1
|
Chen SL, Li RH, Chen YQ. Quantitative elemental analysis of bismuth brass with target-enhanced orthogonal double-pulse LIBS combined with variant one-point calibration. APPLIED OPTICS 2023; 62:4512-4517. [PMID: 37707144 DOI: 10.1364/ao.492394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/21/2023] [Indexed: 09/15/2023]
Abstract
Self-absorption and unknown transition probabilities of the analytical lines hinder the accurate quantitative elemental analysis of bismuth brass with conventional calibration-free laser-induced breakdown spectroscopy (LIBS). In this work, target-enhanced orthogonal double-pulse LIBS combined with a variant one-point calibration method was used to solve this problem and realize quantitative elemental analysis of bismuth brass with a relative error of less than 4%. This approach is able to reduce the influence of self-absorption and capable of using analytical lines with unknown transition probabilities while using a calibration-free algorithm, which is helpful for accurate quantitative elemental analysis of bismuth brass and other samples.
Collapse
|
2
|
Wei K, Teng G, Wang Q, Xu X, Zhao Z, Liu H, Bao M, Zheng Y, Luo T, Lu B. Rapid Test for Adulteration of Fritillaria Thunbergii in Fritillaria Cirrhosa by Laser-Induced Breakdown Spectroscopy. Foods 2023; 12:foods12081710. [PMID: 37107505 PMCID: PMC10138139 DOI: 10.3390/foods12081710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Fritillaria has a long history in China, and it can be consumed as medicine and food. Owing to the high cost of Fritillaria cirrhosa, traders sometimes mix it with the cheaper Fritillaria thunbergii powder to make profit. Herein, we proposed a laser-induced breakdown spectroscopy (LIBS) technique to test the adulteration present in the sample of Fritillaria cirrhosa powder. Experimental samples with different adulteration levels were prepared, and their LIBS spectra were obtained. Partial least squares regression (PLSR) was adopted as the quantitative analysis model to compare the effects of four data standardization methods, namely, mean centring, normalization by total area, standard normal variable, and normalization by the maximum, on the performance of the PLSR model. Principal component analysis and least absolute shrinkage and selection operator (LASSO) were utilized for feature extraction and feature selection, and the performance of the PLSR model was determined based on its quantitative analysis. Subsequently, the optimal number of features was determined. The residuals were corrected using support vector regression (SVR). The mean absolute error and root mean square error of prediction obtained from the quantitative analysis results of the combined LASSO-PLSR-SVR model for the test set data were 5.0396% and 7.2491%, respectively, and the coefficient of determination R2 was 0.9983. The results showed that the LIBS technique can be adopted to test adulteration in the sample of Fritillaria cirrhosa powder and has potential applications in drug quality control.
Collapse
Affiliation(s)
- Kai Wei
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Geer Teng
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081, China
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7LD, UK
| | - Qianqian Wang
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314033, China
| | - Xiangjun Xu
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zhifang Zhao
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Haida Liu
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Mengyu Bao
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yongyue Zheng
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Tianzhong Luo
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314033, China
| | - Bingheng Lu
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
3
|
Lednev VN, Sdvizhenskii PA, Dorohov AS, Gudkov SV, Pershin SM. Improving LIBS analysis of non-flat heterogeneous samples by signals mapping. APPLIED OPTICS 2023; 62:2030-2038. [PMID: 37133090 DOI: 10.1364/ao.473111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Heterogeneous material analysis by the laser-induced breakdown spectroscopy (LIBS) technique is challenging in real practice due to requirements for representative sampling and non-flat surfaces of the samples. Methods complementary to LIBS (plasma imaging, plasma acoustics, sample surface color imaging) have been introduced to improve zinc (Zn) determination in soybean grist material by LIBS. The detailed statistical study revealed that atomic/ionic lines emission and other LIBS signals were distributed normally except for acoustics signals. The correlation between LIBS and complementary signals was rather poor due to the large variability of the particle properties of soybean grist material. Still, analyte line normalization on plasma background emission was rather simple and effective for Zn analysis but required a few hundred spot samplings for representative Zn quantification. Non-flat heterogeneous samples (soybean grist pellets) were analyzed by LIBS mapping but it was demonstrated that the choice of sampling area is crucial for reliably analyte determination.
