1
|
Homma K, Ohta Y, Minami K, Yoshikawa G, Nagase K, Akimoto AM, Yoshida R. Autonomous Nanoscale Chemomechanical Oscillation on the Self-Oscillating Polymer Brush Surface by Precise Control of Graft Density. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4380-4386. [PMID: 33793253 DOI: 10.1021/acs.langmuir.1c00459] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As a novel functional surface, a self-oscillating polymer brush that undergoes autonomous, periodic swelling/deswelling during the Belousov-Zhabotinsky (BZ) reaction has been developed. Although extensive research has revealed how the fundamental aspects of the BZ reaction can be regulated based on the surface design of the self-oscillating polymer brush, design strategies for the induction of mechanical oscillation remain unexplored. Herein, we investigated the graft density effects on the phase transition behavior, which is an important design parameter for the mechanical oscillation of the modified polymer. The self-oscillating polymer-modified substrates with controlled graft densities were prepared by immobilizing various compositions of an initiator and a noninitiator followed by surface-initiated atom transfer radical polymerization of the self-oscillating polymer chains. In addition to the characterization of each prepared substrate, atomic force microscopy (AFM) and digital holographic microscopy (DHM) were employed to evaluate the density effects on the static and dynamic surface structures. AFM revealed that equilibrium swelling as well as thermoresponsive behavior is profoundly affected by the graft density. Moreover, using DHM, autonomous mechanical oscillation was captured only on the self-oscillating polymer brush with adequate graft density. Notably, the oscillation amplitude (150 nm) and the period (20 s) in this study were superior to those in a previous report on the self-oscillating polymer modified through the grafting-to method by 10- and 3-fold, respectively. This study presents design guidelines for future applications, such as autonomous transport devices.
Collapse
Affiliation(s)
- Kenta Homma
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuji Ohta
- School of Humanities and Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Kosuke Minami
- International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044, Japan
| | - Genki Yoshikawa
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Ibaraki, Tsukuba 305-0044, Japan
- Materials Science and Engineering, Graduate School of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Ibaraki, Tsukuba 305-8571, Japan
| | - Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Aya M Akimoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ryo Yoshida
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
2
|
Bao Y, Gaylord TK. Two improved defocus quantitative phase imaging methods: discussion. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2019; 36:2104-2114. [PMID: 31873385 DOI: 10.1364/josaa.36.002104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
Multifilter phase imaging with partially coherent light (MFPI-PC) and phase optical transfer function recovery (POTFR) are two viable defocus-based, two-dimensional quantitative phase imaging (QPI) methods. While both methods use transfer function inversion, MFPI-PC is based on the in-focus intensity derivative, while POTFR is based on the intensity difference between symmetrically defocused images. This paper compares and contrasts MFPI-PC and POTFR. Six disadvantages (five in MFPI-PC and one in POTFR) are identified. Improvement strategies to overcome each of the six shortcomings are identified and implemented, and both methods are shown to be clearly improved. The revised MFPI-PC is shown to be more accurate than the original MFPI-PC and generally more accurate than the revised POTFR. The revised POTFR is shown to be inherently faster than the original POTFR and also slightly faster than the revised MFPI-PC.
Collapse
|
3
|
Laser Processed Antimicrobial Nanocomposite Based on Polyaniline Grafted Lignin Loaded with Gentamicin-Functionalized Magnetite. Polymers (Basel) 2019; 11:polym11020283. [PMID: 30960267 PMCID: PMC6419051 DOI: 10.3390/polym11020283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 12/15/2022] Open
Abstract
Composite thin coatings of conductive polymer (polyaniline grafted lignin, PANI-LIG) embedded with aminoglycoside Gentamicin sulfate (GS) or magnetite nanoparticles loaded with GS (Fe₃O₄@GS) were deposited by the matrix-assisted pulsed laser evaporation (MAPLE) technique. The aim was to obtain such nanostructured coatings for titanium-based biomedical surfaces, which would induce multi-functional properties to implantable devices, such as the controlled release of the therapeutically active substance under the action of a magnetic and/or electric field. Thus, the unaltered laser transfer of the initial biomaterials was reported, and the deposited thin coatings exhibited an appropriate nanostructured surface, suitable for bone-related applications. The laser processing of PANI-LIG materials had a meaningful impact on the composites' wettability, since the contact angle values corresponding to the composite laser processed materials decreased in comparison with pristine conductive polymer coatings, indicating more hydrophilic surfaces. The corrosion resistant structures exhibited significant antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Candida albicans strains. In vitro cytotoxicity studies demonstrated that the PANI-LIG-modified titanium substrates can allow growth of bone-like cells. These results encourage further assessment of this type of biomaterial for their application in controlled drug release at implantation sites by external activation.
