivo models, we have demonstrated that silencing of OPN by its specific small interfering RNA (siRNA) down-regulates the expressions of oncogenic molecules such as uPA, MMP-2 and -9 resulting in inhibition of in vitro cell motility and in vivo tumourigenicity in mice. Moreover our results demonstrated that OPN−/− mice showed slower progression of tumour growth in breast cancer model as compared to wild-type mice. Furthermore, the data showed that injection of carcinogenic compound, pristane (2, 6,10,14-tetramethylpen-tadecane) induces breast tumour progression leading to enhanced expression of OPN and other oncogenic molecules in mammary fat pad of nude- and wild-type mice but not in OPN−/ mice. However, intratumoural injection of OPN siRNA to pristane-induced tumour significantly suppressed these effects. Our data revealed that knocking down of OPN effectively curb breast cancer progression and further suggested that developing of OPN-based therapeutics might be an emerging approach for the next generation of breast cancer management.
Collapse
Affiliation(s)
- Goutam Chakraborty
- National Center for Cell Science, Department of Histopathology, YCM Hospital, Pune, India
| | | | | | | |
Collapse
|
18
|
Nakamura H, Hiraga T, Ninomiya T, Hosoya A, Fujisaki N, Yoneda T, Ozawa H. Involvement of cell-cell and cell-matrix interactions in bone destruction induced by metastatic MDA-MB-231 human breast cancer cells in nude mice. J Bone Miner Metab 2008; 26:642-7. [PMID: 18979165 DOI: 10.1007/s00774-008-0857-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 01/23/2008] [Indexed: 01/22/2023]
Abstract
To clarify the mechanisms of bone destruction associated with bone metastases, we studied an animal model in which inoculation of MDA-MB-231 human breast cancer cells into the left cardiac ventricle of female nude mice causes osteolytic lesions in bone using morphological techniques. On the bone surfaces facing the metastatic tumor cells, there existed many tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts. TRAP-positive mononuclear osteoclast precursor cells were also observed in the tumor nests. Immunohistochemical studies showed that the cancer cells produced parathyroid hormone-related protein (PTHrP) but not receptor activator of NF-kappaB ligand (RANKL). Histochemical and immunohistochemical examinations demonstrated that alkaline phosphatase and RANKL-positive stromal cells were frequently adjacent to TRAP-positive osteoclast-like cells. Immunoelectron microscopic observation revealed that osteoclast-like cells were in contact with RANKL-positive stromal cells. MDA-MB-231 cells and osteoclast-like cells in the tumor nests showed CD44-positive reactivity on their plasma membranes. Hyaluronan (HA) and osteopontin (OPN), the ligands for CD44, were occasionally colocalized with CD44. These results suggest that tumor-producing osteoclastogenic factors, including PTHrP, upregulate RANKL expression in bone marrow stromal cells, which in turn stimulates the differentiation and activation of osteoclasts, leading to the progression of bone destruction in the bone metastases of MDA-MB-231 cells. Because the interactions between CD44 and its ligands, HA and OPN, have been shown to upregulate osteoclast differentiation and function, in addition to the cell-cell interactions mediated by RANK and RANKL, the cell-matrix interactions mediated by these molecules may also contribute to the progression of osteoclastic bone destruction.
Collapse
Affiliation(s)
- Hiroaki Nakamura
- Department of Oral Histology, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano, 399-0781, Japan.
| | | | | | | | | | | | | |
Collapse
|
19
|
Hayashi C, Rittling S, Hayata T, Amagasa T, Denhardt D, Ezura Y, Nakashima K, Noda M. Serum osteopontin, an enhancer of tumor metastasis to bone, promotes B16 melanoma cell migration. J Cell Biochem 2007; 101:979-86. [PMID: 17390343 DOI: 10.1002/jcb.21298] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tumor malignancy is associated with several features such as proliferation ability and frequency of metastasis. Since tumor metastasis shortens patients' lifetime, establishment of therapy for anti-metastasis is very important. Osteopontin (OPN), which abundantly expressed in bone matrix, is involved in cell adhesion, migration, extracellular matrix (ECM) invasion and cell proliferation via interaction with its receptor, that is, alphavbeta3 integrin. OPN is believed to be a positive regulator of tumor metastasis in vivo. However, how OPN regulates metastasis is largely unknown. Here, we explore the role of OPN in cell migration. Serum from wild-type mice induced cell migration of B16 melanoma cells, while serum from OPN-deficient mouse suppressed this event. The presence of recombinant OPN significantly enhanced cell migration compared to albumin containing medium. OPN-induced cell migration was suppressed by inhibiting the ERK/MAPK pathway indicating that OPN-induced cell migration depends on this pathway. Overexpression of OPN in these cancer cells per se promoted cell proliferation and tended to increase B16 cell migration suggesting that OPN promotes bone metastasis by playing dual roles both in host microenvironment and in tumor cell itself. In conclusion, the elevated OPN expression in host tissue and tumor cell itself promotes tumor cell migration reading to tumor metastasis, suggesting that neutralization of OPN-induced signal might be effective in suppression of tumor metastasis.
