1
|
Pattadkal JJ, Priebe NJ. Neural Recording Chambers for Long-Term Access to Brain Tissue. J Neurosci 2025; 45:e1106242024. [PMID: 39725520 PMCID: PMC11823352 DOI: 10.1523/jneurosci.1106-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/10/2024] [Accepted: 11/01/2024] [Indexed: 12/28/2024] Open
Abstract
We describe a chamber system to perform imaging, electrophysiology, and optogenetic stimulation in awake and anesthetized marmosets. We developed this low-profile chamber design to be able to access the underlying tissue when needed or to leave it sealed for long periods. Such accessibility is useful to maintain chamber clarity as well as perform viral or drug injections at different time points. The chamber is flexible as either optical or electrophysiological recording can be performed in the same chamber by exchanging chamber inserts. The design provides an easy approach to day-to-day stable neural recordings that was developed for marmosets and can be extended to other species.
Collapse
Affiliation(s)
- Jagruti J Pattadkal
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas 78712
| | - Nicholas J Priebe
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
2
|
Song X, Guo Y, Chen C, Lee JH, Wang X. Tonotopic organization of auditory cortex in awake marmosets revealed by multi-modal wide-field optical imaging. CURRENT RESEARCH IN NEUROBIOLOGY 2024; 6:100132. [PMID: 38799765 PMCID: PMC11127206 DOI: 10.1016/j.crneur.2024.100132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
Tonotopic organization of the auditory cortex has been extensively studied in many mammalian species using various methodologies and physiological preparations. Tonotopy mapping in primates, however, is more limited due to constraints such as cortical folding, use of anesthetized subjects, and mapping methodology. Here we applied a combination of through-skull and through-window intrinsic optical signal imaging, wide-field calcium imaging, and neural probe recording techniques in awake marmosets (Callithrix jacchus), a New World monkey with most of its auditory cortex located on a flat brain surface. Coarse tonotopic gradients, including a recently described rostral-temporal (RT) to parabelt gradient, were revealed by the through-skull imaging of intrinsic optical signals and were subsequently validated by single-unit recording. Furthermore, these tonotopic gradients were observed with more detail through chronically implanted cranial windows with additional verifications on the experimental design. Moreover, the tonotopy mapped by the intrinsic-signal imaging methods was verified by wide-field calcium imaging in an AAV-GCaMP labeled subject. After these validations and with further effort to expand the field of view more rostrally in both windowed and through-skull subjects, an additional putative tonotopic gradient was observed more rostrally to the area RT, which has not been previously described by the standard model of tonotopic organization of the primate auditory cortex. Together, these results provide the most comprehensive data of tonotopy mapping in an awake primate species with unprecedented coverage and details in the rostral proportion and support a caudal-rostrally arranged mesoscale organization of at least three repeats of functional gradients in the primate auditory cortex, similar to the ventral stream of primate visual cortex.
Collapse
Affiliation(s)
- Xindong Song
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Chinese Academy of Sciences, China
| | - Yueqi Guo
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Chenggang Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jong Hoon Lee
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Sciences, KAIST, Daejeon, 34141, South Korea
| | - Xiaoqin Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
3
|
Belloir T, Montalgo-Vargo S, Ahmed Z, Griggs DJ, Fisher S, Brown T, Chamanzar M, Yazdan-Shahmorad A. Large-scale multimodal surface neural interfaces for primates. iScience 2023; 26:105866. [PMID: 36647381 PMCID: PMC9840154 DOI: 10.1016/j.isci.2022.105866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Deciphering the function of neural circuits can help with the understanding of brain function and treating neurological disorders. Progress toward this goal relies on the development of chronically stable neural interfaces capable of recording and modulating neural circuits with high spatial and temporal precision across large areas of the brain. Advanced innovations in designing high-density neural interfaces for small animal models have enabled breakthrough discoveries in neuroscience research. Developing similar neurotechnology for larger animal models such as nonhuman primates (NHPs) is critical to gain significant insights for translation to humans, yet still it remains elusive due to the challenges in design, fabrication, and system-level integration of such devices. This review focuses on implantable surface neural interfaces with electrical and optical functionalities with emphasis on the required technological features to realize scalable multimodal and chronically stable implants to address the unique challenges associated with nonhuman primate studies.
Collapse
Affiliation(s)
- Tiphaine Belloir
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
| | - Sergio Montalgo-Vargo
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Zabir Ahmed
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Devon J. Griggs
- Washington National Primate Research Center, Seattle, WA, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Shawn Fisher
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
| | - Timothy Brown
- Department of Bioethics & Humanities, University of Washington, Seattle, WA, USA
| | - Maysamreza Chamanzar
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Carnegie Mellon Neuroscience Institute, Pittsburgh, PA, USA
| | - Azadeh Yazdan-Shahmorad
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Zaraza D, Chernov MM, Yang Y, Rogers JA, Roe AW, Friedman RM. Head-mounted optical imaging and optogenetic stimulation system for use in behaving primates. CELL REPORTS METHODS 2022; 2:100351. [PMID: 36590689 PMCID: PMC9795332 DOI: 10.1016/j.crmeth.2022.100351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/25/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
Advances in optical technology have revolutionized studies of brain function in freely behaving mice. Here, we describe an optical imaging and stimulation device for use in primates that easily attaches to an intracranial chamber. It consists of affordable commercially available or 3D-printed components: a monochromatic camera, a small standard lens, a wireless μLED stimulator powered by an induction coil, and an LED array for illumination. We show that the intrinsic imaging performance of this device is comparable to a standard benchtop system in revealing the functional organization of the visual cortex for awake macaques in a primate chair or under anesthesia. Imaging revealed neural modulatory effects of wireless focal optogenetic stimulation aimed at identified functional domains. With a 1 to 2 cm field of view, 100× larger than previously used in primates without head restraint, our device permits widefield optical imaging and optogenetic stimulation for ethological studies in primates.
Collapse
Affiliation(s)
- Derek Zaraza
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Mykyta M. Chernov
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Yiyuan Yang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - John A. Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Anna W. Roe
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Robert M. Friedman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| |
Collapse
|
5
|
Song X, Guo Y, Li H, Chen C, Lee JH, Zhang Y, Schmidt Z, Wang X. Mesoscopic landscape of cortical functions revealed by through-skull wide-field optical imaging in marmoset monkeys. Nat Commun 2022; 13:2238. [PMID: 35474064 PMCID: PMC9042927 DOI: 10.1038/s41467-022-29864-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
The primate cerebral cortex is organized into specialized areas representing different modalities and functions along a continuous surface. The functional maps across the cortex, however, are often investigated a single modality at a time (e.g., audition or vision). To advance our understanding of the complex landscape of primate cortical functions, here we develop a polarization-gated wide-field optical imaging method for measuring cortical functions through the un-thinned intact skull in awake marmoset monkeys (Callithrix jacchus), a primate species featuring a smooth cortex. Using this method, adjacent auditory, visual, and somatosensory cortices are noninvasively parcellated in individual subjects with detailed tonotopy, retinotopy, and somatotopy. An additional pure-tone-responsive tonotopic gradient is discovered in auditory cortex and a face-patch sensitive to motion in the lower-center visual field is localized near an auditory region representing frequencies of conspecific vocalizations. This through-skull landscape-mapping approach provides new opportunities for understanding how the primate cortex is organized and coordinated to enable real-world behaviors.