Collapse
|
4
|
Bao Y, Dong GC, Gaylord TK. Weighted-least-squares multi-filter phase imaging with partially coherent light: characteristics of annular illumination. APPLIED OPTICS 2019; 58:137-146. [PMID: 30645520 DOI: 10.1364/ao.58.000137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
Multi-filter phase imaging with partially coherent light (MFPI-PC) is a promising microscopic quantitative phase imaging (QPI) method that measures the phase of a transparent object. In the present work, a weighted-least-squares version is developed and applied to the important case of annular illumination. The resulting improved algorithms have largely solved the noise magnification problem associated with the original MFPI-PC in annular illumination. Simulation and microlens experiments are used to validate the new QPI method for the case of annular illumination.
Collapse
|
5
|
Alegret N, Dominguez-Alfaro A, Mecerreyes D. 3D Scaffolds Based on Conductive Polymers for Biomedical Applications. Biomacromolecules 2018; 20:73-89. [PMID: 30543402 DOI: 10.1021/acs.biomac.8b01382] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
3D scaffolds appear to be a cost-effective ultimate answer for biomedical applications, facilitating rapid results while providing an environment similar to in vivo tissue. These biomaterials offer large surface areas for cell or biomaterial attachment, proliferation, biosensing and drug delivery applications. Among 3D scaffolds, the ones based on conjugated polymers (CPs) and natural nonconductive polymers arranged in a 3D architecture provide tridimensionality to cellular culture along with a high surface area for cell adherence and proliferation as well electrical conductivity for stimulation or sensing. However, the scaffolds must also obey other characteristics: homogeneous porosity, with pore sizes large enough to allow cell penetration and nutrient flow; elasticity and wettability similar to the tissue of implantation; and a suitable composition to enhance cell-matrix interactions. In this Review, we summarize the fabrication methods, characterization techniques and main applications of conductive 3D scaffolds based on conductive polymers. The main barrier in the development of these platforms has been the fabrication and subsequent maintenance of the third dimension due to challenges in the manipulation of conductive polymers. In the last decades, different approaches to overcome these barriers have been developed for the production of conductive 3D scaffolds, demonstrating a huge potential for biomedical purposes. Finally, we present an overview of the emerging strategies developed to manufacture 3D conductive scaffolds, the techniques used to fully characterize them, and the biomedical fields where they have been applied.
