1
|
Beres B, Kovacs KD, Kanyo N, Peter B, Szekacs I, Horvath R. Label-Free Single-Cell Cancer Classification from the Spatial Distribution of Adhesion Contact Kinetics. ACS Sens 2024; 9:5815-5827. [PMID: 39082162 PMCID: PMC11590093 DOI: 10.1021/acssensors.4c01139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
There is an increasing need for simple-to-use, noninvasive, and rapid tools to identify and separate various cell types or subtypes at the single-cell level with sufficient throughput. Often, the selection of cells based on their direct biological activity would be advantageous. These steps are critical in immune therapy, regenerative medicine, cancer diagnostics, and effective treatment. Today, live cell selection procedures incorporate some kind of biomolecular labeling or other invasive measures, which may impact cellular functionality or cause damage to the cells. In this study, we first introduce a highly accurate single-cell segmentation methodology by combining the high spatial resolution of a phase-contrast microscope with the adhesion kinetic recording capability of a resonant waveguide grating (RWG) biosensor. We present a classification workflow that incorporates the semiautomatic separation and classification of single cells from the measurement data captured by an RWG-based biosensor for adhesion kinetics data and a phase-contrast microscope for highly accurate spatial resolution. The methodology was tested with one healthy and six cancer cell types recorded with two functionalized coatings. The data set contains over 5000 single-cell samples for each surface and over 12,000 samples in total. We compare and evaluate the classification using these two types of surfaces (fibronectin and noncoated) with different segmentation strategies and measurement timespans applied to our classifiers. The overall classification performance reached nearly 95% with the best models showing that our proof-of-concept methodology could be adapted for real-life automatic diagnostics use cases. The label-free measurement technique has no impact on cellular functionality, directly measures cellular activity, and can be easily tuned to a specific application by varying the sensor coating. These features make it suitable for applications requiring further processing of selected cells.
Collapse
Affiliation(s)
- Balint Beres
- Nanobiosensorics
Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege út 29-33, Budapest H-1121, Hungary
- Department
of Automation and Applied Informatics, Faculty of Electrical Engineering
and Informatics, Budapest University of
Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary
| | - Kinga Dora Kovacs
- Nanobiosensorics
Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege út 29-33, Budapest H-1121, Hungary
- Department
of Biological Physics, Eötvös
University, Pázmány Péter stny. 1/A, Budapest H-1117, Hungary
| | - Nicolett Kanyo
- Nanobiosensorics
Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege út 29-33, Budapest H-1121, Hungary
| | - Beatrix Peter
- Nanobiosensorics
Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege út 29-33, Budapest H-1121, Hungary
| | - Inna Szekacs
- Nanobiosensorics
Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege út 29-33, Budapest H-1121, Hungary
| | - Robert Horvath
- Nanobiosensorics
Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege út 29-33, Budapest H-1121, Hungary
| |
Collapse
|
2
|
Peter B, Kanyo N, Kovacs KD, Kovács V, Szekacs I, Pécz B, Molnár K, Nakanishi H, Lagzi I, Horvath R. Glycocalyx Components Detune the Cellular Uptake of Gold Nanoparticles in a Size- and Charge-Dependent Manner. ACS APPLIED BIO MATERIALS 2022; 6:64-73. [PMID: 36239448 PMCID: PMC9846697 DOI: 10.1021/acsabm.2c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Functionalized nanoparticles (NPs) are widely used in targeted drug delivery and biomedical imaging due to their penetration into living cells. The outer coating of most cells is a sugar-rich layer of the cellular glycocalyx, presumably playing an important part in any uptake processes. However, the exact role of the cellular glycocalyx in NP uptake is still uncovered. Here, we in situ monitored the cellular uptake of gold NPs─functionalized with positively charged alkaline thiol (TMA)─into adhered cancer cells with or without preliminary glycocalyx digestion. Proteoglycan (PG) components of the glycocalyx were treated by the chondroitinase ABC enzyme. It acts on chondroitin 4-sulfate, chondroitin 6-sulfate, and dermatan sulfate and slowly on hyaluronate. The uptake measurements of HeLa cells were performed by applying a high-throughput label-free optical biosensor based on resonant waveguide gratings. The positively charged gold NPs were used with different sizes [d = 2.6, 4.2, and 7.0 nm, small (S), medium (M), and large(L), respectively]. Negatively charged citrate-capped tannic acid (CTA, d = 5.5 nm) NPs were also used in control experiments. Real-time biosensor data confirmed the cellular uptake of the functionalized NPs, which was visually proved by transmission electron microscopy. It was found that the enzymatic digestion facilitated the entry of the positively charged S- and M-sized NPs, being more pronounced for the M-sized. Other enzymes digesting different components of the glycocalyx were also employed, and the results were compared. Glycosaminoglycan digesting heparinase III treatment also increased, while glycoprotein and glycolipid modifying neuraminidase decreased the NP uptake by HeLa cells. This suggests that the sialic acid residues increase, while heparan sulfate decreases the uptake of positively charged NPs. Our results raise the hypothesis that cellular uptake of 2-4 nm positively charged NPs is facilitated by glycoprotein and glycolipid components of the glycocalyx but inhibited by PGs.
