1
|
Verrier N, Debailleul M, Haeberlé O. Recent Advances and Current Trends in Transmission Tomographic Diffraction Microscopy. SENSORS (BASEL, SWITZERLAND) 2024; 24:1594. [PMID: 38475130 PMCID: PMC10934239 DOI: 10.3390/s24051594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Optical microscopy techniques are among the most used methods in biomedical sample characterization. In their more advanced realization, optical microscopes demonstrate resolution down to the nanometric scale. These methods rely on the use of fluorescent sample labeling in order to break the diffraction limit. However, fluorescent molecules' phototoxicity or photobleaching is not always compatible with the investigated samples. To overcome this limitation, quantitative phase imaging techniques have been proposed. Among these, holographic imaging has demonstrated its ability to image living microscopic samples without staining. However, for a 3D assessment of samples, tomographic acquisitions are needed. Tomographic Diffraction Microscopy (TDM) combines holographic acquisitions with tomographic reconstructions. Relying on a 3D synthetic aperture process, TDM allows for 3D quantitative measurements of the complex refractive index of the investigated sample. Since its initial proposition by Emil Wolf in 1969, the concept of TDM has found a lot of applications and has become one of the hot topics in biomedical imaging. This review focuses on recent achievements in TDM development. Current trends and perspectives of the technique are also discussed.
Collapse
Affiliation(s)
- Nicolas Verrier
- Institut Recherche en Informatique, Mathématiques, Automatique et Signal (IRIMAS UR UHA 7499), Université de Haute-Alsace, IUT Mulhouse, 61 rue Albert Camus, 68093 Mulhouse, France; (M.D.); (O.H.)
| | | | | |
Collapse
|
2
|
Brodoline A, Alexandre D, Gross M. Fast and pure phase-shifting off-axis holographic microscopy with a digital micromirror device. APPLIED OPTICS 2022; 61:4296-4302. [PMID: 36256266 DOI: 10.1364/ao.452382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/21/2022] [Indexed: 06/16/2023]
Abstract
We present a phase-shifting digital holographic microscopy technique, where a digital micromirror device enables to perform a precise phase-only shift of the reference wave. By coupling the beam into a monomode fiber, we obtain a laser mode with a constant phase shift, equally acting on all pixels of the hologram. This method has the advantage of being relatively simple and compatible with high frame rate cameras, which makes it of great interest for the observation of fast phenomena. We demonstrate the validity of the technique in an off-axis configuration by imaging living paramecia caudata.
Collapse
|
3
|
Brodoline A, Rawat N, Alexandre D, Cubedo N, Gross M. 4D compressive sensing holographic imaging of small moving objects with multiple illuminations. APPLIED OPTICS 2019; 58:G127-G134. [PMID: 31873493 DOI: 10.1364/ao.58.00g127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
In previous work [Opt. Lett.44, 2827 (2019)OPLEDP0146-959210.1364/OL.44.002827], we presented a method based on digital holography and orthogonal matching pursuit, which is able to determine the 3D positions of small objects moving within a larger motionless object. Indeed, if the scattering density is sparse in direct 3D space, compressive sensing algorithms can be used. The method was validated by imaging red blood cell trajectories in the trunk vascular system of a zebrafish (Danio rerio) larva. We give here further details on the reconstruction technique and present a more robust version of the algorithm based on multiple illuminations.