Collapse
Affiliation(s)
- Chikako Hayashi
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Pratap J, Lian JB, Javed A, Barnes GL, van Wijnen AJ, Stein JL, Stein GS. Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone. Cancer Metastasis Rev 2007; 25:589-600. [PMID: 17165130 DOI: 10.1007/s10555-006-9032-0] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The three mammalian Runt homology domain transcription factors (Runx1, Runx2, Runx3) support biological control by functioning as master regulatory genes for the differentiation of distinct tissues. Runx proteins also function as cell context-dependent tumor suppressors or oncogenes. Abnormalities in Runx mediated gene expression are linked to cell transformation and tumor progression. Runx2 is expressed in mesenchymal linage cells committed to the osteoblast phenotype and is essential for bone formation. This skeletal transcription factor is aberrantly expressed at high levels in breast and prostate tumors and cells that aggressively metastasize to the bone environment. In cancer cells, Runx2 activates expression of bone matrix and adhesion proteins, matrix metalloproteinases and angiogenic factors that have long been associated with metastasis. In addition, Runx2 mediates the responses of cells to signaling pathways hyperactive in tumors, including BMP/TGFbeta and other growth factor signals. Runx2 forms co-regulatory complexes with Smads and other co-activator and co-repressor proteins that are organized in subnuclear domains to regulate gene transcription. These activities of Runx2 contribute to tumor growth in bone and the accompanying osteolytic disease, established by interfering with Runx2 functions in metastatic breast cancer cells. Inhibition of Runx2 in MDA-MB-231 cells transplanted to bone decreased tumorigenesis and prevented osteolysis. This review evaluates evidence that Runx2 regulates early metastatic events in breast and prostate cancers, tumor growth, and osteolytic bone disease. Consideration is given to the potential for inhibition of this transcription factor as a therapeutic strategy upstream of the regulatory events contributing to the complexity of metastasis to bone.
Collapse
Affiliation(s)
- J Pratap
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Jain S, Chakraborty G, Bulbule A, Kaur R, Kundu GC. Osteopontin: an emerging therapeutic target for anticancer therapy. Expert Opin Ther Targets 2007; 11:81-90. [PMID: 17150036 DOI: 10.1517/14728222.11.1.81] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Distant migration of malignant cells or metastasis is considered one of the hallmarks of tumour progression and makes cancer a most deadly disease. The elevated expression of osteopontin (OPN), a metastasis-associated small integrin-binding ligand N-linked glycoprotein family member has been observed in several cancers and, thus, this protein is considered as a potent prognostic marker during tumour progression. OPN regulates a series of signalling cascades and augments the expression of several oncogenic molecules. Therefore, understanding the molecular mechanism and the signalling pathways by which OPN promotes tumorigenesis may be helpful in designing a novel anticancer therapy. At present, the role of OPN in regulating cancer progression is the subject of intense investigation and targeting OPN might be an appropriate therapeutic strategy for the treatment of cancer. This review is focused on OPN-based anticancer therapy, which may provide a new dimension for the successful treatment of cancer.
Collapse
Affiliation(s)
- Shalini Jain
- National Center for Cell Science, Pune-411007, India
| | | | | | | | | |
Collapse
|
22
|
Rangaswami H, Bulbule A, Kundu GC. Osteopontin: role in cell signaling and cancer progression. Trends Cell Biol 2006; 16:79-87. [PMID: 16406521 DOI: 10.1016/j.tcb.2005.12.005] [Citation(s) in RCA: 530] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 10/21/2005] [Accepted: 12/15/2005] [Indexed: 12/16/2022]
Abstract
Cell migration and degradation of the extracellular matrix (ECM) are crucial steps in tumor progression. Several matrix-degrading proteases, including matrix metalloproteases, are highly regulated by growth factors, cytokines and ECM proteins. Osteopontin (OPN), a chemokine-like, calcified ECM-associated protein, plays a crucial role in determining the metastatic potential of various cancers. Since its first identification in bone, the multifaceted roles of OPN have been an area of intense investigation. Extensive research has elucidated the pivotal role of OPN in regulating the cell signaling that controls tumor progression and metastasis. This review focuses on recent advances in understanding the functional role of the OPN-induced signaling pathway in the regulation of cell migration and tumor progression and the implications for identifying novel targets for cancer therapy.
Collapse
Affiliation(s)
- Hema Rangaswami
- National Center for Cell Science (NCCS), NCCS Complex, Pune 411 007, India
| | | | | |
Collapse
|
23
|
Affiliation(s)
- David Denhardt
- Department of Cell Biology and Neuroscience and Cancer Institute of New Jersey, Rutgers University, Nelson Biological Laboratories, Piscataway, New Jersey, USA
| |
Collapse
|
24
|
Affiliation(s)
- Richard A Sturm
- Melanogenix Group, Division of Molecular Genetics and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| |
Collapse
|