Collapse
Affiliation(s)
- Beatrix Peter
- Nanobiosensorics
Laboratory, Institute of Technical Physics
and Materials Science, Centre for Energy Research, Konkoly-Thege út 29-33, BudapestH-1120, Hungary,
| | - Nicolett Kanyo
- Nanobiosensorics
Laboratory, Institute of Technical Physics
and Materials Science, Centre for Energy Research, Konkoly-Thege út 29-33, BudapestH-1120, Hungary
| | - Kinga Dora Kovacs
- Nanobiosensorics
Laboratory, Institute of Technical Physics
and Materials Science, Centre for Energy Research, Konkoly-Thege út 29-33, BudapestH-1120, Hungary,Department
of Biological Physics, Eötvös
University, BudapestH 1117, Hungary
| | - Viktor Kovács
- Nanobiosensorics
Laboratory, Institute of Technical Physics
and Materials Science, Centre for Energy Research, Konkoly-Thege út 29-33, BudapestH-1120, Hungary
| | - Inna Szekacs
- Nanobiosensorics
Laboratory, Institute of Technical Physics
and Materials Science, Centre for Energy Research, Konkoly-Thege út 29-33, BudapestH-1120, Hungary
| | - Béla Pécz
- Thin
Films Laboratory, Institute of Technical
Physics and Materials Science, Centre for Energy Research, Konkoly-Thege út 29-33, BudapestH-1120, Hungary
| | - Kinga Molnár
- Department
of Anatomy, Cell and Developmental Biology, ELTE, Eötvös Loránd University, Pázmány Péter Stny. 1/C, BudapestH-1117, Hungary
| | - Hideyuki Nakanishi
- Department
of Macromolecular Science and Engineering, Graduate School of Science
and Technology, Kyoto Institute of Technology, Matsugasaki, Kyoto606-8585, Japan
| | - Istvan Lagzi
- Department
of Physics, Institute of Physics, Budapest
University of Technology and Economics, Műegyetem Rkp. 3, BudapestH-1111, Hungary,ELKH-BME
Condensed Matter Research Group, Műegyetem Rkp. 3, BudapestH-1111, Hungary
| | - Robert Horvath
- Nanobiosensorics
Laboratory, Institute of Technical Physics
and Materials Science, Centre for Energy Research, Konkoly-Thege út 29-33, BudapestH-1120, Hungary
| |
Collapse
|
3
|
Saftics A, Kurunczi S, Peter B, Szekacs I, Ramsden JJ, Horvath R. Data evaluation for surface-sensitive label-free methods to obtain real-time kinetic and structural information of thin films: A practical review with related software packages. Adv Colloid Interface Sci 2021; 294:102431. [PMID: 34330074 DOI: 10.1016/j.cis.2021.102431] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023]
Abstract
Interfacial layers are important in a wide range of applications in biomedicine, biosensing, analytical chemistry and the maritime industries. Given the growing number of applications, analysis of such layers and understanding their behavior is becoming crucial. Label-free surface sensitive methods are excellent for monitoring the formation kinetics, structure and its evolution of thin layers, even at the nanoscale. In this paper, we review existing and commercially available label-free techniques and demonstrate how the experimentally obtained data can be utilized to extract kinetic and structural information during and after formation, and any subsequent adsorption/desorption processes. We outline techniques, some traditional and some novel, based on the principles of optical and mechanical transduction. Our special focus is the current possibilities of combining label-free methods, which is a powerful approach to extend the range of detected and deduced parameters. We summarize the most important theoretical considerations for obtaining reliable information from measurements taking place in liquid environments and, hence, with layers in a hydrated state. A thorough treamtmaent of the various kinetic and structural quantities obtained from evaluation of the raw label-free data are provided. Such quantities include layer thickness, refractive index, optical anisotropy (and molecular orientation derived therefrom), degree of hydration, viscoelasticity, as well as association and dissociation rate constants and occupied area of subsequently adsorbed species. To demonstrate the effect of variations in model conditions on the observed data, simulations of kinetic curves at various model settings are also included. Based on our own extensive experience with optical waveguide lightmode spectroscopy (OWLS) and the quartz crystal microbalance (QCM), we have developed dedicated software packages for data analysis, which are made available to the scientific community alongside this paper.