Collapse
|
4
|
Wu X, Shin S, Gondhalekar C, Patsekin V, Bae E, Robinson JP, Rajwa B. Rapid Food Authentication Using a Portable Laser-Induced Breakdown Spectroscopy System. Foods 2023; 12:402. [PMID: 36673494 PMCID: PMC9857504 DOI: 10.3390/foods12020402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/13/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
Laser-induced breakdown spectroscopy (LIBS) is an atomic-emission spectroscopy technique that employs a focused laser beam to produce microplasma. Although LIBS was designed for applications in the field of materials science, it has lately been proposed as a method for the compositional analysis of agricultural goods. We deployed commercial handheld LIBS equipment to illustrate the performance of this promising optical technology in the context of food authentication, as the growing incidence of food fraud necessitates the development of novel portable methods for detection. We focused on regional agricultural commodities such as European Alpine-style cheeses, coffee, spices, balsamic vinegar, and vanilla extracts. Liquid examples, including seven balsamic vinegar products and six representatives of vanilla extract, were measured on a nitrocellulose membrane. No sample preparation was required for solid foods, which consisted of seven brands of coffee beans, sixteen varieties of Alpine-style cheeses, and eight different spices. The pre-processed and standardized LIBS spectra were used to train and test the elastic net-regularized multinomial classifier. The performance of the portable and benchtop LIBS systems was compared and described. The results indicate that field-deployable, portable LIBS devices provide a robust, accurate, and simple-to-use platform for agricultural product verification that requires minimal sample preparation, if any.
Collapse
Affiliation(s)
- Xi Wu
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Sungho Shin
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Carmen Gondhalekar
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Valery Patsekin
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Euiwon Bae
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - J. Paul Robinson
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Bartek Rajwa
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
5
|
Li YF, Chen YQ, Li SS, Huang XQ. Accurate elemental analysis with variant one-point calibration laser-induced breakdown spectroscopy capable of using analytical lines with unknown transition probabilities. OPTICS EXPRESS 2022; 30:34545-34556. [PMID: 36242464 DOI: 10.1364/oe.470059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Calibration-free laser-induced breakdown spectroscopy (CF-LIBS) is a very useful elemental analysis technique. However, it requires knowledge of transition probabilities of the analytical lines. To solve this problem, a variant one-point calibration (OPC) LIBS method was proposed. Quantitative elemental analysis on Cu-Zn-Ag-Au alloys was realized with this method capable of using zinc analytical lines with unknown transition probabilities. The relative error was demonstrated to be less than 3.3%. This variant OPC method will be helpful for quantitative elemental analysis of different samples using CF-LIBS, no matter whether the transition probabilities of the observed lines are known or unknown.
Collapse
|
6
|
Alrebdi TA, Fayyaz A, Ben Gouider Trabelsi A, Asghar H, Alkallas FH, Alshehri AM. Vibrational Emission Study of the CN and C 2 in Nylon and ZnO/Nylon Polymer Using Laser-Induced Breakdown Spectroscopy (LIBS). Polymers (Basel) 2022; 14:3686. [PMID: 36080765 PMCID: PMC9460295 DOI: 10.3390/polym14173686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 12/03/2022] Open
Abstract
The laser-induced breakdown spectroscopy (LIBS) technique was performed on polymers to study the neutral and ionic emission lines along with the CN violet system (B2Σ+ to X2Σ+) and the C2 Swan system (d3 Пg-a3 Пu). For the laser-based emission analyses, the plasma was produced by focusing the laser beam of a Q-switched Nd: YAG laser (2ω) at an optical wavelength of 532 nm, 5 ns pulse width, and a repetition frequency of 10 Hz. The integration time of the detection system was fixed at 1-10 ms while the target sample was positioned in air ambiance. Two organic polymers were investigated in this work: nylon and nylon doped with ZnO. The molecular optical emission study of nylon and doped nylon polymer sample reveals CN and C2 molecular structures present in the polymer. The vibrational emission analysis of CN and C2 bands gives information about the molecular structure of polymers and dynamics influencing the excitation structures of the molecules. Besides, it was further investigated that the intensity of the molecular optical emission structure strongly depends on the electron number density (cm-3), excitation temperature (eV), and laser irradiance (W/cm2). These results suggest that LIBS is a reliable diagnostic technique for the study of polymers regarding their molecular structure, identification, and compositional analysis.