Collapse
Affiliation(s)
- Xindong Song
- grid.21107.350000 0001 2171 9311Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Yueqi Guo
- grid.21107.350000 0001 2171 9311Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Hongbo Li
- grid.21107.350000 0001 2171 9311Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Chenggang Chen
- grid.21107.350000 0001 2171 9311Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Jong Hoon Lee
- grid.21107.350000 0001 2171 9311Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Yang Zhang
- grid.21107.350000 0001 2171 9311Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Zachary Schmidt
- grid.21107.350000 0001 2171 9311Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Xiaoqin Wang
- grid.21107.350000 0001 2171 9311Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
6
|
Guinto MC, Haruta M, Kurauchi Y, Saigo T, Kurasawa K, Ryu S, Ohta Y, Kawahara M, Takehara H, Tashiro H, Sasagawa K, Katsuki H, Ohta J. Modular head-mounted cortical imaging device for chronic monitoring of intrinsic signals in mice. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:026501. [PMID: 35166087 PMCID: PMC8843356 DOI: 10.1117/1.jbo.27.2.026501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
SIGNIFICANCE Intrinsic optical signals (IOS) generated in the cortical tissue as a result of various interacting metabolic processes are used extensively to elucidate the underlying mechanisms that govern neurovascular coupling. However, current IOS measurements still often rely on bulky, tabletop imaging systems, and there remains a dearth of studies in freely moving subjects. Lightweight, miniature head-mounted imaging devices provide unique opportunities for investigating cortical dynamics in small animals under a variety of naturalistic behavioral settings. AIM The aim of this work was to monitor IOS in the somatosensory cortex of wild-type mice by developing a lightweight, biocompatible imaging device that readily lends itself to animal experiments in freely moving conditions. APPROACH Herein we describe a method for realizing long-term IOS imaging in mice using a 0.54-g, compact, CMOS-based, head-mounted imager. The two-part module, consisting of a tethered sensor plate and a base plate, allows facile assembly prior to imaging sessions and disassembly when the sensor is not in use. LEDs integrated into the device were chosen to illuminate the cortical mantle at two different wavelengths in the visible regime (λcenter: 535 and 625 nm) for monitoring volume- and oxygenation state-dependent changes in the IOS, respectively. To test whether the system can detect robust cortical responses, we recorded sensory-evoked IOS from mechanical stimulation of the hindlimbs (HL) of anesthetized mice in both acute and long-term implantation conditions. RESULTS Cortical IOS recordings in the primary somatosensory cortex hindlimb receptive field (S1HL) of anesthetized mice under green and red LED illumination revealed robust, multiphasic profiles that were time-locked to the mechanical stimulation of the contralateral plantar hindpaw. Similar intrinsic signal profiles observed in S1HL at 40 days postimplantation demonstrated the viability of the approach for long-term imaging. Immunohistochemical analysis showed that the brain tissue did not exhibit appreciable immune response due to the device implantation and operation. A proof-of-principle imaging session in a freely behaving mouse showed minimal locomotor impediment for the animal and also enabled estimation of blood flow speed. CONCLUSIONS We demonstrate the utility of a miniature cortical imaging device for monitoring IOS and related hemodynamic processes in both anesthetized and freely moving mice, cueing potential for applications to some neuroscientific studies of sensation and naturalistic behavior.
Collapse
Affiliation(s)
- Mark Christian Guinto
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| | - Makito Haruta
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| | - Yuki Kurauchi
- Kumamoto University, Graduate School of Pharmaceutical Sciences, Department of Chemico-Pharmacological Sciences, Kumamoto, Japan
| | - Taisuke Saigo
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| | - Kazuki Kurasawa
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| | - Sumika Ryu
- Kumamoto University, Graduate School of Pharmaceutical Sciences, Department of Chemico-Pharmacological Sciences, Kumamoto, Japan
| | - Yasumi Ohta
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| | - Mamiko Kawahara
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| | - Hironari Takehara
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| | - Hiroyuki Tashiro
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
- Kyushu University, Division of Medical Technology, Department of Health Sciences, Faculty of Medical Sciences, Fukuoka, Japan
| | - Kiyotaka Sasagawa
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| | - Hiroshi Katsuki
- Kumamoto University, Graduate School of Pharmaceutical Sciences, Department of Chemico-Pharmacological Sciences, Kumamoto, Japan
| | - Jun Ohta
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Materials Science, Ikoma, Japan
| |
Collapse
|
7
|
Chernov MM, Friedman RM, Roe AW. Fiberoptic array for multiple channel infrared neural stimulation of the brain. NEUROPHOTONICS 2021; 8:025005. [PMID: 33898637 PMCID: PMC8062107 DOI: 10.1117/1.nph.8.2.025005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Significance: We present a new optical method for modulating cortical activity in multiple locations and across multiple time points with high spatial and temporal precision. Our method uses infrared light and does not require dyes or transgenic modifications. It is compatible with a number of other stimulation and recording techniques. Aim: Infrared neural stimulation (INS) has been largely confined to single point stimuli. In this study, we expand upon this approach and develop a rapidly switched fiber array capable of generation of stimulus patterns. Our prototype is capable of stimulating at nine separate locations but is easily scalable. Approach: Our device is made of commercially available components: a solid-state infrared laser, a piezoelectric fiber coupled optical switch, and 200 - μ m diameter optical fibers. We validate it using intrinsic optical signal imaging of INS responses in macaque and squirrel monkey sensory cortical areas. Results: We demonstrate that our switched array can consistently generate responses in primate cortex, consistent with earlier single channel INS investigations. Conclusions: Our device can successfully target the cortical surface, either at one specific region or multiple points spread out across different areas. It is compatible with a host of other imaging and stimulation modalities.
