1
|
Nishimura H, Mizuno Y, Suzuki A, Fujieda I. Leaf-inspired luminescent solar concentrator based on two-stage photoconversion. OPTICS EXPRESS 2023; 31:22444-22456. [PMID: 37475355 DOI: 10.1364/oe.496337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 07/22/2023]
Abstract
Geometrical gain of a luminescent solar concentrator is drastically increased by laying out a luminescent fiber in a luminescent plate with air gap around it and attaching a photovoltaic (PV) cell to the tip of the fiber. The plate converts an incident photon to a first photoluminescence (PL) photon, and the fiber converts it to a second PL photon. Thus, the fiber carries the optical power as a leaf vein transports water and nutrients. The probability of the first PL photon resulting in the second PL photon reaching the PV cell can be measured by exciting a single spot on the plate with a laser beam. In experiment, 2 mm-thick, 50 mm-square and 50 mm-diameter circular devices were assembled with off-the-shelf components. For each case, geometrical gain exceeded 1000 and this probability averaged over the incident area was of the order of 0.01. Connecting multiple small-area devices to a single PV cell with a clear fiber would increase geometrical gain further and alleviate the absorption and scattering of PL photons during waveguiding.
Collapse
|
2
|
Hohgardt M, Gädeke FE, Wegener L, Walla PJ. A Refined Prediction Parameter for Molecular Alignability in Stretched Polymers and a New Light-Harvesting Material for AlGaAs Photovoltaics. Polymers (Basel) 2022; 14:polym14030532. [PMID: 35160519 PMCID: PMC8839645 DOI: 10.3390/polym14030532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/29/2022] Open
Abstract
Light-harvesting concentrators have a high potential to make highly efficient but precious energy converters, such as multijunction photovoltaics, more affordable for everyday applications. They collect sunlight, including diffusively scattered light, on large areas and redirect it to much smaller areas of the highly efficiency solar cells. Among the best current concepts are pools of randomly oriented light-collecting donor molecules that transfer all excitons to few aligned acceptors reemitting the light in the direction of the photovoltaics. So far, this system has only been realized for the 350–550 nm wavelength range, suitable for AlGaInP photovoltaics. This was achieved by using acceptor molecules that aligned during mechanical stretching of polymers together with donors, that stay random in that very same material and procedure. However, until recently, very little was known about the factors that are responsible for the alignability of molecules in stretched polymers and therefore it was difficult to find suitable donors and acceptors, as well as for other spectral ranges. Recently, a structural parameter was introduced with a high predictivity for the alignability of molecules that contain rigid band-like structures or linear aromatic π-systems. However, for light concentrators in more red spectral ranges, molecular systems often contain larger and extended, planar-like π-systems for which the previously reported parameter is not directly applicable. Here, we present a refined prediction parameter also suitable for larger plane-like structures. The new parameter depends on the number of in-plane atoms divided by out-of-plane atoms as determined by computational geometry optimization and additionally the planar aspect ratio for molecules that contain only in-plane atoms. With the help of this parameter, we found a new system that can efficiently collect and redirect light for the second 500–700 nm AlGaAs layer of current world-record multijunction photovoltaics. Similarly, as the previously reported system for the blue-green layer, it has also overall absorption and re-directioning quantum efficiencies close to 80–100%. Both layers, together, already cover about 75% of the energy in the solar spectrum.
Collapse
|
3
|
Fujieda I, Tsutsumi Y, Matsuda S. Spectral study on utilizing ambient light with luminescent materials for display applications. OPTICS EXPRESS 2021; 29:6691-6702. [PMID: 33726184 DOI: 10.1364/oe.418869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
A luminous reflective display can be constructed by placing an electro-optic shutter on the stack of a luminescent layer, a color filter, and a reflector in this order. The luminescent materials convert a part of the incident light to photoluminescence photons. The reflector redirects the downward photon flux toward an observer. The color filters prevent the photons with unwanted wavelengths from being reflected. The upward spectral flux from this multi-layer structure is formulated. Experiments with off-the-shelf components revealed more than three-fold increase in spectral flux and up to 55% color gamut extension, compared with a control device without luminescent materials.