Collapse
Affiliation(s)
- Tahani A. Alrebdi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amir Fayyaz
- National Centre for Physics, Quaid-i-Azam University Campus, Islamabad 45320, Pakistan
| | - Amira Ben Gouider Trabelsi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Haroon Asghar
- National Centre for Physics, Quaid-i-Azam University Campus, Islamabad 45320, Pakistan
| | - Fatemah H. Alkallas
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ali M. Alshehri
- Department of Physics, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
7
|
Laser Spectroscopic Characterization for the Rapid Detection of Nutrients along with CN Molecular Emission Band in Plant-Biochar. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155048. [PMID: 35956998 PMCID: PMC9370218 DOI: 10.3390/molecules27155048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/23/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
Abstract
We report a quantitative analysis of various plant-biochar samples (S1, S2 and S3) by utilizing a laser-induced breakdown spectroscopy (LIBS) technique. For LIBS analysis, laser-induced microplasma was generated on the target surface by using a focused beam through a high-power Nd: YAG laser and optical emission spectra were recorded using a charged coupled device (CCD) array spectrometer, with wavelength ranges from 200 nm to 720 nm. The spectroscopical analysis showed the existence of various ingredients, including H, Li, Ca, Na, Al, Zn, Mg, Sr, Si, and Fe, along with a CN molecular emission band due to B2Σ+ − X2Σ+ electronic transition. By assuming conditions of the plasma is optically thin and in LTE, calibration-free laser-induced breakdown spectroscopy (CF-LIBS) was utilized for the compositional analysis of the ingredients present in the three plant-biochar samples. To lower the uncertainties, we used an average composition (%) of the three plant-biochar samples. The quantitative study of the plant-biochar samples was also achieved using the energy dispersive X-ray (EDX) technique, showing good agreement with the CF-LIBS technique. In addition, statistical analysis, such as principal component analysis (PCA), was performed for the clustering and classification of the three plant-biochar samples. The first three PCs explained an overall ~91% of the variation in LIBS spectral data, including PC1 (58.71%), PC2 (20.9%), and PC3 (11.4%). These findings suggest that LIBS is a robust tool for rapid measurement of heavy as well as light elements, such as H, Li, and nutritional metals in plant-biochar samples.
Collapse
|
8
|
Kabir MH, Guindo ML, Chen R, Sanaeifar A, Liu F. Application of Laser-Induced Breakdown Spectroscopy and Chemometrics for the Quality Evaluation of Foods with Medicinal Properties: A Review. Foods 2022; 11:2051. [PMID: 35885291 PMCID: PMC9321926 DOI: 10.3390/foods11142051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 12/05/2022] Open
Abstract
Laser-induced Breakdown Spectroscopy (LIBS) is becoming an increasingly popular analytical technique for characterizing and identifying various products; its multi-element analysis, fast response, remote sensing, and sample preparation is minimal or nonexistent, and low running costs can significantly accelerate the analysis of foods with medicinal properties (FMPs). A comprehensive overview of recent advances in LIBS is presented, along with its future trends, viewpoints, and challenges. Besides reviewing its applications in both FMPs, it is intended to provide a concise description of the use of LIBS and chemometrics for the detection of FMPs, rather than a detailed description of the fundamentals of the technique, which others have already discussed. Finally, LIBS, like conventional approaches, has some limitations. However, it is a promising technique that may be employed as a routine analysis technique for FMPs when utilized effectively.
Collapse
Affiliation(s)
- Muhammad Hilal Kabir
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (M.H.K.); (M.L.G.); (R.C.); (A.S.)