Collapse
Affiliation(s)
- Mykyta M. Chernov
- Oregon Health and Science University, Oregon National Primate Research Center, Division of Neuroscience, Beaverton, Oregon, United States
| | - Robert M. Friedman
- Oregon Health and Science University, Oregon National Primate Research Center, Division of Neuroscience, Beaverton, Oregon, United States
| | - Anna W. Roe
- Oregon Health and Science University, Oregon National Primate Research Center, Division of Neuroscience, Beaverton, Oregon, United States
| |
Collapse
|
8
|
Wang Y, Liang G, Liu F, Chen Q, Xi L. A Long-Term Cranial Window for High-Resolution Photoacoustic Imaging. IEEE Trans Biomed Eng 2020; 68:706-711. [PMID: 32746074 DOI: 10.1109/tbme.2020.3012663] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE In this study, we introduce the design, fabrication, and assessment of an optically and acoustically transparent, long-term and biocompatible cranial window for high-resolution photoacoustic microscopy of rat cerebral cortex. METHODS The cranial window is fabricated with a polydimethylsiloxane (PDMS) layer bonded with a glass ring (outer diameter: 8 mm, inner diameter: 5 mm) via air plasma cleaning. A detailed comparison of image quality was performed with the implantation of cranial windows using different thicknesses of the PDMS film, and the cover glass. In addition, long-term in vivo monitoring of rat cerebral cortex was conducted to evaluate the stability of the cranial window. Furthermore, we successfully applied this window for longitudinal photoacoustic imaging in freely moving rats. RESULTS Based on a detailed evaluation, the cranial window fabricated with PDMS has a better imaging quality compared with a conventional cover-glass-based cranial window. The optimal film thickness is 50 μm considering the elastic deforming capability of PDMS. The cranial window maintained good quality for 21 and 12 days in anesthetized and free moving rats, respectively. CONCLUSION The cranial window has a good imaging quality for both anesthetized and behaving rats, enabling long-term, high-resolution, and steady photoacoustic imaging of cerebral vasculatures. SIGNIFICANCE Based on the studies of both anesthetized and behaving rats, the proposed cranial window has the potential to be used in the longitudinal in vivo study of chronic brain diseases in freely moving rodents.
Collapse
|
9
|
Hu JM, Qian MZ, Tanigawa H, Song XM, Roe AW. Focal Electrical Stimulation of Cortical Functional Networks. Cereb Cortex 2020; 30:5532-5543. [PMID: 32483588 DOI: 10.1093/cercor/bhaa136] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/30/2020] [Accepted: 04/27/2020] [Indexed: 01/11/2023] Open
Abstract
Abstract
Traditional electrical stimulation of brain tissue typically affects relatively large volumes of tissue spanning multiple millimeters. This low spatial resolution stimulation results in nonspecific functional effects. In addition, a primary shortcoming of these designs was the failure to take advantage of inherent functional organization in the cerebral cortex. Here, we describe a new method to electrically stimulate the brain which achieves selective targeting of single feature-specific domains in visual cortex. We provide evidence that this paradigm achieves mesoscale, functional network-specificity, and intensity dependence in a way that mimics visual stimulation. Application of this approach to known feature domains (such as color, orientation, motion, and depth) in visual cortex may lead to important functional improvements in the specificity and sophistication of brain stimulation methods and has implications for visual cortical prosthetic design.
Collapse
Affiliation(s)
- Jia Ming Hu
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Mei Zhen Qian
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Hisashi Tanigawa
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Xue Mei Song
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Anna Wang Roe
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Hangzhou 310029, China
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006 USA
| |
Collapse
|
10
|
Gu X, Chen W, You J, Koretsky AP, Volkow ND, Pan Y, Du C. Long-term optical imaging of neurovascular coupling in mouse cortex using GCaMP6f and intrinsic hemodynamic signals. Neuroimage 2017; 165:251-264. [PMID: 28974452 DOI: 10.1016/j.neuroimage.2017.09.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/08/2017] [Accepted: 09/26/2017] [Indexed: 12/11/2022] Open
Abstract
Cerebral hemodynamics are modulated in response to changes in neuronal activity, a process termed neurovascular coupling (NVC), which can be disrupted by neuropsychiatric diseases (e.g., stroke, Alzheimer's disease). Thus, there is growing interest to image long-term NVC dynamics with high spatiotemporal resolutions. Here, by combining the use of a genetically-encoded calcium indicator with optical techniques, we develop a longitudinal multimodal optical imaging platform (MIP) that enabled time-lapse tracking of NVC over a relatively large field of view in the mouse somatosensory cortex at single cell and single vessel resolutions. Specifically, GCaMP6f was used as marker of neuronal activity, which along with MIP allowed us to simultaneously measure the changes in neuronal [Ca2+]i fluorescence, cerebral blood flow velocity (CBFv) and hemodynamics longitudinally for more than eight weeks. We show that [Ca2+]i fluorescence was detectable one week post viral injection and the damage to local microvasculature and perfusion recovered two weeks after injection. By three weeks post viral injection, maximal neuronal and CBFv responses to hindpaw stimulations were observed. Moreover, single neuronal activation in response to hindpaw stimulation was consistently recorded, followed by ∼2 s delayed dilation of contiguous microvessels. Additionally, resting-state spontaneous neuronal and hemodynamic oscillations were detectable throughout the eight weeks of study. Our results demonstrate the capability of MIP for longitudinal investigation of the organization and plasticity of the neurovascular network during resting state and during stimulation-evoked neuronal activation at high spatiotemporal resolutions.
Collapse
Affiliation(s)
- Xiaochun Gu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA; Jiangsu Key Laboratory of Molecule Imaging and Functional Imaging, Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing 210009, PR China
| | - Wei Chen
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jiang You
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - N D Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20857, USA
| | - Yingtian Pan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Congwu Du
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
11
|
Liu YJ, Hashemi-Nezhad M, Lyon DC. Differences in orientation tuning between pinwheel and domain neurons in primary visual cortex depend on contrast and size. NEUROPHOTONICS 2017; 4:031209. [PMID: 28523280 PMCID: PMC5429862 DOI: 10.1117/1.nph.4.3.031209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
Intrinsic signal optical imaging reveals a highly modular map of orientation preference in the primary visual cortex (V1) of several species. This orientation map is characterized by domains and pinwheels where local circuitry is either more or less orientation selective, respectively. It has now been repeatedly demonstrated that neurons in pinwheels tend to be more broadly tuned to orientation, likely due to the broad range of orientation preference of the neighboring neurons forming pinwheels. However, certain stimulus conditions, such as a decrease in contrast or an increase in size, significantly sharpen tuning widths of V1 neurons. Here, we find that pinwheel neuron tuning widths are broader than domain neurons only for high contrast, optimally sized stimuli, conditions that maximize excitation through feedforward, and local cortical processing. When contrast was lowered or size increased, orientation tuning width sharpened and became equal. These latter conditions are conducive to less local excitation either through lower feedforward drive or by surround suppression arising from long-range cortical circuits. Tuning width differences between pinwheel and domain neurons likely arise through more local circuitry and are overcome through recruitment of longer-range cortical circuits.
