1
|
Li B, Liu L, Xu L. Ultra-sensitive active whispering gallery mode sensor in an optofluidic microcapillary with Vernier effect of coupled modes. OPTICS EXPRESS 2025; 33:14668-14676. [PMID: 40219398 DOI: 10.1364/oe.554693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/07/2025] [Indexed: 04/14/2025]
Abstract
Ultrahigh sensitivity is achieved in an optofluidic microcapillary active sensor by utilizing the Vernier effect of coupled whispering gallery modes. A refractive index sensitivity of 2924 nm/RIU is obtained experimentally, which is 7 times higher than the sensitivity limit of a conventional whispering gallery mode sensor. By reducing the wall thickness of the microcapillary to decrease the difference of free spectral range of the coupled whispering gallery modes, further improvement in refractive index sensitivity can be as high as 48426 nm/RIU. This sensing strategy allows us to design a robust, easily fabricated ultra-sensitive optical sensor for microfluidic sensing applications.
Collapse
|
2
|
Aguirre MÁ, Long KD, Li N, Manoto SL, Cunningham BT. Detection and Digital Resolution Counting of Nanoparticles with Optical Resonators and Applications in Biosensing. CHEMOSENSORS (BASEL, SWITZERLAND) 2018; 6:13. [PMID: 39559408 PMCID: PMC11573240 DOI: 10.3390/chemosensors6020013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
The interaction between nanoparticles and the electromagnetic fields associated with optical nanostructures enables sensing with single-nanoparticle limits of detection and digital resolution counting of captured nanoparticles through their intrinsic dielectric permittivity, absorption, and scattering. This paper will review the fundamental sensing methods, device structures, and detection instruments that have demonstrated the capability to observe the binding and interaction of nanoparticles at the single-unit level, where the nanoparticles are comprised of biomaterial (in the case of a virus or liposome), metal (plasmonic and magnetic nanomaterials), or inorganic dielectric material (such as TiO2 or SiN). We classify sensing approaches based upon their ability to observe single-nanoparticle attachment/detachment events that occur in a specific location, versus approaches that are capable of generating images of nanoparticle attachment on a nanostructured surface. We describe applications that include study of biomolecular interactions, viral load monitoring, and enzyme-free detection of biomolecules in a test sample in the context of in vitro diagnostics.
Collapse
Affiliation(s)
- Miguel Ángel Aguirre
- Department of Analytical Chemistry and Food Science and University Institute of Materials, Faculty of Science, University of Alicante, P.O. Box 99, 03080 Alicante, Spain
| | - Kenneth D Long
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nantao Li
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sello Lebohang Manoto
- Biophotonics, National Laser Centre, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa
| | - Brian T Cunningham
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
3
|
Kavungal V, Farrell G, Wu Q, Mallik AK, Semenova Y. Thermo-optic tuning of a packaged whispering gallery mode resonator filled with nematic liquid crystal. OPTICS EXPRESS 2018; 26:8431-8442. [PMID: 29715810 DOI: 10.1364/oe.26.008431] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/19/2018] [Indexed: 06/08/2023]
Abstract
Thermo-optic tuning of whispering gallery modes (WGMs) in a nematic liquid crystal-filled thin-walled capillary tube resonator is reported. WGMs were excited by the evanescent field from a tapered optical fiber. Tapered optical fiber fabrication and reduction of wall thickness of the capillary tube was carried out by a ceramic micro-heater brushing technique. A simple and robust packaging technique is demonstrated to ensure stable and repeatable operation of the device. Tunability of WGMs with temperature was demonstrated with a sensitivity of 267.5 ± 2.5 pm/°C. The demonstrated thermo-optic method for WGMs tuning is potentially useful for many tunable photonic devices and sensors.
Collapse
|
4
|
Mahmood A, Kavungal V, Ahmed SS, Kopcansky P, Zavisova V, Farrell G, Semenova Y. Magnetic field sensing using whispering-gallery modes in a cylindrical microresonator infiltrated with ferronematic liquid crystal. OPTICS EXPRESS 2017; 25:12195-12202. [PMID: 28786578 DOI: 10.1364/oe.25.012195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/24/2016] [Indexed: 06/07/2023]
Abstract
An all-fiber magnetic field sensor based on whispering-gallery modes (WGM) in a fiber micro-resonator infiltrated with ferronematic liquid crystal is proposed and experimentally demonstrated. The cylindrical microresonator is formed by a 1 cm-long section of a photonic crystal fiber infiltrated with ferronematic materials. Both ferronematics suspensions are prepared based on the nematic liquid crystal 1-(trans-4-Hexylcyclohexyl)-4-isothiocyanatobenzene (6CHBT) doped with rod-like magnetic particles in the first case and with spherical magnetic particles in the second case. WGMs are excited in the fiber microresonator by evanescent light coupling using a tapered fiber with a micron-size diameter. The Q-factor of the microresonator determined from the experimentaly measured transmission spectrum of the tapered fiber was 1.975 × 103. Under the influence of an applied magnetic field the WGM resonances experience spectral shift towards shorter wavelengths. The experimentally demonstrated sensitivity of the proposed sensor was -39.6 pm/mT and -37.3 pm/mT for samples infiltrated with rod like and spherical like ferromagnetic suspensions respectively for a magnetic field range (0-47) mT. Reducing the diameter of the cylindrical micro-resonator by tapering leads to enhancement of the magnetic field sensitivity up to -61.86 pm/mT and -49.88 pm/mT for samples infiltrated with rod like and spherical like ferromagnetic suspensions respectively for the magnetic field range (0-44.7) mT.