Collapse
|
4
|
Chen Y, Kong Z, Chen F, Ding B, Zhang L, Cui S, Zhang H. Stable directional emission in active optical waveguides shielding external environmental influences. APPLIED OPTICS 2021; 60:6155-6161. [PMID: 34613280 DOI: 10.1364/ao.428559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
The skillful confinement of light brought by the composite waveguide structure has shown great possibilities in the development of photonic devices. It has greatly expanded the application range of an on-chip system in dark-field imaging and confined the laser when containing an active medium. Here we experimentally proved a stable directional emission in an active waveguide composed of metal and photonic crystal, which is almost completely unaffected by the external environment and different from the common local light field that is seriously affected by the structure. When the refractive index of samples on the surface layer changes, it can ensure the constant emission intensity of the internal mode, while still retaining the external environmental sensitivity of the surface mode. It can also be used for imaging and sensing as a functional slide. This research of chip-based directional emission is very promising for various applications including quantitative detection of biological imaging, coupled emission intensity sensing, portable imaging equipment, and tunable micro lasers.
Collapse
|
5
|
Peltomaa R, Glahn-Martínez B, Benito-Peña E, Moreno-Bondi MC. Optical Biosensors for Label-Free Detection of Small Molecules. SENSORS (BASEL, SWITZERLAND) 2018; 18:E4126. [PMID: 30477248 PMCID: PMC6308632 DOI: 10.3390/s18124126] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022]
Abstract
Label-free optical biosensors are an intriguing option for the analyses of many analytes, as they offer several advantages such as high sensitivity, direct and real-time measurement in addition to multiplexing capabilities. However, development of label-free optical biosensors for small molecules can be challenging as most of them are not naturally chromogenic or fluorescent, and in some cases, the sensor response is related to the size of the analyte. To overcome some of the limitations associated with the analysis of biologically, pharmacologically, or environmentally relevant compounds of low molecular weight, recent advances in the field have improved the detection of these analytes using outstanding methodology, instrumentation, recognition elements, or immobilization strategies. In this review, we aim to introduce some of the latest developments in the field of label-free optical biosensors with the focus on applications with novel innovations to overcome the challenges related to small molecule detection. Optical label-free methods with different transduction schemes, including evanescent wave and optical fiber sensors, surface plasmon resonance, surface-enhanced Raman spectroscopy, and interferometry, using various biorecognition elements, such as antibodies, aptamers, enzymes, and bioinspired molecularly imprinted polymers, are reviewed.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Bettina Glahn-Martínez
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Elena Benito-Peña
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - María C Moreno-Bondi
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
6
|
Chocarro-Ruiz B, Fernández-Gavela A, Herranz S, Lechuga LM. Nanophotonic label-free biosensors for environmental monitoring. Curr Opin Biotechnol 2017; 45:175-183. [PMID: 28458110 DOI: 10.1016/j.copbio.2017.03.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/25/2022]
Abstract
The field of environmental monitoring has experienced a substantial progress in the last years but still the on-site control of contaminants is an elusive problem. In addition, the growing number of pollutant sources is accompanied by an increasing need of having efficient early warning systems. Several years ago biosensor devices emerged as promising environmental monitoring tools, but their level of miniaturization and their fully operation outside the laboratory prevented their use on-site. In the last period, nanophotonic biosensors based on evanescent sensing have emerged as an outstanding choice for portable point-of-care diagnosis thanks to their capability, among others, of miniaturization, multiplexing, label-free detection and integration in lab-on-chip platforms. This review covers the most relevant nanophotonic biosensors which have been proposed (including interferometric waveguides, grating-couplers, microcavity resonators, photonic crystals and localized surface plasmon resonance sensors) and their recent application for environmental surveillance.