Collapse
Affiliation(s)
- Yong-Jun Liu
- University of California Irvine, School of Medicine, Department of Anatomy and Neurobiology, Irvine, California, United States
- Chinese Academy of Agricultural Sciences, Institute of Apicultural Research, Department of Honeybee Protection and Biosafety, Beijing, China
| | - Maziar Hashemi-Nezhad
- University of California Irvine, School of Medicine, Department of Anatomy and Neurobiology, Irvine, California, United States
- Technical University Berlin, Neuroinformatics Group, Department of Software Engineering and Theoretical Computer Science, Administrative Office MAR 5-6, Marchstraße, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - David C. Lyon
- University of California Irvine, School of Medicine, Department of Anatomy and Neurobiology, Irvine, California, United States
| |
Collapse
|
12
|
Intrinsic signal optical imaging of visual brain activity: Tracking of fast cortical dynamics. Neuroimage 2017; 148:160-168. [PMID: 28063974 DOI: 10.1016/j.neuroimage.2017.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/29/2016] [Accepted: 01/03/2017] [Indexed: 11/21/2022] Open
Abstract
Hemodynamic-based brain imaging techniques are typically incapable of monitoring brain activity with both high spatial and high temporal resolutions. In this study, we have used intrinsic signal optical imaging (ISOI), a relatively high spatial resolution imaging technique, to examine the temporal resolution of the hemodynamic signal. We imaged V1 responses in anesthetized monkey to a moving light spot. Movies of cortical responses clearly revealed a focus of hemodynamic response traveling across the cortical surface. Importantly, at different locations along the cortical trajectory, response timecourses maintained a similar tri-phasic shape and shifted sequentially across cortex with a predictable delay. We calculated the time between distinguishable timecourses and found that the temporal resolution of the signal at which two events can be reliably distinguished is about 80 milliseconds. These results suggest that hemodynamic-based imaging is suitable for detecting ongoing cortical events at high spatial resolution and with temporal resolution relevant for behavioral studies.
Collapse
|
13
|
Kong L, Little JP, Cui M. Motion quantification during multi-photon functional imaging in behaving animals. BIOMEDICAL OPTICS EXPRESS 2016; 7:3686-3695. [PMID: 27699129 PMCID: PMC5030041 DOI: 10.1364/boe.7.003686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/15/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
Functional imaging in behaving animals is essential to understanding brain function. However, artifacts resulting from animal motion, including locomotion, can severely corrupt functional measurements. To dampen tissue motion, we designed a new optical window with minimal optical aberrations. Using the newly developed high-speed continuous volumetric imaging system based on an optical phase-locked ultrasound lens, we quantified motion of the cerebral cortex and hippocampal surface during two-photon functional imaging in behaving mice. We find that the out-of-plane motion is generally greater than the axial dimension of the point-spread-function during mouse locomotion, which indicates that high-speed continuous volumetric imaging is necessary to minimize motion artifacts.
Collapse
Affiliation(s)
- Lingjie Kong
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA;
| | - Justin P Little
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 19700, USA
| | - Meng Cui
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Integrated Imaging Cluster, Purdue University, West Lafayette, IN 47907, USA; Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA;
| |
Collapse
|
14
|
Santisakultarm TP, Kersbergen CJ, Bandy DK, Ide DC, Choi SH, Silva AC. Two-photon imaging of cerebral hemodynamics and neural activity in awake and anesthetized marmosets. J Neurosci Methods 2016; 271:55-64. [PMID: 27393311 DOI: 10.1016/j.jneumeth.2016.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/22/2016] [Accepted: 07/03/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Marmosets are a powerful, emerging model for human behavior and neurological disorders. However, longitudinal imaging modalities that visualize both cellular structure and function within the cortex are not available in this animal model. Hence, we implemented an approach to quantify vascular topology, hemodynamics, and neural activity in awake marmosets using two-photon microscopy (2PM). NEW METHOD Marmosets were acclimated to a custom stereotaxic system. AAV1-GCaMP5G was injected into somatosensory cortex to optically indicate neural activity, and a cranial chamber was implanted. RESULTS Longitudinal 2PM revealed vasculature and neurons 500μm below the cortical surface. Vascular response and neural activity during sensory stimulation were preserved over 5 and 3 months, respectively, before optical quality deteriorated. Vascular remodeling including increased tortuosity and branching was quantified. However, capillary connectivity from arterioles to venules remained unchanged. Further, behavioral assessment before and after surgery demonstrated no impact on cognitive and motor function. Immunohistochemistry confirmed minimal astrocyte activation with no focal damage. Over 6 months, total cortical depth visualized decreased. When under anesthesia, the most prominent isoflurane-induced vasodilation occurred in capillaries and smaller arterioles. COMPARISON WITH EXISTING METHOD(S) These results demonstrate the capability to repeatedly observe cortical physiology in awake marmosets over months. CONCLUSIONS This work provides a novel and insightful technique to investigate critical mechanisms in neurological disorders in awake marmosets without introducing confounds from anesthesia.
Collapse
Affiliation(s)
- Thom P Santisakultarm
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Calvin J Kersbergen
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daryl K Bandy
- Section on Instrumentation, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David C Ide
- Section on Instrumentation, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sang-Ho Choi
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Afonso C Silva
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
15
|
Park K, You J, Du C, Pan Y. Cranial window implantation on mouse cortex to study microvascular change induced by cocaine. Quant Imaging Med Surg 2015; 5:97-107. [PMID: 25694959 DOI: 10.3978/j.issn.2223-4292.2014.11.31] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 10/31/2014] [Indexed: 11/14/2022]
Abstract
Cocaine-induced stroke is among the most serious medical complications associated with cocaine's abuse. However, the extent to which chronic cocaine may induce silent microischemia predisposing the cerebral tissue to neurotoxicity has not been investigated; in part, because of limitations of current neuroimaging tools, that is, lack of high spatiotemporal resolution and sensitivity to simultaneously measure cerebral blood flow (CBF) in vessels of different calibers quantitatively and over a large field of view (FOV). Optical coherence tomography (OCT) technique allows us to image three dimensional (3D) cerebrovascular network (including artery, vein, and capillary), and provides high resolution angiography of the cerebral vasculature and quantitative CBF velocity (CBFv) within the individual vessels in the network. In order to monitor the neurovascular changes from an in vivo brain along with the chronic cocaine exposure, we have developed an approach of implanting a cranial window on mouse brain to achieve long-term cortical imaging. The cranial window was implanted on sensorimotor cortex area in two animal groups, i.e., control group [saline treatment, ~0.1 cc/10 g/day, intraperitoneal injection (i.p.)] and chronic cocaine group (cocaine treatment, 30 mg/kg/day i.p.). After implantation, the cortex of individual animal was periodically imaged by OCT and stereoscope to provide angiography and quantitative CBFv of the cerebral vascular network, as well as the surface imaging of the brain. We have observed vascular hemodynamic changes (i.e., CBFv changes) induced by the cranial preparation in both animal groups, including the inflammatory response of brain shortly after the surgery (i.e., <5 days) followed by wound-healing process (i.e., >5 days) in the brain. Importantly, by comparing with the control animals, the surgical-related vascular physiology changes in the cortex can be calibrated, so that the cocaine-induced hemodynamic changes in the neurovasculature can be determined in the cocaine animals. Our results demonstrate that this methodology can be used to explore the neurovascular functional changes induced by the brain diseases such as drug addiction.