Collapse
|
4
|
A new ultrafast energy funneling material harvests three times more diffusive solar energy for GaInP photovoltaics. Proc Natl Acad Sci U S A 2020; 117:32929-32938. [PMID: 33318220 PMCID: PMC7776598 DOI: 10.1073/pnas.2019198117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using molecular systems that harvest diffusive sunlight on large areas and funnel it onto much smaller areas of precious high-performance solar cells could pave the way to affordable high-efficiency photovoltaics. Here, we discovered important structural principles of molecules suitable to align diffusive light, the underlying ultrafast depolarization/repolarization dynamics, and a material with significantly higher light harvesting in the peak of the solar spectrum. There is no theoretical limit in using molecular networks to harvest diffusive sun photons on large areas and funnel them onto much smaller areas of highly efficient but also precious energy-converting materials. The most effective concept reported so far is based on a pool of randomly oriented, light-harvesting donor molecules that funnel all excitation quanta by ultrafast energy transfer to individual light-redirecting acceptor molecules oriented parallel to the energy converters. However, the best practical light-harvesting system could only be discovered by empirical screening of molecules that either align or not within stretched polymers and the maximum absorption wavelength of the empirical system was far away from the solar maximum. No molecular property was known explaining why certain molecules would align very effectively whereas similar molecules did not. Here, we first explore what molecular properties are responsible for a molecule to be aligned. We found a parameter derived directly from the molecular structure with a high predictive power for the alignability. In addition, we found a set of ultrafast funneling molecules that harvest three times more energy in the solar’s spectrum peak for GaInP photovoltaics. A detailed study on the ultrafast dipole moment reorientation dynamics demonstrates that refocusing of the diffusive light is based on ∼15-ps initial dipole moment depolarization followed by ∼50-ps repolarization into desired directions. This provides a detailed understanding of the molecular depolarization/repolarization processes responsible for refocusing diffusively scattered photons without violating the second law of thermodynamics.
Collapse
|
5
|
Sychugov I. Geometry effects on luminescence solar concentrator efficiency: analytical treatment. APPLIED OPTICS 2020; 59:5715-5722. [PMID: 32609696 DOI: 10.1364/ao.393521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Luminescence solar concentrators act as semitransparent photovoltaic cells of interest for modern urban environments. Here, their efficiencies were analytically derived for different regular unit shapes as simple, integral-free expressions. This allowed analysis of the shape and size effect on the device performance. All regular shapes appear to have a similar efficiency as revealed by optical path distribution formulas, despite differences in the perimeter length. Rectangles of the same area feature higher efficiency due to reduced average optical path. It comes with the cost of a longer perimeter, and the relation between these two is provided. An explicit formula for the critical size of an LSC unit, above which its inner part becomes inactive, has been obtained. For square geometry with matrix absorption coefficient α this critical size is ∼2.7/α, corresponding to 70-90 cm for common polymer materials. Obtained results can be used for treatment of individual units as well as for analysis of tiling for large areas.
Collapse
|
6
|
Matsumura R, Tsutsumi Y, Fujieda I. Concentric re-emission pattern from a planar waveguide with a thin uniform luminescent layer. APPLIED OPTICS 2020; 59:1703-1710. [PMID: 32225679 DOI: 10.1364/ao.384323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/11/2020] [Indexed: 06/10/2023]
Abstract
When a beam of light excites a single spot on a thin luminescent layer embedded in a planar waveguide, a concentric re-emission pattern is observed. An analytical expression is formulated by following the series of events in the waveguide: generation of angle-dependent photoluminescence spectra, reflection at the waveguide-air boundary, absorption by the luminescent layer, and generation of next-generation photoluminescence. The formula reproduces the peak radii observed in the experiments with some organic dyes. It provides insights for the re-emission events in a luminescent solar concentrator and the cross talk in an energy-harvesting display based on photoluminescence.
Collapse
|
7
|
Pieper A, Hohgardt M, Willich M, Gacek DA, Hafi N, Pfennig D, Albrecht A, Walla PJ. Biomimetic light-harvesting funnels for re-directioning of diffuse light. Nat Commun 2018; 9:666. [PMID: 29445168 PMCID: PMC5812990 DOI: 10.1038/s41467-018-03103-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/19/2018] [Indexed: 01/01/2023] Open
Abstract
Efficient sunlight harvesting and re-directioning onto small areas has great potential for more widespread use of precious high-performance photovoltaics but so far intrinsic solar concentrator loss mechanisms outweighed the benefits. Here we present an antenna concept allowing high light absorption without high reabsorption or escape-cone losses. An excess of randomly oriented pigments collects light from any direction and funnels the energy to individual acceptors all having identical orientations and emitting ~90% of photons into angles suitable for total internal reflection waveguiding to desired energy converters (funneling diffuse-light re-directioning, FunDiLight). This is achieved using distinct molecules that align efficiently within stretched polymers together with others staying randomly orientated. Emission quantum efficiencies can be >80% and single-foil reabsorption <0.5%. Efficient donor-pool energy funneling, dipole re-orientation, and ~1.5-2 nm nearest donor-acceptor transfer occurs within hundreds to ~20 ps. Single-molecule 3D-polarization experiments confirm nearly parallel emitters. Stacked pigment selection may allow coverage of the entire solar spectrum.