- Department of Agricultural and Bio-Resource Engineering, Abubakar Tafawa Balewa University, Bauchi 740272, Nigeria
| | - Mahamed Lamine Guindo
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (M.H.K.); (M.L.G.); (R.C.); (A.S.)
| | - Rongqin Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (M.H.K.); (M.L.G.); (R.C.); (A.S.)
| | - Alireza Sanaeifar
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (M.H.K.); (M.L.G.); (R.C.); (A.S.)
| | - Fei Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (M.H.K.); (M.L.G.); (R.C.); (A.S.)
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| |
Collapse
|
9
|
Alrebdi TA, Fayyaz A, Asghar H, Zaman A, Asghar M, Alkallas FH, Hussain A, Iqbal J, Khan W. Quantification of Aluminum Gallium Arsenide (AlGaAs) Wafer Plasma Using Calibration-Free Laser-Induced Breakdown Spectroscopy (CF-LIBS). Molecules 2022; 27:molecules27123754. [PMID: 35744877 PMCID: PMC9229630 DOI: 10.3390/molecules27123754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
In this work, we report the results of the compositional analysis of an aluminum gallium arsenide (AlGaAs) sample using the calibration-free laser-induced breakdown spectroscopy (CF-LIBS) technique. The AlGaAs sample was doped with three various concentrations of gallium (Ga), arsenic (As), and aluminum (Al), as reported by the manufacturer, and the CF-LIBS technique was employed to identify the doping concentration. A pulsed Q-switched Nd: YAG laser capable of delivering 200 and 400 mJ energy at 532 and 1064 nm, respectively, was focused on the target sample for ablation, and the resulting emission spectra were captured using a LIBS 2000+ spectrometer covering the spectral range from 200 to 720 nm. The emission spectra of the AlGaAs sample yielded spectral lines of Ga, As, and Al. These lines were further used to calculate the plasma parameters, including electron temperature and electron number density. The Boltzmann plot method was used to calculate the electron temperature, and the average electron temperature was found to be 5744 ± 500 K. Furthermore, the electron number density was calculated from the Stark-broadened line profile method, and the average number density was calculated to be 6.5 × 1017 cm−3. It is further observed that the plasma parameters including electron temperature and electron number density have an increasing trend with laser irradiance and a decreasing trend along the plume length up to 2 mm. Finally, the elemental concentrations in terms of weight percentage using the CF-LIBS method were calculated to be Ga: 94%, Al: 4.77% and As: 1.23% for sample-1; Ga: 95.63%, Al: 1.15% and As: 3.22% for sample-2; and Ga: 97.32%, Al: 0.69% and As: 1.99% for sample-3. The certified concentrations were Ga: 95%, Al: 3% and As: 2% for sample-1; Ga: 96.05%, Al: 1% and As: 2.95% for sample-2; and Ga: 97.32%, Al: 0.69% and As: 1.99% for sample-3. The concentrations measured by CF-LIBS showed good agreement with the certified values reported by the manufacturer. These findings suggest that the CF-LIBS technique opens up an avenue for the industrial application of LIBS, where quantitative/qualitative analysis of the material is highly desirable.
Collapse
Affiliation(s)
- Tahani A. Alrebdi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (T.A.A.); (F.H.A.)
| | - Amir Fayyaz
- National Centre for Physics, Quaid-i-Azam University Campus, Islamabad 45320, Pakistan;
| | - Haroon Asghar
- National Centre for Physics, Quaid-i-Azam University Campus, Islamabad 45320, Pakistan;
- Correspondence:
| | - Asif Zaman
- Department of Physics, Islamia College, Peshawar 25000, Pakistan;
| | - Mamoon Asghar
- Department of Physics, University of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan;
| | - Fatemah H. Alkallas
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (T.A.A.); (F.H.A.)