Collapse
Affiliation(s)
- Kicheon Park
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jiang You
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Congwu Du
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yingtian Pan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
16
|
Chen M, Li P, Zhu S, Han C, Xu H, Fang Y, Hu J, Roe AW, Lu HD. An Orientation Map for Motion Boundaries in Macaque V2. Cereb Cortex 2014; 26:279-287. [PMID: 25260703 DOI: 10.1093/cercor/bhu235] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ability to extract the shape of moving objects is fundamental to visual perception. However, where such computations are processed in the visual system is unknown. To address this question, we used intrinsic signal optical imaging in awake monkeys to examine cortical response to perceptual contours defined by motion contrast (motion boundaries, MBs). We found that MB stimuli elicit a robust orientation response in area V2. Orientation maps derived from subtraction of orthogonal MB stimuli aligned well with the orientation maps obtained with luminance gratings (LGs). In contrast, area V1 responded well to LGs, but exhibited a much weaker orientation response to MBs. We further show that V2 direction domains respond to motion contrast, which is required in the detection of MB in V2. These results suggest that V2 represents MB information, an important prerequisite for shape recognition and figure-ground segregation.
Collapse
Affiliation(s)
- Ming Chen
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Peichao Li
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shude Zhu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Chao Han
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Haoran Xu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yang Fang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiaming Hu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Anna W Roe
- Department of Psychology, Vanderbilt University, Nashville, TN 37203, USA
| | - Haidong D Lu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai 200031, China.,State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
17
|
Abstract
Single orientation domains in primary (V1) and second (V2) visual cortical areas are known to encode the orientation of visual contours. However, the visual world contains multiple and complex contour types. How do these domains handle such complexity? Using optical imaging methods, we have examined orientation response to two types of contours: real (luminance-defined) and illusory (inferred). We find that, unlike area V1, there are multiple types of orientation domain in V2. These include “real only” domains, “higher-order” domains (which respond to an orientation whether real or illusory), and other domains with nonmatching real/illusory orientation preference. We suggest that this plurality of orientation domains in V2 enables the complexities of local and global contour extraction.
Collapse
Affiliation(s)
- Benjamin M Ramsden
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Chou P Hung
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Anna Wang Roe
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
18
|
Chernov M, Roe AW. Infrared neural stimulation: a new stimulation tool for central nervous system applications. NEUROPHOTONICS 2014; 1:011011. [PMID: 26157967 PMCID: PMC4478761 DOI: 10.1117/1.nph.1.1.011011] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/26/2014] [Accepted: 07/01/2014] [Indexed: 05/08/2023]
Abstract
The traditional approach to modulating brain function (in both clinical and basic science applications) is to tap into the neural circuitry using electrical currents applied via implanted electrodes. However, it suffers from a number of problems, including the risk of tissue trauma, poor spatial specificity, and the inability to selectively stimulate neuronal subtypes. About a decade ago, optical alternatives to electrical stimulation started to emerge in order to address the shortcomings of electrical stimulation. We describe the use of one optical stimulation technique, infrared neural stimulation (INS), during which short (of the order of a millisecond) pulses of infrared light are delivered to the neural tissue. Very focal stimulation is achieved via a thermal mechanism and stimulation location can be quickly adjusted by redirecting the light. After describing some of the work done in the peripheral nervous system, we focus on the use of INS in the central nervous system to investigate functional connectivity in the visual and somatosensory areas, target specific functional domains, and influence behavior of an awake nonhuman primate. We conclude with a positive outlook for INS as a tool for safe and precise targeted brain stimulation.
Collapse
Affiliation(s)
- Mykyta Chernov
- Vanderbilt University, Department of Psychology, 111 21st Avenue South, Nashville, Tennessee 37240, United States
| | - Anna Wang Roe
- Vanderbilt University, Department of Psychology, 111 21st Avenue South, Nashville, Tennessee 37240, United States
- Address all correspondence to: Anna Wang Roe, E-mail:
| |
Collapse
|
19
|
Cayce JM, Friedman RM, Chen G, Jansen ED, Mahadevan-Jansen A, Roe AW. Infrared neural stimulation of primary visual cortex in non-human primates. Neuroimage 2013; 84:181-90. [PMID: 23994125 DOI: 10.1016/j.neuroimage.2013.08.040] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 08/05/2013] [Accepted: 08/15/2013] [Indexed: 11/16/2022] Open
Abstract
Infrared neural stimulation (INS) is an alternative neurostimulation modality that uses pulsed infrared light to evoke spatially precise neural activity that does not require direct contact with neural tissue. With these advantages INS has the potential to increase our understanding of specific neural pathways and impact current diagnostic and therapeutic clinical applications. In order to develop this technique, we investigate the feasibility of INS (λ=1.875μm, fiber diameter=100-400μm) to activate and modulate neural activity in primary visual cortex (V1) of Macaque monkeys. Infrared neural stimulation was found to evoke localized neural responses as evidenced by both electrophysiology and intrinsic signal optical imaging (OIS). Single unit recordings acquired during INS indicated statistically significant increases in neuron firing rates that demonstrate INS evoked excitatory neural activity. Consistent with this, INS stimulation led to focal intensity-dependent reflectance changes recorded with OIS. We also asked whether INS is capable of stimulating functionally specific domains in visual cortex and of modulating visually evoked activity in visual cortex. We found that application of INS via 100μm or 200μm fiber optics produced enhancement of visually evoked OIS response confined to the eye column where INS was applied and relative suppression of the other eye column. Stimulating the cortex with a 400μm fiber, exceeding the ocular dominance width, led to relative suppression, consistent with involvement of inhibitory surrounds. This study is the first to demonstrate that INS can be used to either enhance or diminish visual cortical response and that this can be done in a functional domain specific manner. INS thus holds great potential for use as a safe, non-contact, focally specific brain stimulation technology in primate brains.