Collapse
|
4
|
Brasiliense V, Berto P, Aubertin P, Maisonhaute E, Combellas C, Tessier G, Courty A, Kanoufi F. Light Driven Design of Dynamical Thermosensitive Plasmonic Superstructures: A Bottom-Up Approach Using Silver Supercrystals. ACS NANO 2018; 12:10833-10842. [PMID: 30346722 DOI: 10.1021/acsnano.8b03140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
When narrowly distributed silver nanoparticles (NPs) are functionalized by dodecanethiol, they acquire the ability to self-organize in organic solvents into 3D supercrystals (SCs). The NP surface chemistry is shown to introduce a light-driven thermomigration effect, thermophoresis. Using a laser beam to heat the NPs and generate steep thermal gradients, the migration effect is triggered dynamically, leading to tailored structures with high density of plasmonic hot spots. This work describes how to manipulate the hot spots and monitor the effect by holography, thus providing a complete characterization of the migration process on a single object basis. Extensive single object tracking strategies are employed to measure the SCs trajectories, evaluate their size, drift velocity magnitude and direction, allowing the identification of the physical chemical origins of the migration. The phenomenon is shown to happen as a result of the combination of thermophoresis (at short length scales) and convection (long-range), and does not require a metallic substrate. This constitutes a fully optical method to dynamically generate plasmonic platforms in situ and on demand, without requiring substrate nanostructuration and with minimal interference on the chemistry of the system. The importance of the proof-of-concept herein described stems from the numerous potential applications, spanning over a variety of fields such as microfluidics and biosensing.
Collapse
Affiliation(s)
- Vitor Brasiliense
- Sorbonne Paris Cité, Université Paris Diderot, Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086, 15 rue J. A. Baif , F-75013 Paris , France
| | - Pascal Berto
- Sorbonne Paris Cité, Université Paris Descartes, Neurophotonics Laboratory, CNRS-UMR 8250, 45 rue des Saints-Pères , F-75006 Paris , France
| | - Pierre Aubertin
- Sorbonne Université, Laboratoire Interfaces et Systèmes Electrochimiques, CNRS-UMR 8235, 4 place Jussieu , F-75005 Paris France
| | - Emmanuel Maisonhaute
- Sorbonne Université, Laboratoire Interfaces et Systèmes Electrochimiques, CNRS-UMR 8235, 4 place Jussieu , F-75005 Paris France
| | - Catherine Combellas
- Sorbonne Paris Cité, Université Paris Diderot, Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086, 15 rue J. A. Baif , F-75013 Paris , France
| | - Gilles Tessier
- Sorbonne Paris Cité, Université Paris Descartes, Neurophotonics Laboratory, CNRS-UMR 8250, 45 rue des Saints-Pères , F-75006 Paris , France
- Sorbonne Université, CNRS, Institut de la Vision, 11 Rue Moreau , F-75011 Paris France
| | - Alexa Courty
- Sorbonne Université Laboratoire MONARIS, CNRS-UMR 8233, 4 place Jussieu , F-75005 Paris France
| | - Frédéric Kanoufi
- Sorbonne Paris Cité, Université Paris Diderot, Interfaces, Traitements, Organisation et Dynamique des Systèmes, CNRS-UMR 7086, 15 rue J. A. Baif , F-75013 Paris , France
| |
Collapse
|
5
|
Donnarumma D, Rawat N, Brodoline A. High-speed quantitative 3D imaging by dual-illumination holographic microscopy. Microsc Res Tech 2018; 81:1361-1365. [PMID: 30431202 DOI: 10.1002/jemt.23076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 06/03/2018] [Indexed: 11/06/2022]
Abstract
A new blood flow imaging (BFI) technique using digital holography with double illumination of the sample is proposed. We imaged the moving red blood cells (RBCs) using a two microscope objective lenses setup. The setup consists in a larger angle of separation (90 °) between the two illumination beams, allowing a wider angular rotation at good z resolution. Moreover, the setup geometry allows an easier displacement of the sample in all directions. Results show that this technique is able to perform phase-shifting reconstruction for the two beams at the same time which is more suitable for the future implementation of live 3D holography. Experimental results are carried out for the verification of the effectiveness of the proposed technique on a zebrafish larvae sample. RESEARCH HIGHLIGHTS: Blood flow imaging techniques are often invasive and image analysis is time consuming. To alleviate this issue an imaging technique based on dual illumination in holographic domain is proposed. This method has been validated on zebrafish embryos.