Collapse
Affiliation(s)
- Blanca Chocarro-Ruiz
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, The Barcelona Institute of Science and Technology and CIBER-BBN, Campus UAB, Ed-ICN2, 08193 Bellaterra, Barcelona, Spain
| | - Adrián Fernández-Gavela
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, The Barcelona Institute of Science and Technology and CIBER-BBN, Campus UAB, Ed-ICN2, 08193 Bellaterra, Barcelona, Spain
| | - Sonia Herranz
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, The Barcelona Institute of Science and Technology and CIBER-BBN, Campus UAB, Ed-ICN2, 08193 Bellaterra, Barcelona, Spain
| | - Laura M Lechuga
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, The Barcelona Institute of Science and Technology and CIBER-BBN, Campus UAB, Ed-ICN2, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
7
|
Bánáti H, Darvas B, Fehér-Tóth S, Czéh Á, Székács A. Determination of Mycotoxin Production of Fusarium Species in Genetically Modified Maize Varieties by Quantitative Flow Immunocytometry. Toxins (Basel) 2017; 9:E70. [PMID: 28241411 PMCID: PMC5331449 DOI: 10.3390/toxins9020070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 01/25/2017] [Accepted: 02/08/2017] [Indexed: 11/17/2022] Open
Abstract
Levels of mycotoxins produced by Fusarium species in genetically modified (GM) and near-isogenic maize, were determined using multi-analyte, microbead-based flow immunocytometry with fluorescence detection, for the parallel quantitative determination of fumonisin B1, deoxynivalenol, zearalenone, T-2, ochratoxin A, and aflatoxin B1. Maize varieties included the genetic events MON 810 and DAS-59122-7, and their isogenic counterparts. Cobs were artificially infested by F. verticillioides and F. proliferatum conidia, and contained F. graminearum and F. sporotrichoides natural infestation. The production of fumonisin B1 and deoxynivalenol was substantially affected in GM maize lines: F. verticillioides, with the addition of F. graminearum and F. sporotrichoides, produced significantly lower levels of fumonisin B1 (~300 mg·kg-1) in DAS-59122-7 than in its isogenic line (~580 mg·kg-1), while F. proliferatum, in addition to F. graminearum and F. sporotrichoides, produced significantly higher levels of deoxynivalenol (~18 mg·kg-1) in MON 810 than in its isogenic line (~5 mg·kg-1). Fusarium verticillioides, with F. graminearum and F. sporotrichoides, produced lower amounts of deoxynivalenol and zearalenone than F. proliferatum, with F. graminearum and F. sporotrichoides. T-2 toxin production remained unchanged when considering the maize variety. The results demonstrate the utility of the Fungi-Plex™ quantitative flow immunocytometry method, applied for the high throughput parallel determination of the target mycotoxins.
Collapse
Affiliation(s)
- Hajnalka Bánáti
- Agro-Environmental Research Institute, National Research and Innovation Centre, Herman Ottó út 15, H-1022 Budapest, Hungary.
| | - Béla Darvas
- Agro-Environmental Research Institute, National Research and Innovation Centre, Herman Ottó út 15, H-1022 Budapest, Hungary.
| | | | - Árpád Czéh
- Soft Flow Hungary R&D Ltd., Ürögi fasor 2/A, H-7634 Pécs, Hungary.
| | - András Székács
- Agro-Environmental Research Institute, National Research and Innovation Centre, Herman Ottó út 15, H-1022 Budapest, Hungary.
| |
Collapse
|
8
|
Patil NJ, Rishikesan S, Nikogeorgos N, Guzzi R, Lee S, Zappone B. Complexation and synergistic boundary lubrication of porcine gastric mucin and branched poly(ethyleneimine) in neutral aqueous solution. SOFT MATTER 2017; 13:590-599. [PMID: 27976775 DOI: 10.1039/c6sm01801g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Lubrication of soft polydimethylsiloxane (PDMS) elastomer interfaces was studied in aqueous mixtures of porcine gastric mucin (PGM) and branched polyethyleneimine (b-PEI) at neutral pH and various ionic strengths (0.1-1.0 M). While neither PGM nor b-PEI improved lubrication compared to polymer-free buffer solution, their mixtures produced a synergistic lubricating effect by reducing friction coefficients by nearly two orders of magnitude, especially at slow sliding speed in the boundary lubrication regime. An array of spectroscopic studies revealed that small cationic b-PEI molecules were able to strongly bind and penetrate into large anionic PGM molecules, producing an overall contraction of the randomly coiled PGM conformation. The interaction also affected the structure of the folded PGM protein terminals, decreased the surface potential and increased light absorbance in PGM:b-PEI mixtures. Adding an electrolyte (NaCl) weakened the aggregation between PGM and b-PEI, and degraded the lubrication synergy, indicating that electrostatic interactions drive PGM:b-PEI complexation.