Collapse
Affiliation(s)
- Jonathan M Cayce
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | | | | | | | | | | |
Collapse
|
20
|
Chen JL, Pfäffli OA, Voigt FF, Margolis DJ, Helmchen F. Online correction of licking-induced brain motion during two-photon imaging with a tunable lens. J Physiol 2013; 591:4689-98. [PMID: 23940380 DOI: 10.1113/jphysiol.2013.259804] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Two-photon calcium imaging in awake, head-fixed animals enables the measurement of neuronal activity during behaviour. Often, licking for the retrieval of water reward is used as a measurable report of the animal's decision during reward-driven behaviour. However, licking behaviour can induce severe motion artifacts that interfere with two-photon imaging of cellular activity. Here, we describe a simple method for the online correction of licking-induced focus shifts for two-photon calcium imaging of neocortical neurons in the head-fixed mouse. We found that licking causes a stereotyped drop of neocortical tissue, shifting neurons up to 20 μm out of focus. Based on the measurement of licking with a piezo film sensor, we developed a feedback model, which provides a corrective signal for fast optical focus adjustments with an electrically tunable lens. Using online correction with this feedback model, we demonstrate a reduction of licking-related focus changes below 3 μm, minimizing motion artifact contamination of cellular calcium signals. Focus correction with a tunable lens is a simple and effective method to improve the ability to monitor neuronal activity during reward-based behaviour.
Collapse
Affiliation(s)
- Jerry L Chen
- J. L. Chen: University of Zurich, Brain Research Institute, Winterthurerstrasse 190, 55H64, Zurich, CH-8057, Switzerland.
| | | | | | | | | |
Collapse
|
21
|
Baba JS, Endres CJ, Foss CA, Nimmagadda S, Jung H, Goddard JS, Lee S, McKisson J, Smith MF, Stolin AV, Weisenberger AG, Pomper MG. Molecular imaging of conscious, unrestrained mice with AwakeSPECT. J Nucl Med 2013; 54:969-76. [PMID: 23536223 DOI: 10.2967/jnumed.112.109090] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. METHODS The capability of the system for motion-corrected imaging was demonstrated with a (99m)Tc-pertechnetate phantom, (99m)Tc-methylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand (123)I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. RESULTS AwakeSPECT provided high-resolution bone images reminiscent of those obtained from CT. The binding potential of (123)I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. CONCLUSION These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake.
Collapse
Affiliation(s)
- Justin S Baba
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nielsen KJ, Callaway EM, Krauzlis RJ. Viral vector-based reversible neuronal inactivation and behavioral manipulation in the macaque monkey. Front Syst Neurosci 2012; 6:48. [PMID: 22723770 PMCID: PMC3378014 DOI: 10.3389/fnsys.2012.00048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/26/2012] [Indexed: 12/01/2022] Open
Abstract
Viral vectors are promising tools for the dissection of neural circuits. In principle, they can manipulate neurons at a level of specificity not otherwise achievable. While many studies have used viral vector-based approaches in the rodent brain, only a few have employed this technique in the non-human primate, despite the importance of this animal model for neuroscience research. Here, we report evidence that a viral vector-based approach can be used to manipulate a monkey's behavior in a task. For this purpose, we used the allatostatin receptor/allatostatin (AlstR/AL) system, which has previously been shown to allow inactivation of neurons in vivo. The AlstR was expressed in neurons in monkey V1 by injection of an adeno-associated virus 1 (AAV1) vector. Two monkeys were trained in a detection task, in which they had to make a saccade to a faint peripheral target. Injection of AL caused a retinotopic deficit in the detection task in one monkey. Specifically, the monkey showed marked impairment for detection targets placed at the visual field location represented at the virus injection site, but not for targets shown elsewhere. We confirmed that these deficits indeed were due to the interaction of AlstR and AL by injecting saline, or AL at a V1 location without AlstR expression. Post-mortem histology confirmed AlstR expression in this monkey. We failed to replicate the behavioral results in a second monkey, as AL injection did not impair the second monkey's performance in the detection task. However, post-mortem histology revealed a very low level of AlstR expression in this monkey. Our results demonstrate that viral vector-based approaches can produce effects strong enough to influence a monkey's performance in a behavioral task, supporting the further development of this approach for studying how neuronal circuits control complex behaviors in non-human primates.
Collapse
Affiliation(s)
- Kristina J Nielsen
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla CA, USA
| | | | | |
Collapse
|
23
|
Haglund MM. Optical imaging of visual cortex epileptic foci and propagation pathways. Epilepsia 2012; 53 Suppl 1:87-97. [DOI: 10.1111/j.1528-1167.2012.03479.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Du C, Pan Y. Optical detection of brain function: simultaneous imaging of cerebral vascular response, tissue metabolism, and cellular activity in vivo. Rev Neurosci 2011; 22:695-709. [PMID: 22098474 DOI: 10.1515/rns.2011.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It is known that a remaining challenge for functional brain imaging is to distinguish the coupling and decoupling effects among neuronal activity, cerebral metabolism, and vascular hemodynamics, which highlights the need for new tools to enable simultaneous measures of these three properties in vivo. Here, we review current neuroimaging techniques and their prospects and potential limitations for tackling this challenge. We then report a novel dual-wavelength laser speckle imaging (DW-LSI) tool developed in our labs that enables simultaneous imaging of cerebral blood flow (CBF), cerebral blood volume, and tissue hemoglobin oxygenation, which allows us to monitor neurovascular and tissue metabolic activities at high spatiotemporal resolutions over a relatively large field of view. Moreover, we report digital frequency ramping Doppler optical coherence tomography (DFR-OCT) that allows for quantitative 3D imaging of the CBF network in vivo. In parallel, we review calcium imaging techniques to track neuronal activity, including intracellular calcium approach using Rhod2 fluorescence technique that we develop to detect neuronal activity in vivo. We report a new multimodality imaging platform that combines DW-LSI, DFR-OCT, and calcium fluorescence imaging for simultaneous detection of cortical hemodynamics, cerebral metabolism, and neuronal activities of the animal brain in vivo, as well as its integration with microprobes for imaging neuronal function in deep brain regions in vivo. Promising results of in vivo animal brain functional studies suggest the potential of this multimodality approach for future awake animal and behavioral studies.