| | - Atif Hussain
- Department of Physics, The University of Lahore, Gujrat Campus, Gujrat 50700, Pakistan;
| | - Javed Iqbal
- Department of Physics, Azad Jammu and Kashmir University, Muzaffarabad 13100, Pakistan;
| | - Wilayat Khan
- Department of Physics, Bacha Khan University, Charsadda 24420, Pakistan;
| |
Collapse
|
10
|
Hu Z, Zhang D, Wang W, Chen F, Xu Y, Nie J, Chu Y, Guo L. A Review of Calibration-Free Laser-Induced Breakdown Spectroscopy. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Hu Z, Chen F, Zhang D, Chu Y, Wang W, Tang Y, Guo L. A method for improving the accuracy of calibration-free laser-induced breakdown spectroscopy by exploiting self-absorption. Anal Chim Acta 2021; 1183:339008. [PMID: 34627502 DOI: 10.1016/j.aca.2021.339008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/13/2021] [Accepted: 08/28/2021] [Indexed: 10/20/2022]
Abstract
The existence of the self-absorption effect results in a nonlinear relationship between spectral intensity and elemental concentration, which dramatically affect the quantitative accuracy of laser-induced breakdown spectroscopy (LIBS), especially calibration-free LIBS (CF-LIBS). In this work, the CF-LIBS with columnar density and standard reference line (CF-LIBS with CD-SRL) was proposed to improve the quantitative accuracy of CF-LIBS analysis by exploiting self-absorption. Our method allows using self-absorbed lines to perform the calibration-free approach directly and does not require self-absorption correction algorithms. To verify this method, the experiment was conducted both on aluminium-bronze and aluminium alloy samples. Compared with classical CF-LIBS, the average errors (AEs) of CF-LIBS with CD-SRL were decreased from 3.20%, 3.22%, 3.15% and 3.01%-0.95%, 1.00%, 1.16% and 1.78%, respectively for four aluminium-bronze alloy samples. The AEs were decreased from 0.66%, 0.70%, 0.89% and 1.30%-0.43%, 0.61%, 0.77% and 0.33%, respectively for four aluminium alloy samples. The experimental results demonstrated that CF-LIBS with CD-SRL provided higher quantitative accuracy and stronger adaptability than classical CF-LIBS, which is quite helpful for the practical application of CF-LIBS.
Collapse
Affiliation(s)
- Zhenlin Hu
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Feng Chen
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Deng Zhang
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yanwu Chu
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Weiliang Wang
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yun Tang
- School of Physics and Electronics Science, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China.
| | - Lianbo Guo
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
12
|
Ma Y, Hu Z, Tang Y, Sheng Z, Ma S, Hu X, Luo W, Zeng Q, Guo L. Investigation of the mechanism and influence of laser wavelength and energy on laser opto-ultrasonic dual detection. APPLIED OPTICS 2020; 59:9591-9597. [PMID: 33104681 DOI: 10.1364/ao.405453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Laser opto-ultrasonic dual (LOUD) detection, which uses laser irradiation of samples to generate spectral and ultrasonic signals simultaneously, can perform multimodal detection of element composition and structural property. As such, it has been applied to the detection of additive manufacturing (AM) components. Further, optimized parameters lead to better detection results. To the best of our knowledge, however, there is no study on the effect of laser properties on LOUD detection. Therefore, we studied the mechanism and influence of laser wavelength and energy on LOUD detection. In this work, the intensity, signal-to-noise ratio (SNR), and stability evolution of the laser excitation spectrum and ultrasonic signals at different wavelengths and energies were analyzed. It was found in the plasma evolution that high electron number density means a large amount of ablated mass generated, which was favorable for laser ultrasonic excitation and can produce higher SNR and a more stable signal. However, it also led to more atoms of the ground-state, which resulted in the self-absorption effect and reduced spectrum intensity in the spectrum analysis. Therefore, with self-absorption correction, better stability, and higher signal intensity, an SNR of spectral and ultrasonic signals can be obtained using 355 nm laser excitation at optimal energy. As a result, in the quantitative analysis of Cu and Si elements by LOUD detection, the determination coefficients (R2) were higher than 0.995, and the average relative errors were less than 2.5%, the limit of detection could reach the order of 100 ppm. Further, the defect size of 0.55 mm in the wire +arc additive manufacturing sample was detected by LOUD detection, and the average relative error was 5.59% compared with the digital radiography results, which indicate that laser wavelength and laser energy affect the intensity and stability of spectral and ultrasonic signals in LOUD detection, which means selecting appropriate laser parameters is important to obtain a high precision detection.
Collapse
|