Collapse
Affiliation(s)
- Alexander Pieper
- Department for Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, University of Braunschweig, Gaussstrasse 17, 38106, Braunschweig, Germany
| | - Manuel Hohgardt
- Department for Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, University of Braunschweig, Gaussstrasse 17, 38106, Braunschweig, Germany
| | - Maximilian Willich
- Department for Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, University of Braunschweig, Gaussstrasse 17, 38106, Braunschweig, Germany
| | - Daniel Alexander Gacek
- Department for Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, University of Braunschweig, Gaussstrasse 17, 38106, Braunschweig, Germany
| | - Nour Hafi
- Department for Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, University of Braunschweig, Gaussstrasse 17, 38106, Braunschweig, Germany
| | - Dominik Pfennig
- Department for Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, University of Braunschweig, Gaussstrasse 17, 38106, Braunschweig, Germany
| | - Andreas Albrecht
- Department for Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, University of Braunschweig, Gaussstrasse 17, 38106, Braunschweig, Germany
| | - Peter Jomo Walla
- Department for Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, University of Braunschweig, Gaussstrasse 17, 38106, Braunschweig, Germany.
| |
Collapse
|
8
|
Merkx EPJ, Ten Kate OM, van der Kolk E. Rapid optimization of large-scale luminescent solar concentrators: evaluation for adoption in the built environment. OPTICS EXPRESS 2017; 25:A547-A563. [PMID: 28788837 DOI: 10.1364/oe.25.00a547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/13/2017] [Indexed: 06/07/2023]
Abstract
The phenomenon of self-absorption is by far the largest influential factor in the efficiency of luminescent solar concentrators (LSCs), but also the most challenging one to capture computationally. In this work we present a model using a multiple-generation light transport (MGLT) approach to quantify light transport through single-layer luminescent solar concentrators of arbitrary shape and size. We demonstrate that MGLT offers a significant speed increase over Monte Carlo (raytracing) when optimizing the luminophore concentration in large LSCs and more insight into light transport processes. Our results show that optimizing luminophore concentration in a lab-scale device does not yield an optimal optical efficiency after scaling up to realistically sized windows. Each differently sized LSC therefore has to be optimized individually to obtain maximal efficiency. We show that, for strongly self-absorbing LSCs with a high quantum yield, parasitic self-absorption can turn into a positive effect at very high absorption coefficients. This is due to a combination of increased light trapping and stronger absorption of the incoming sunlight. We conclude that, except for scattering losses, MGLT can compute all aspects in light transport through an LSC accurately and can be used as a design tool for building-integrated photovoltaic elements. This design tool is therefore used to calculate many building-integrated LSC power conversion efficiencies.
Collapse
|
9
|
Videira JJH, Bilotti E, Chatten AJ. Cylindrical array luminescent solar concentrators: performance boosts by geometric effects. OPTICS EXPRESS 2016; 24:A1188-A1200. [PMID: 27410904 DOI: 10.1364/oe.24.0a1188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper presents an investigation of the geometric effects within a cylindrical array luminescent solar concentrator (LSC). Photon concentration of a cylindrical LSC increases linearly with cylinder length up to 2 metres. Raytrace modelling on the shading effects of circles on their neighbours demonstrates effective incident light trapping in a cylindrical LSC array at angles of incidence between 60-70 degrees. Raytrace modelling with real-world lighting conditions shows optical efficiency boosts when the suns angle of incidence is within this angle range. On certain days, 2 separate times of peak optical efficiency can be attained over the course of sunrise-solar noon.
Collapse
|
10
|
Gutierrez GD, Coropceanu I, Bawendi MG, Swager TM. A Low Reabsorbing Luminescent Solar Concentrator Employing π-Conjugated Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:497-501. [PMID: 26596854 DOI: 10.1002/adma.201504358] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/02/2015] [Indexed: 06/05/2023]
Abstract
A highly efficient thin-film luminescent solar concentrator (LSC) utilizing two π-conjugated polymers as antennae for small amounts of the valued perylene bisimide Lumogen F Red 305 is presented. The LSC exhibits high photoluminescence quantum yield, low reabsorption, and relatively low refractive indices for waveguide matching. A Monte Carlo simulation predicts the LSC to possess exceptionally high optical efficiencies on large scales.
Collapse
Affiliation(s)
- Gregory D Gutierrez
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Igor Coropceanu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Moungi G Bawendi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|