Collapse
|
5
|
Zhi Y, Yu XC, Gong Q, Yang L, Xiao YF. Single Nanoparticle Detection Using Optical Microcavities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1604920. [PMID: 28060436 DOI: 10.1002/adma.201604920] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/26/2016] [Indexed: 05/24/2023]
Abstract
Detection of nanoscale objects is highly desirable in various fields such as early-stage disease diagnosis, environmental monitoring and homeland security. Optical microcavity sensors are renowned for ultrahigh sensitivities due to strongly enhanced light-matter interaction. This review focuses on single nanoparticle detection using optical whispering gallery microcavities and photonic crystal microcavities, both of which have been developing rapidly over the past few years. The reactive and dissipative sensing methods, characterized by light-analyte interactions, are explained explicitly. The sensitivity and the detection limit are essentially determined by the cavity properties, and are limited by the various noise sources in the measurements. On the one hand, recent advances include significant sensitivity enhancement using techniques to construct novel microcavity structures with reduced mode volumes, to localize the mode field, or to introduce optical gain. On the other hand, researchers attempt to lower the detection limit by improving the spectral resolution, which can be implemented by suppressing the experimental noises. We also review the methods of achieving a better temporal resolution by employing mode locking techniques or cavity ring up spectroscopy. In conclusion, outlooks on the possible ways to implement microcavity-based sensing devices and potential applications are provided.
Collapse
Affiliation(s)
- Yanyan Zhi
- State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing, 100871, P. R. China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100871, P. R. China
| | - Xiao-Chong Yu
- State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing, 100871, P. R. China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100871, P. R. China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing, 100871, P. R. China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100871, P. R. China
- Collaborative Innovation Center of Extreme Optics, Taiyuan, 030006, Shanxi, P. R. China
| | - Lan Yang
- Department of Electrical and Systems Engineering, Washington University, St. Louis, MO, USA, 63130
| | - Yun-Feng Xiao
- State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing, 100871, P. R. China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100871, P. R. China
- Collaborative Innovation Center of Extreme Optics, Taiyuan, 030006, Shanxi, P. R. China
| |
Collapse
|
6
|
Barucci A, Berneschi S, Giannetti A, Baldini F, Cosci A, Pelli S, Farnesi D, Righini GC, Soria S, Nunzi Conti G. Optical Microbubble Resonators with High Refractive Index Inner Coating for Bio-Sensing Applications: An Analytical Approach. SENSORS (BASEL, SWITZERLAND) 2016; 16:E1992. [PMID: 27898015 PMCID: PMC5190973 DOI: 10.3390/s16121992] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/17/2016] [Accepted: 11/22/2016] [Indexed: 01/24/2023]
Abstract
The design of Whispering Gallery Mode Resonators (WGMRs) used as an optical transducer for biosensing represents the first and crucial step towards the optimization of the final device performance in terms of sensitivity and Limit of Detection (LoD). Here, we propose an analytical method for the design of an optical microbubble resonator (OMBR)-based biosensor. In order to enhance the OMBR sensing performance, we consider a polymeric layer of high refractive index as an inner coating for the OMBR. The effect of this layer and other optical/geometrical parameters on the mode field distribution, sensitivity and LoD of the OMBR is assessed and discussed, both for transverse electric (TE) and transverse magnetic (TM) polarization. The obtained results do provide physical insights for the development of OMBR-based biosensor.
Collapse
Affiliation(s)
- Andrea Barucci
- Istituto di Fisica Applicata Nello Carrara (CNR IFAC), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Simone Berneschi
- Istituto di Fisica Applicata Nello Carrara (CNR IFAC), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Ambra Giannetti
- Istituto di Fisica Applicata Nello Carrara (CNR IFAC), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Francesco Baldini
- Istituto di Fisica Applicata Nello Carrara (CNR IFAC), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Alessandro Cosci
- Istituto di Fisica Applicata Nello Carrara (CNR IFAC), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
- Centro Studi e Ricerche «E. Fermi» Piazza del Viminale 1, 00184 Rome, Italy.
| | - Stefano Pelli
- Istituto di Fisica Applicata Nello Carrara (CNR IFAC), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
- Centro Studi e Ricerche «E. Fermi» Piazza del Viminale 1, 00184 Rome, Italy.
| | - Daniele Farnesi
- Istituto di Fisica Applicata Nello Carrara (CNR IFAC), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
- Centro Studi e Ricerche «E. Fermi» Piazza del Viminale 1, 00184 Rome, Italy.
| | - Giancarlo C Righini
- Istituto di Fisica Applicata Nello Carrara (CNR IFAC), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
- Centro Studi e Ricerche «E. Fermi» Piazza del Viminale 1, 00184 Rome, Italy.
| | - Silvia Soria
- Istituto di Fisica Applicata Nello Carrara (CNR IFAC), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Gualtiero Nunzi Conti
- Istituto di Fisica Applicata Nello Carrara (CNR IFAC), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
7
|
François A, Zhi Y, Meldrum A. Whispering Gallery Mode Devices for Sensing and Biosensing. PHOTONIC MATERIALS FOR SENSING, BIOSENSING AND DISPLAY DEVICES 2016. [DOI: 10.1007/978-3-319-24990-2_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|