Collapse
Affiliation(s)
- Dario Donnarumma
- Laboratoire Charles Coulomb - UMR 5221 CNRS-Université Montpellier, Place Eugène Bataillon, Montpellier, France
| | - Nitin Rawat
- Laboratoire Charles Coulomb - UMR 5221 CNRS-Université Montpellier, Place Eugène Bataillon, Montpellier, France
| | - Alexey Brodoline
- Laboratoire Charles Coulomb - UMR 5221 CNRS-Université Montpellier, Place Eugène Bataillon, Montpellier, France
| |
Collapse
|
6
|
Donnarumma D, Brodoline A, Alexandre D, Gross M. 4D holographic microscopy of zebrafish larvae microcirculation. OPTICS EXPRESS 2016; 24:26887-26900. [PMID: 27857417 DOI: 10.1364/oe.24.026887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
An original technique that combines digital holography, dual illumination of the sample and cleaning algorithm 3D reconstruction is proposed. It uses a standard transmission microscopy setup coupled with a digital holography detection. The technique is 4D, since it allows to determine, at each time step, the 3D locations (x,y,z) of many moving objects that scatter the dual illumination beam. The technique has been validated by imaging the microcirculation of blood in a fish larvae sample (the moving objects are thus red blood cells RBCs). Videos showing in 4D the moving RBCs superimposed with the perfused blood vessels are obtained.
Collapse
|
7
|
Brasiliense V, Berto P, Combellas C, Tessier G, Kanoufi F. Electrochemistry of Single Nanodomains Revealed by Three-Dimensional Holographic Microscopy. Acc Chem Res 2016; 49:2049-57. [PMID: 27598333 DOI: 10.1021/acs.accounts.6b00335] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interest in nanoparticles has vigorously increased over the last 20 years as more and more studies show how their use can potentially revolutionize science and technology. Their applications span many different academically and industrially relevant fields such as catalysis, materials science, health, etc. Until the past decade, however, nanoparticle studies mostly relied on ensemble studies, thus leaving aside their chemical heterogeneity at the single particle level. Over the past few years, powerful new tools appeared to probe nanoparticles individually and in situ. This Account describes how we drew inspiration from the emerging fields of nanoelectrochemistry and plasmonics-based high resolution holographic microscopy to develop a coupled approach capable of analyzing in operando (electro)chemical reaction over one single nanoparticle. A brief overview of selected optical strategies to image NPs in situ with emphasis on scattering based methods is presented. In an electrochemical context, it is necessary to track particle behavior both in solution and near a polarized electrode, which is why 3D optical observation is particularly appealing. These approaches are discussed together with strategies to track NPs beyond the diffraction limit, allowing a much finer description of their trajectories. Then, the holographic setup is used to study electrochemically triggered Ag NP oxidation reaction in the presence of different electrolytes. Holography is shown to be a powerful technique to track and analyze the trajectory of individual NPs in situ, which further sheds light on in operando behaviors such as electrogenerated NP transport, aggregation, or adsorption. We then show that spectroscopy and scattering-based optical methods are reliable and sensitive to the point of being used to investigate and quantify NP (electro)chemical reactions in model cases. However, since real chemical reactions usually take place in an inherently complex environment, approaches based exclusively on optical imaging only reach their limitations. The strategy is then taken one step further by merging together electrochemical nanoimpact experiments with 3D optical monitoring. Previous strategies are validated by showing that in simple cases, these two independent ways of probing NP size and reactivity yield the same results. For more complicated reactions (e.g., multistep reactions), one must go beyond either technique by showing that the two approaches are perfectly complementary and that the two signals contain information of different natures, thus providing a much better characterization of the reaction. This point is illustrated by studying Ag NP oxidation (single or agglomerates) in the presence of a precipitating agent, where the actual oxidation is uncoupled from the dissolution of the particle, thus proving the point of our symbiotic approach.