Collapse
Affiliation(s)
- Nuria Alegret
- POLYMAT University of the Basque Country UPV/EHU , Avenida de Tolosa 72 , 20018 Donostia-San Sebastián , Spain.,Cardiovascular Institute, School of Medicine, Division of Cardiology , University of Colorado Denver Anschutz Medical Campus , 12700 E. 19th Avenue, Building P15 , Aurora , Colorado 80045 , United States
| | - Antonio Dominguez-Alfaro
- POLYMAT University of the Basque Country UPV/EHU , Avenida de Tolosa 72 , 20018 Donostia-San Sebastián , Spain.,Carbon Nanobiotechnology Group, CIC biomaGUNE , Paseo de Miramón 182 , 2014 Donostia-San Sebastián , Spain
| | - David Mecerreyes
- POLYMAT University of the Basque Country UPV/EHU , Avenida de Tolosa 72 , 20018 Donostia-San Sebastián , Spain.,Ikerasque, Basque Foundation for Science , 48013 Bilbao , Spain
| |
Collapse
|
6
|
Alegret N, Dominguez-Alfaro A, González-Domínguez JM, Arnaiz B, Cossío U, Bosi S, Vázquez E, Ramos-Cabrer P, Mecerreyes D, Prato M. Three-Dimensional Conductive Scaffolds as Neural Prostheses Based on Carbon Nanotubes and Polypyrrole. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43904-43914. [PMID: 30475577 DOI: 10.1021/acsami.8b16462] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Three-dimensional scaffolds for cellular organization need to enjoy a series of specific properties. On the one hand, the morphology, shape and porosity are critical parameters and eventually related with the mechanical properties. On the other hand, electrical conductivity is an important asset when dealing with electroactive cells, so it is a desirable property even if the conductivity values are not particularly high. Here, we construct three-dimensional (3D) porous and conductive composites, where C8-D1A astrocytic cells were incubated to study their biocompatibility. The manufactured scaffolds are composed exclusively of carbon nanotubes (CNTs), a most promising material to interface with neuronal tissue, and polypyrrole (PPy), a conjugated polymer demonstrated to reduce gliosis, improve adaptability, and increase charge-transfer efficiency in brain-machine interfaces. We developed a new and easy strategy, based on the vapor phase polymerization (VPP) technique, where the monomer vapor is polymerized inside a sucrose sacrificial template containing CNT and an oxidizing agent. After removing the sucrose template, a 3D porous scaffold was obtained and its physical, chemical, and electrical properties were evaluated. The obtained scaffold showed very low density, high and homogeneous porosity, electrical conductivity, and Young's Modulus similar to the in vivo tissue. Its high biocompatibility was demonstrated even after 6 days of incubation, thus paving the way for the development of new conductive 3D scaffolds potentially useful in the field of electroactive tissues.
Collapse
Affiliation(s)
- Nuria Alegret
- Carbon Nanobiotechnology Group , CIC biomaGUNE , Paseo de Miramón 182 , 20014 Donostia-San Sebastián , Spain
| | - Antonio Dominguez-Alfaro
- Carbon Nanobiotechnology Group , CIC biomaGUNE , Paseo de Miramón 182 , 20014 Donostia-San Sebastián , Spain
- POLYMAT , University of the Basque Country UPV/EHU , Avenida de Tolosa 72 , 20018 Donostia-San Sebastián , Spain
| | - Jose M González-Domínguez
- Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas-IRICA , Universidad de Castilla-La Mancha , 13071 Ciudad Real , Spain
| | - Blanca Arnaiz
- Carbon Nanobiotechnology Group , CIC biomaGUNE , Paseo de Miramón 182 , 20014 Donostia-San Sebastián , Spain
| | - Unai Cossío
- Radioimaging and Image Analysis Platform , CIC biomaGUNE , Paseo de Miramón 182 , 20014 Donostia-San Sebastián , Spain
| | - Susanna Bosi
- Department of Chemical and Pharmaceutical Sciences , INSTM. University of Trieste , Via L. Giorgieri 1 , 34127 Trieste , Italy
| | - Ester Vázquez
- Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas-IRICA , Universidad de Castilla-La Mancha , 13071 Ciudad Real , Spain
| | - Pedro Ramos-Cabrer
- Radioimaging and Image Analysis Platform , CIC biomaGUNE , Paseo de Miramón 182 , 20014 Donostia-San Sebastián , Spain
- Ikerasque , Basque Foundation for Science , 48013 Bilbao , Spain
| | - David Mecerreyes
- POLYMAT , University of the Basque Country UPV/EHU , Avenida de Tolosa 72 , 20018 Donostia-San Sebastián , Spain
- Ikerasque , Basque Foundation for Science , 48013 Bilbao , Spain
| | - Maurizio Prato
- Carbon Nanobiotechnology Group , CIC biomaGUNE , Paseo de Miramón 182 , 20014 Donostia-San Sebastián , Spain
- Department of Chemical and Pharmaceutical Sciences , INSTM. University of Trieste , Via L. Giorgieri 1 , 34127 Trieste , Italy
- Ikerasque , Basque Foundation for Science , 48013 Bilbao , Spain
| |
Collapse
|
7
|
Bao Y, Gaylord TK. Quantitative phase imaging method based on an analytical nonparaxial partially coherent phase optical transfer function. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2016; 33:2125-2136. [PMID: 27857437 DOI: 10.1364/josaa.33.002125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Multifilter phase imaging with partially coherent light (MFPI-PC) is a promising new quantitative phase imaging method. However, the existing MFPI-PC method is based on the paraxial approximation. In the present work, an analytical nonparaxial partially coherent phase optical transfer function is derived. This enables the MFPI-PC to be extended to the realistic nonparaxial case. Simulations over a wide range of test phase objects as well as experimental measurements on a microlens array verify higher levels of imaging accuracy compared to the paraxial method. Unlike the paraxial version, the nonparaxial MFPI-PC with obliquity factor correction exhibits no systematic error. In addition, due to its analytical expression, the increase in computation time compared to the paraxial version is negligible.