Collapse
Affiliation(s)
- Congwu Du
- Medical Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA.
| | | |
Collapse
|
25
|
Cayce JM, Friedman RM, Jansen ED, Mahavaden-Jansen A, Roe AW. Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo. Neuroimage 2011; 57:155-166. [PMID: 21513806 PMCID: PMC3108823 DOI: 10.1016/j.neuroimage.2011.03.084] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 03/25/2011] [Accepted: 03/29/2011] [Indexed: 11/26/2022] Open
Abstract
Pulsed infrared light has shown promise as an alternative to electrical stimulation in applications where contact free or high spatial precision stimulation is desired. Infrared neural stimulation (INS) is well characterized in the peripheral nervous system; however, to date, research has been limited in the central nervous system. In this study, pulsed infrared light (λ=1.875 μm, pulse width=250 μs, radiant exposure=0.01-0.55 J/cm(2), fiber size=400 μm, repetition rate=50-200 Hz) was used to stimulate the somatosensory cortex of anesthetized rats, and its efficacy was assessed using intrinsic optical imaging and electrophysiology techniques. INS was found to evoke an intrinsic response of similar magnitude to that evoked by tactile stimulation (0.3-0.4% change in intrinsic signal magnitude). A maximum deflection in the intrinsic signal was measured to range from 0.05% to 0.4% in response to INS, and the activated region of cortex measured approximately 2mm in diameter. The intrinsic signal magnitude increased with faster laser repetition rates and increasing radiant exposures. Single unit recordings indicated a statistically significant decrease in neuronal firing that was observed at the onset of INS stimulation (0.5s stimulus) and continued up to 1s after stimulation onset. The pattern of neuronal firing differed from that observed during tactile stimulation, potentially due to a different spatial integration field of the pulsed infrared light compared to tactile stimulation. The results demonstrate that INS can be used safely and effectively to manipulate neuronal firing.
Collapse
Affiliation(s)
- Jonathan M Cayce
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | | | - E Duco Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | | | - Anna W Roe
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Psychology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
26
|
Abstract
In mammals, the perception of motion starts with direction-selective neurons in the visual cortex. Despite numerous studies in monkey primary and second visual cortex (V1 and V2), there has been no evidence of direction maps in these areas. In the present study, we used optical imaging methods to study the organization of motion response in macaque V1 and V2. In contrast to the findings in other mammals (e.g., cats and ferrets), we found no direction maps in macaque V1. Robust direction maps, however, were found in V2 thick/pale stripes and avoided thin stripes. In many cases direction maps were located within thick stripes and exhibited pinwheel or linear organizations. The presence of motion maps in V2 points to a newfound prominence of V2 in motion processing, for contributing to motion perception in the dorsal pathway and/or for motion cue-dependent form perception in the ventral pathway.
Collapse
Affiliation(s)
- Haidong D Lu
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA.
| | | | | | | |
Collapse
|
27
|
Clark KB. Bose–Einstein condensates form in heuristics learned by ciliates deciding to signal ‘social’ commitments. Biosystems 2010; 99:167-78. [DOI: 10.1016/j.biosystems.2009.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 10/22/2009] [Accepted: 10/27/2009] [Indexed: 10/20/2022]
|
28
|
Kinoshita M, Gilbert CD, Das A. Optical imaging of contextual interactions in V1 of the behaving monkey. J Neurophysiol 2009; 102:1930-44. [PMID: 19587316 DOI: 10.1152/jn.90882.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interactions in primary visual cortex (V1) between simple visual elements such as short bar segments are believed to underlie our ability to easily integrate contours and segment surfaces. We used intrinsic signal optical imaging in alert fixating macaques to measure the strength and cortical distribution of V1 interactions among collinear bars. A single short bar stimulus produced a broad-peaked hill of activation (the optical point spread) covering multiple orientation hypercolumns in V1. Flanking the bar stimulus with a pair of identical collinear bars led to a strong nonlinear suppression in the optical signal. This nonlinearity was strongest over the center bar region, with a spatial distribution that cannot be explained by a simple gain control. It was a function of the relative orientation and separation of the bar stimuli in a manner tuned sharply for collinearity, being strongest for immediately adjacent bars lying on a smooth contour. These results suggest intracortical interactions playing a major role in determining V1 activation by smooth extended contours. Our finding that the interaction is primarily suppressive when imaged optically, which presumably reflects the combined inhibitory and excitatory inputs, suggests a complex interplay between these cortical inputs leading to the collinear facilitation seen in the spiking response of V1 neurons. This disjuncture between the facilitation seen in spiking and the suppression in imaging also suggests that cortical representations of complex stimuli involve interactions that need to be studied over extended networks and may be hard to deduce from the responses of individual neurons.
Collapse
|
29
|
Lu HD, Chen G, Ts'o DY, Roe AW. A rapid topographic mapping and eye alignment method using optical imaging in Macaque visual cortex. Neuroimage 2009; 44:636-46. [PMID: 19013530 PMCID: PMC2674020 DOI: 10.1016/j.neuroimage.2008.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 06/10/2008] [Accepted: 10/06/2008] [Indexed: 10/21/2022] Open
Abstract
In optical imaging experiments, it is often advantageous to map the field of view and to converge the eyes without electrophysiological recording. This occurs when limited space precludes placement of an electrode or in chronic optical chambers in which one may not want to introduce an electrode each session or for determining eye position in studies of ocular disparity response in visual cortex of anesthetized animals. For these purposes, we have developed a spot imaging method that can be conducted rapidly and repeatedly throughout an experiment. Using small 0.2 degrees -0.5 degrees spots, the extent of the imaged field of view is mapped by imaging cortical response to single spots, placed at different positions (0.2 degrees steps) in either the horizontal or vertical axes. By shifting the relative positions of two spots, one presented to each eye, eye convergence can be assessed to within 0.1 degrees resolution. Once appropriate eye alignment is determined, stimuli for further optical imaging procedures (e.g. imaging random dot stimuli for study of disparity responses) can then be confidently placed. This procedure can be quickly repeated throughout the experiment to ensure maintained eye alignment.
Collapse
Affiliation(s)
- H D Lu
- Dept of Psychology, 301 Wilson Hall, Vanderbilt University, Nashville, TN 37212, USA
| | | | | | | |
Collapse
|
30
|
Lee BH, Bai SJ. Functional Mapping of Nervous System Using Optical Imaging Techniques. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2009. [DOI: 10.5124/jkma.2009.52.1.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Korea
| | - Sun Joon Bai
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Korea.
| |
Collapse
|
31
|
Abstract
In recent years, there have been unprecedented methodological advances in the dynamic imaging of brain activities. Electrophysiological, optical, and magnetic resonance methods now allow mapping of functional activation (or deactivation) by measurement of neural activity (e.g., membrane potential, ion flux, neurotransmitter flux), energy metabolism (e.g., glucose consumption, oxygen consumption, creatine kinase flux), and functional hyperemia (e.g., blood oxygenation, blood flow, blood volume). Properties of the glutamatergic synapse are used to model activities at the nerve terminal and their associated changes in energy demand and blood flow. This approach reveals that each method measures different tissue- and/or cell-specific components with characteristic spatiotemporal resolution. While advantages and disadvantages of different methods are apparent and often used to supersede one another in terms of specificity and/or sensitivity, no particular technique is the optimal dynamic brain imaging method because each method is unique in some respect. Since the demand for energy substrates is a fundamental requirement for function, energy-based methods may allow quantitative dynamic imaging in vivo. However, there are exclusive neurobiological insights gained by combining some of these different dynamic imaging techniques.