Collapse
Affiliation(s)
- Vitor Brasiliense
- Université Sorbonne Paris Cité, Université Paris Diderot, ITODYS CNRS UMR 7086, 15 rue Jean de Baïf, F-75013 Paris, France
| | - Pascal Berto
- Université Sorbonne Paris Cité, Université Paris Descartes, Neurophotonics Laboratory CNRS UMR 8250, 45 rue des Saints-Pères, F-75006 Paris, France
| | - Catherine Combellas
- Université Sorbonne Paris Cité, Université Paris Diderot, ITODYS CNRS UMR 7086, 15 rue Jean de Baïf, F-75013 Paris, France
| | - Gilles Tessier
- Université Sorbonne Paris Cité, Université Paris Descartes, Neurophotonics Laboratory CNRS UMR 8250, 45 rue des Saints-Pères, F-75006 Paris, France
| | - Frédéric Kanoufi
- Université Sorbonne Paris Cité, Université Paris Diderot, ITODYS CNRS UMR 7086, 15 rue Jean de Baïf, F-75013 Paris, France
| |
Collapse
|
8
|
Donnarumma D, Brodoline A, Alexandre D, Gross M. Blood flow imaging in zebrafish by laser doppler digital holography. Microsc Res Tech 2016; 81:153-161. [PMID: 27155205 DOI: 10.1002/jemt.22678] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/31/2016] [Accepted: 04/15/2016] [Indexed: 11/08/2022]
Abstract
Microvessel blood flow imaging techniques are widely used in biomedical research and clinical diagnostics where many diseases have a vascular etiology or involvement. For testing purposes, zebrafish embryo provides an ideal animal model to achieve high-resolution imaging of superficial and deeply localized vessels. Moreover, the study of the formation of a closed circulatory system in vertebrates is a topic of recent interest in biophysics. However, most of the existing techniques are invasive due to the use of a contrast agent for imaging purposes. Recent developments in Digital Holography and Laser Doppler Holography techniques can be considered to alleviate this issue. Laser Doppler holography and transmission microscopy can be coupled to analyze blood flow in fish embryos by adapting a laser Doppler holographic setup to a standard bio-microscope: the two beams of the holographic interferometer (illumination of the object and reference), whose frequency offset is controlled, were addressed to the microscope by optical fibers. Multimodal acquisition and analysis of the data is made by acting on the frequency offset of the two beams, and on the location of the Fourier space filtered zone. In this work, we show that it is possible to select the signal of moving scatterers, and to image Red Blood Cells (RBCs) and blood vessels. Individual RBCs are imaged, and movies showing the RBC motion are obtained. Microsc. Res. Tech. 81:153-161, 2018. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dario Donnarumma
- Laboratoire Charles Coulomb-UMR 5221 CNRS-Universite Montpellier, Place Eugéne Bataillon, 34095, Montpellier, France
| | - Alexey Brodoline
- Laboratoire Charles Coulomb-UMR 5221 CNRS-Universite Montpellier, Place Eugéne Bataillon, 34095, Montpellier, France
| | - Daniel Alexandre
- Laboratoire Charles Coulomb-UMR 5221 CNRS-Universite Montpellier, Place Eugéne Bataillon, 34095, Montpellier, France
| | - Michel Gross
- Laboratoire Charles Coulomb-UMR 5221 CNRS-Universite Montpellier, Place Eugéne Bataillon, 34095, Montpellier, France
| |
Collapse
|
9
|
Verrier N, Donnarumma D, Tessier G, Gross M. High numerical aperture holographic microscopy reconstruction with extended z range. APPLIED OPTICS 2015; 54:9540-9547. [PMID: 26560784 DOI: 10.1364/ao.54.009540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A holographic microscopy reconstruction method compatible with a high numerical aperture microscope objective (MO) up to NA=1.4 is proposed. After off-axis and reference field curvature corrections, and after selection of the +1 grating order holographic image, a phase mask that transforms the optical elements of the holographic setup into an afocal device is applied in the camera plane. The reconstruction is then made by the angular spectrum method. The field is first propagated in the image half-space from the camera to the afocal image of the MO optimal plane (the plane for which the MO has been designed) by using a quadratic kernel. The field is then propagated from the MO optimal plane to the object with the exact kernel. Calibration of the reconstruction is made by imaging a calibrated object such as a USAF resolution target for different positions along z. Once the calibration is done, the reconstruction can be made with an object located in any plane z. The reconstruction method has been validated experimentally with a USAF target imaged with a NA=1.4 microscope objective. Near-optimal resolution is obtained over an extended range (±50 μm) of z locations.
Collapse
|