Collapse
Affiliation(s)
- Navinkumar J Patil
- Dipartimento di Fisica, Università della Calabria, Cubo 31/C, Rende, CS 87036, Italy
| | | | - Nikolaos Nikogeorgos
- Department of Mechanical Engineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| | - Rita Guzzi
- Dipartimento di Fisica, Università della Calabria, Cubo 31/C, Rende, CS 87036, Italy
| | - Seunghwan Lee
- Department of Mechanical Engineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| | - Bruno Zappone
- Consiglio Nazionale delle Ricerche - Istituto di Nanotecnologia (CNR-Nanotec), SS Cosenza - LICRYL, c/o Dipartimento di Fisica, Università della Calabria, Cubo 33/B, Rende, CS 87036, Italy.
| |
Collapse
|
9
|
Xu L, Zhang Z, Zhang Q, Li P. Mycotoxin Determination in Foods Using Advanced Sensors Based on Antibodies or Aptamers. Toxins (Basel) 2016; 8:239. [PMID: 27529281 PMCID: PMC4999855 DOI: 10.3390/toxins8080239] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 07/08/2016] [Accepted: 07/08/2016] [Indexed: 12/24/2022] Open
Abstract
Mycotoxin contamination threatens health and life of humans and animals throughout the food supply chains. Many of the mycotoxins have been proven to be carcinogens, teratogens and mutagens. The reliable and sensitive sensing methods are requested to monitor mycotoxin contamination. Advanced sensors based on antibodies or aptamers boast the advantages of high sensitivity and rapidity, and have been used in the mycotoxin sensing. These sensors are miniaturized, thereby lowering costs, and are applicable to high-throughput modes. In this work, the latest developments in sensing strategies for mycotoxin determination were critically discussed. Optical and electrochemical sensing modes were compared. The sensing methods for single mycotoxin or multiple mycotoxins in food samples were reviewed, along with the challenges and the future of antibody or aptamer-based sensors. This work might promote academic studies and industrial applications for mycotoxin sensing.
Collapse
Affiliation(s)
- Lin Xu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of oil Crops, Ministry of Agriculture, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
- Laboratory of Risk Assessment for oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China.
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of oil Crops, Ministry of Agriculture, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
- Laboratory of Risk Assessment for oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China.
- Quality Inspection and Test Center for oilseeds Products, Ministry of Agriculture, Wuhan 430062, China.
| |
Collapse
|
10
|
Abstract
Aflatoxins are toxic carcinogenic secondary metabolites produced predominantly by two fungal species: Aspergillus flavus and Aspergillus parasiticus. These fungal species are contaminants of foodstuff as well as feeds and are responsible for aflatoxin contamination of these agro products. The toxicity and potency of aflatoxins make them the primary health hazard as well as responsible for losses associated with contaminations of processed foods and feeds. Determination of aflatoxins concentration in food stuff and feeds is thus very important. However, due to their low concentration in foods and feedstuff, analytical methods for detection and quantification of aflatoxins have to be specific, sensitive, and simple to carry out. Several methods including thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), mass spectroscopy, enzyme-linked immune-sorbent assay (ELISA), and electrochemical immunosensor, among others, have been described for detecting and quantifying aflatoxins in foods. Each of these methods has advantages and limitations in aflatoxins analysis. This review critically examines each of the methods used for detection of aflatoxins in foodstuff, highlighting the advantages and limitations of each method. Finally, a way forward for overcoming such obstacles is suggested.
Collapse
|
11
|
Dahmen JL, Yang Y, Greenlief CM, Stacey G, Hunt HK. Interfacing Whispering Gallery Mode Optical Microresonator Biosensors with the Plant Defense Elicitor Chitin. Colloids Surf B Biointerfaces 2014; 122:241-249. [DOI: 10.1016/j.colsurfb.2014.06.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/25/2014] [Accepted: 06/30/2014] [Indexed: 01/06/2023]
|
12
|
Nador J, Orgovan N, Fried M, Petrik P, Sulyok A, Ramsden JJ, Korosi L, Horvath R. Enhanced protein adsorption and cellular adhesion using transparent titanate nanotube thin films made by a simple and inexpensive room temperature process: Application to optical biochips. Colloids Surf B Biointerfaces 2014; 122:491-497. [DOI: 10.1016/j.colsurfb.2014.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/24/2014] [Accepted: 07/12/2014] [Indexed: 10/25/2022]
|
13
|
Kim HL, Mcauley A, Livesay B, Gray WD, Mcguire J. Modulation of Protein Adsorption by Poloxamer 188 in Relation to Polysorbates 80 and 20 at Solid Surfaces. J Pharm Sci 2014; 103:1043-9. [DOI: 10.1002/jps.23907] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/10/2014] [Accepted: 01/31/2014] [Indexed: 12/14/2022]