Collapse
Affiliation(s)
- Fahmeed Hyder
- Departments of Diagnostic Radiology and Biomedical Engineering, Program in Quantitative Neuroscience with Magnetic Resonance, Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
| |
Collapse
|
32
|
Foust AJ, Schei JL, Rojas MJ, Rector DM. In vitro and in vivo noise analysis for optical neural recording. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:044038. [PMID: 19021365 PMCID: PMC2596884 DOI: 10.1117/1.2952295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Laser diodes (LD) are commonly used for optical neural recordings in chronically recorded animals and humans, primarily due to their brightness and small size. However, noise introduced by LDs may counteract the benefits of brightness when compared to low-noise light-emitting diodes (LEDs). To understand noise sources in optical recordings, we systematically compared instrument and physiological noise profiles in two recording paradigms. A better understanding of noise sources can help improve optical recordings and make them more practical with fewer averages. We stimulated lobster nerves and a rat cortex, then compared the root mean square (RMS) noise and signal-to-noise ratios (SNRs) of data obtained with LED, superluminescent diode (SLD), and LD illumination for different numbers of averages. The LED data exhibited significantly higher SNRs in fewer averages than LD data in all recordings. In the absence of tissue, LED noise increased linearly with intensity, while LD noise increased sharply in the transition to lasing and settled to noise levels significantly higher than the LED's, suggesting that speckle noise contributed to the LD's higher noise and lower SNRs. Our data recommend low coherence and portable light sources for in vivo chronic neural recording applications.
Collapse
Affiliation(s)
- Amanda J. Foust
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, College of Veterinary Medicine, Washington State University, 205 Wegner Hall, Pullman, WA 99164, ph: 509−335−1587, FAX: 509−335−4650
| | - Jennifer L. Schei
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, College of Veterinary Medicine, Washington State University, 205 Wegner Hall, Pullman, WA 99164, ph: 509−335−1587, FAX: 509−335−4650
- Department of Physics and Astronomy, College of Sciences, Washington State University, Webster 646, Pullman, WA 99164
| | - Manuel J. Rojas
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, College of Veterinary Medicine, Washington State University, 205 Wegner Hall, Pullman, WA 99164, ph: 509−335−1587, FAX: 509−335−4650
| | - David M. Rector
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, College of Veterinary Medicine, Washington State University, 205 Wegner Hall, Pullman, WA 99164, ph: 509−335−1587, FAX: 509−335−4650
| |
Collapse
|
33
|
Vanzetta I, Grinvald A. Coupling between neuronal activity and microcirculation: implications for functional brain imaging. HFSP JOURNAL 2008; 2:79-98. [PMID: 19404475 PMCID: PMC2645573 DOI: 10.2976/1.2889618] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 02/11/2008] [Indexed: 01/12/2023]
Abstract
In the neocortex, neurons with similar response properties are often clustered together in column-like structures, giving rise to what has become known as functional architecture-the mapping of various stimulus feature dimensions onto the cortical sheet. At least partially, we owe this finding to the availability of several functional brain imaging techniques, both post-mortem and in-vivo, which have become available over the last two generations, revolutionizing neuroscience by yielding information about the spatial organization of active neurons in the brain. Here, we focus on how our understanding of such functional architecture is linked to the development of those functional imaging methodologies, especially to those that image neuronal activity indirectly, through metabolic or haemodynamic signals, rather than directly through measurement of electrical activity. Some of those approaches allow exploring functional architecture at higher spatial resolution than others. In particular, optical imaging of intrinsic signals reaches the striking detail of approximately 50 mum, and, together with other methodologies, it has allowed characterizing the metabolic and haemodynamic responses induced by sensory-evoked neuronal activity. Here, we review those findings about the spatio-temporal characteristics of neurovascular coupling and discuss their implications for functional brain imaging, including position emission tomography, and non-invasive neuroimaging techniques, such as funtional magnetic resonance imaging, applicable also to the human brain.
Collapse
Affiliation(s)
- Ivo Vanzetta
- Department of Neurobiology, The Weizmann Institute of Science, 76100 Rehovot, Israel
- Institut de Neurosciences Cognitives de la Méditerranée, CNRS UMR 6193, Aix-Marseille Université, 13402 Marseille Cedex 20, France
| | - Amiram Grinvald
- Department of Neurobiology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
34
|
Roe AW, Chen LM. High-resolution fMRI maps of cortical activation in nonhuman primates: correlation with intrinsic signal optical images. ILAR J 2008; 49:116-23. [PMID: 18172338 PMCID: PMC2653868 DOI: 10.1093/ilar.49.1.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One of the most widely used functional brain mapping tools is blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI). This method has contributed to new understandings of the functional roles of different areas in the human brain. However, its ability to map cerebral cortex at high spatial (submillimeter) resolution is still unknown. Other methods such as single- and multiunit electrophysiology and intrinsic signal optical imaging have revealed submillimeter resolution of sensory topography and cortical columnar activations. However, they are limited either by spatial scale (electrophysiology characterizes only local groups of neurons) or by the inability to monitor deep structures in the brain (i.e., cortical regions buried in sulci or subcortical structures). A method that could monitor all regions of the brain at high spatial resolution would be ideal. This capacity would open the doors to investigating, for example, how networks of cerebral cortical columns relate to or produce behavior. In this article we demonstrate that, without benefit of contrast agents, at a magnetic field strength of 9.4 tesla, BOLD fMRI can reveal millimeter-sized topographic maps of digit representation in the somatosensory cortex of the anesthetized squirrel monkey. Furthermore, by mapping the "funneling illusion," it is possible to detect even submillimeter shifts in activation in the cortex. Our data suggest that at high magnetic field strength, the positive BOLD signal can be used to reveal high spatial resolution maps of brain activity, a finding that weakens previous notions about the ultimate spatial specificity of the positive BOLD signal.
Collapse
Affiliation(s)
- Anna W Roe
- Department of Psychology, Vanderbilt University, Nashville, TN 37203, USA.
| | | |
Collapse
|