Collapse
|
8
|
Spatiotemporal control of cardiac anisotropy using dynamic nanotopographic cues. Biomaterials 2016; 86:1-10. [PMID: 26874887 DOI: 10.1016/j.biomaterials.2016.01.062] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 11/21/2022]
Abstract
Coordinated extracellular matrix spatiotemporal reorganization helps regulate cellular differentiation, maturation, and function in vivo, and is therefore vital for the correct formation, maintenance, and healing of complex anatomic structures. In order to evaluate the potential for cultured cells to respond to dynamic changes in their in vitro microenvironment, as they do in vivo, the collective behavior of primary cardiac muscle cells cultured on nanofabricated substrates with controllable anisotropic topographies was studied. A thermally induced shape memory polymer (SMP) was employed to assess the effects of a 90° transition in substrate pattern orientation on the contractile direction and structural organization of cardiomyocyte sheets. Cardiomyocyte sheets cultured on SMPs exhibited anisotropic contractions before shape transition. 48 h after heat-induced shape transition, the direction of cardiomyocyte contraction reoriented significantly and exhibited a bimodal distribution, with peaks at ∼45 and -45° (P < 0.001). Immunocytochemical analysis highlighted the significant structural changes that the cells underwent in response to the shift in underlying topography. The presented results demonstrate that initial anisotropic nanotopographic cues do not permanently determine the organizational fate or contractile properties of cardiomyocytes in culture. Given the importance of surface cues in regulating primary and stem cell development, investigation of such tunable nanotopographies may have important implications for advancing cellular maturation and performance in vitro, as well as improving our understanding of cellular development in response to dynamic biophysical cues.
Collapse
|
9
|
Moon I, Yi F, Rappaz B. Automated tracking of temporal displacements of a red blood cell obtained by time-lapse digital holographic microscopy. APPLIED OPTICS 2016; 55:A86-94. [PMID: 26835962 DOI: 10.1364/ao.55.000a86] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Red blood cell (RBC) phase images that are numerically reconstructed by digital holographic microscopy (DHM) can describe the cell structure and dynamics information beneficial for a quantitative analysis of RBCs. However, RBCs investigated with time-lapse DHM undergo temporal displacements when their membranes are loosely attached to the substrate during sedimentation on a glass surface or due to the microscope drift. Therefore, we need to develop a tracking algorithm to localize the same RBC among RBC image sequences and dynamically monitor its biophysical cell parameters; this information is helpful for studies on RBC-related diseases and drug tests. Here, we propose a method, which is a combination of the mean-shift algorithm and Kalman filter, to track a single RBC and demonstrate that the optical path length of the single RBC can be continually extracted from the tracked RBC. The Kalman filter is utilized to predict the target RBC position in the next frame. Then, the mean-shift algorithm starts execution from the predicted location, and a robust kernel, which is adaptive to changes in the RBC scale, shape, and direction, is designed to improve the accuracy of the tracking. Finally, the tracked RBC is segmented and parameters such as the RBC location are extracted to update the Kalman filter and the kernel function for mean-shift tracking; the characteristics of the target RBC are dynamically observed. Experimental results show the feasibility of the proposed algorithm.
Collapse
|