|
14
|
Auxier JA, Dill JK, Schilke KF, McGuire J. Blood protein repulsion after peptide entrapment in pendant polyethylene oxide layers. Biotechnol Appl Biochem 2014; 61:371-5. [DOI: 10.1002/bab.1201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/22/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Julie A. Auxier
- School of Chemical, Biological and Environmental Engineering; Oregon State University; Corvallis OR USA
| | - Justen K. Dill
- School of Chemical, Biological and Environmental Engineering; Oregon State University; Corvallis OR USA
| | - Karl F. Schilke
- School of Chemical, Biological and Environmental Engineering; Oregon State University; Corvallis OR USA
| | - Joseph McGuire
- School of Chemical, Biological and Environmental Engineering; Oregon State University; Corvallis OR USA
| |
Collapse
|
15
|
Adányi N, Székács I, Szendrő I, Székács A. Determination of histamine content in vegetable juices by using direct and competitive immunosensors. FOOD AGR IMMUNOL 2012. [DOI: 10.1080/09540105.2012.731686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
16
|
Kriechbaumer V, Nabok A, Widdowson R, Smith DP, Abell BM. Quantification of ligand binding to G-protein coupled receptors on cell membranes by ellipsometry. PLoS One 2012; 7:e46221. [PMID: 23049983 PMCID: PMC3458955 DOI: 10.1371/journal.pone.0046221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/28/2012] [Indexed: 12/18/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are prime drug targets and targeted by approximately 60% of current therapeutic drugs such as β-blockers, antipsychotics and analgesics. However, no biophysical methods are available to quantify their interactions with ligand binding in a native environment. Here, we use ellipsometry to quantify specific interactions of receptors within native cell membranes. As a model system, the GPCR-ligand CXCL12α and its receptor CXCR4 are used. Human-derived Ishikawa cells were deposited onto gold coated slides via Langmuir-Schaefer film deposition and interactions between the receptor CXCR4 on these cells and its ligand CXCL12α were detected via total internal reflection ellipsometry (TIRE). This interaction could be inhibited by application of the CXCR4-binding drug AMD3100. Advantages of this approach are that it allows measurement of interactions in a lipid environment without the need for labelling, protein purification or reconstitution of membrane proteins. This technique is potentially applicable to a wide variety of cell types and their membrane receptors, providing a novel method to determine ligand or drug interactions targeting GPCRs and other membrane proteins.
Collapse
Affiliation(s)
- Verena Kriechbaumer
- Biomedical Research Centre, Sheffield Hallam University, Sheffield, United Kingdom.
| | | | | | | | | |
Collapse
|
17
|
Kriechbaumer V, Nabok A, Mustafa MK, Al-Ammar R, Tsargorodskaya A, Smith DP, Abell BM. Analysis of protein interactions at native chloroplast membranes by ellipsometry. PLoS One 2012; 7:e34455. [PMID: 22479632 PMCID: PMC3315527 DOI: 10.1371/journal.pone.0034455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 02/28/2012] [Indexed: 11/25/2022] Open
Abstract
Membrane bound receptors play vital roles in cell signaling, and are the target for many drugs, yet their interactions with ligands are difficult to study by conventional techniques due to the technical difficulty of monitoring these interactions in lipid environments. In particular, the ability to analyse the behaviour of membrane proteins in their native membrane environment is limited. Here, we have developed a quantitative approach to detect specific interactions between low-abundance chaperone receptors within native chloroplast membranes and their soluble chaperone partners. Langmuir-Schaefer film deposition was used to deposit native chloroplasts onto gold-coated glass slides, and interactions between the molecular chaperones Hsp70 and Hsp90 and their receptors in the chloroplast membranes were detected and quantified by total internal reflection ellipsometry (TIRE). We show that native chloroplast membranes deposited on gold-coated glass slides using Langmuir-Schaefer films retain functional receptors capable of binding chaperones with high specificity and affinity. Taking into account the low chaperone receptor abundance in native membranes, these binding properties are consistent with data generated using soluble forms of the chloroplast chaperone receptors, OEP61 and Toc64. Therefore, we conclude that chloroplasts have the capacity to selectively bind chaperones, consistent with the notion that chaperones play an important role in protein targeting to chloroplasts. Importantly, this method of monitoring by TIRE does not require any protein labelling. This novel combination of techniques should be applicable to a wide variety of membranes and membrane protein receptors, thus presenting the opportunity to quantify protein interactions involved in fundamental cellular processes, and to screen for drugs that target membrane proteins.
Collapse
Affiliation(s)
- Verena Kriechbaumer
- Biomedical Research Centre, Sheffield Hallam University, Sheffield, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
18
|
Rich RL, Myszka DG. Survey of the 2009 commercial optical biosensor literature. J Mol Recognit 2012; 24:892-914. [PMID: 22038797 DOI: 10.1002/jmr.1138] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We took a different approach to reviewing the commercial biosensor literature this year by inviting 22 biosensor users to serve as a review committee. They set the criteria for what to expect in a publication and ultimately decided to use a pass/fail system for selecting which papers to include in this year's reference list. Of the 1514 publications in 2009 that reported using commercially available optical biosensor technology, only 20% passed their cutoff. The most common criticism the reviewers had with the literature was that "the biosensor experiments could have been done better." They selected 10 papers to highlight good experimental technique, data presentation, and unique applications of the technology. This communal review process was educational for everyone involved and one we will not soon forget.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
19
|
Study of receptor-chaperone interactions using the optical technique of spectroscopic ellipsometry. Biophys J 2011; 101:504-11. [PMID: 21767504 DOI: 10.1016/j.bpj.2011.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/07/2011] [Accepted: 06/09/2011] [Indexed: 11/22/2022] Open
Abstract
This work describes a detailed quantitative interaction study between the novel plastidial chaperone receptor OEP61 and isoforms of the chaperone types Hsp70 and Hsp90 using the optical method of total internal reflection ellipsometry (TIRE). The receptor OEP61 was electrostatically immobilized on a gold surface via an intermediate layer of polycations. The TIRE measurements allowed the evaluation of thickness changes in the adsorbed molecular layers as a result of chaperone binding to receptor proteins. Hsp70 chaperone isoforms but not Hsp90 were shown to be capable of binding OEP61. Dynamic TIRE measurements were carried out to evaluate the affinity constants of the above reactions and resulted in clear discrimination between specific and nonspecific binding of chaperones as well as differences in binding properties between the highly similar Hsp70 isoforms.
Collapse
|
20
|
Nabok AV, Mustafa MK, Tsargorodskaya A, Starodub NF. Detection of Aflatoxin B1 with a Label-Free Ellipsometry Immunosensor. BIONANOSCIENCE 2011. [DOI: 10.1007/s12668-011-0006-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Daaboul GG, Vedula RS, Ahn S, Lopez CA, Reddington A, Ozkumur E, Ünlü MS. LED-based interferometric reflectance imaging sensor for quantitative dynamic monitoring of biomolecular interactions. Biosens Bioelectron 2010; 26:2221-7. [PMID: 20980139 DOI: 10.1016/j.bios.2010.09.038] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 09/11/2010] [Accepted: 09/21/2010] [Indexed: 11/28/2022]
Abstract
Label-free optical biosensors have been established as proven tools for monitoring specific biomolecular interactions. However, compact and robust embodiments of such instruments have yet to be introduced in order to provide sensitive, quantitative, and high-throughput biosensing for low-cost research and clinical applications. Here we present the Interferometric Reflectance Imaging Sensor (IRIS) using an inexpensive and durable multi-color LED illumination source to monitor protein-protein and DNA-DNA interactions. We demonstrate the capability of this system to dynamically monitor antigen-antibody interactions with a noise floor of 5.2 pg/mm(2) and DNA single mismatch detection under denaturing conditions in an array format. Our experiments show that this platform has comparable sensitivity to high-end label-free biosensors at a much lower cost with the capability to be translated to field-deployable applications.
Collapse
Affiliation(s)
- G G Daaboul
- Dept. of Biomedical Engineering, Boston University, 44 Cummington St., Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Washburn AL, Bailey RC. Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications. Analyst 2010; 136:227-36. [PMID: 20957245 DOI: 10.1039/c0an00449a] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By leveraging advances in semiconductor microfabrication technologies, chip-integrated optical biosensors are poised to make an impact as scalable and multiplexable bioanalytical measurement tools for lab-on-a-chip applications. In particular, waveguide-based optical sensing technology appears to be exceptionally amenable to chip integration and miniaturization, and, as a result, the recent literature is replete with examples of chip-integrated waveguide sensing platforms developed to address a wide range of contemporary analytical challenges. As an overview of the most recent advances within this dynamic field, this review highlights work from the last 2-3 years in the areas of grating-coupled, interferometric, photonic crystal, and microresonator waveguide sensors. With a focus towards device integration, particular emphasis is placed on demonstrations of biosensing using these technologies within microfluidically controlled environments. In addition, examples of multiplexed detection and sensing within complex matrices--important features for real-world applicability--are given special attention.
Collapse
Affiliation(s)
- Adam L Washburn
- Department of Chemistry, Institute for Genomic Biology and Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | |
Collapse
|
23
|
Bioconjugation strategies for microtoroidal optical resonators. SENSORS 2010; 10:9317-36. [PMID: 22163409 PMCID: PMC3230978 DOI: 10.3390/s101009317] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 10/08/2010] [Accepted: 10/14/2010] [Indexed: 01/01/2023]
Abstract
The development of label-free biosensors with high sensitivity and specificity is of significant interest for medical diagnostics and environmental monitoring, where rapid and real-time detection of antigens, bacteria, viruses, etc., is necessary. Optical resonant devices, which have very high sensitivity resulting from their low optical loss, are uniquely suited to sensing applications. However, previous research efforts in this area have focused on the development of the sensor itself. While device sensitivity is an important feature of a sensor, specificity is an equally, if not more, important performance parameter. Therefore, it is crucial to develop a covalent surface functionalization process, which also maintains the device’s sensing capabilities or optical qualities. Here, we demonstrate a facile method to impart specificity to optical microcavities, without adversely impacting their optical performance. In this approach, we selectively functionalize the surface of the silica microtoroids with biotin, using amine-terminated silane coupling agents as linkers. The surface chemistry of these devices is demonstrated using X-ray photoelectron spectroscopy, and fluorescent and optical microscopy. The quality factors of the surface functionalized devices are also characterized to determine the impact of the chemistry methods on the device sensitivity. The resulting devices show uniform surface coverage, with no microstructural damage. This work represents one of the first examples of non-physisorption-based bioconjugation of microtoroidal optical resonators.
Collapse
|
24
|
Abstract
Highly sensitive, label-free biodetection methods have applications in both the fundamental research and healthcare diagnostics arenas. Therefore, the development of new transduction methods and the improvement of the existing methods will significantly impact these areas. A brief overview of the different types of biosensors and the critical parameters governing their performance will be given. Additionally, a more in-depth discussion of optical devices, surface functionalization methods to increase device specificity, and fluidic techniques to improve sample delivery will be reviewed.
Collapse
Affiliation(s)
- Heather K Hunt
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA.
| | | |
Collapse
|
25
|
Shephard G, Berthiller F, Dorner J, Krska R, Lombaert G, Malone B, Maragos C, Sabino M, Solfrizzo M, Trucksess M, van Egmond H, Whitaker T. Developments in mycotoxin analysis: an update for 2008-2009. WORLD MYCOTOXIN J 2010. [DOI: 10.3920/wmj2009.1172] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review highlights developments in mycotoxin analysis and sampling over a period between mid-2008 and mid-2009. It covers the major mycotoxins: aflatoxins, alternaria toxins, cyclopiazonic acid, fumonisins, ochratoxin, patulin, trichothecenes and zearalenone. Developments in mycotoxin analysis continue, with emphasis on novel immunological methods and further description of LC-MS and LC-MS/MS, particularly as multimycotoxin applications for different ranges of mycotoxins. Although falling outside the main emphasis of the review, some aspects of natural occurrence have been mentioned, especially if linked to novel method developments.
Collapse
Affiliation(s)
- G. Shephard
- PROMEC Unit, Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa
| | - F. Berthiller
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Research, University of Natural Resources and Applied Life Sciences Vienna, Center for Analytical Chemistry, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - J. Dorner
- USDA, ARS, National Peanut Research Laboratory, P.O. Box 509, 1011 Forrester Dr SE, Dawson, GA 31742, USA
| | - R. Krska
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Research, University of Natural Resources and Applied Life Sciences Vienna, Center for Analytical Chemistry, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - G. Lombaert
- Health Canada, 510 Lagimodiere Blvd., Winnipeg, MB, R2J 3Y1, Canada
| | - B. Malone
- Trilogy Analytical Laboratory, 111 West Fourth Street, Washington, MO 63090, USA
| | - C. Maragos
- USDA, ARS National Center for Agricultural Utilization Research, 1815 N. University St, Peoria, IL 61604, USA
| | - M. Sabino
- Instituto Adolfo Lutz, Av Dr Arnaldo 355, 01246-902, São Paulo/SP, Brazil
| | - M. Solfrizzo
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/o, Bari 700126, Italy
| | - M. Trucksess
- US Food and Drug Administration, 5100 Paint Branch Parkway, College Park, MD 20740, USA
| | - H. van Egmond
- RIKILT, Cluster Natural Toxins & Pesticides, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | - T. Whitaker
- Biological and Agricultural Engineering Department, P.O. Box 7625, N.C. State University, Raleigh, NC 27695-7625 USA
| |
Collapse
|
26
|
Nabok A, Tsargorodskaya A, Mustafa M, Székács A, Székács I, Starodub N. Detection of low molecular weight toxins using optical phase detection techniques. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.proche.2009.07.372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|